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Abstract

Cosmology struggles with the theoretical problems generated by the observed
value and recent emergence of a cosmological constant, in the standard model
of cosmology, i.e. the concordance model. We propose to provide a more nat-
ural explanation for its value than the conventional quantum vacuum energy
in the guise of topological invariants. Introducing topological classes densi-
ties as Lagrange multipliers, an effective cosmological constant is generated.
General Relativity is reestablished by cancelling the torsion thus generated,
which provides constraints on the invariants and yield the form of the effec-
tive cosmological constant. As it is divided by the total volume of spacetime,
its small value compared to the Planck scale is therefore natural. It also
provides a direct measurement of the global Euler number.

Keywords: general relativity, differential geometry, topological invariants,
torsion two-form, space-time topology, cosmological constant, cosmology

1. Introduction

Einstein-Cartan theories generalise the curved spacetime approach of gen-
eral relativity (GR) to allow for the presence of torsion of the manifold
[1, 2, 3, 4]. The extreme case of curvatureless theory with torsion can yield
the Teleparallel Equivalent to GR [5, 6]. Further freedom can be gained by
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modifying the type of manifold topology [7, 8] and boundary terms [9] of the
Gravitational action. In a previous paper [10], the classical Einstein-Hilbert
action boundary conditions were modified by coupling characteristic topolog-
ical classes densities as Lagrange multipliers, which lead to the appearance
of a term that can be interpreted as an effective cosmological constant.

In cosmology, the need for such a constant to describe the observed uni-
verse arose after the detection of the stronger than expected fainting of stan-
dard candles provided by type Ia supernovae [11], and was later confirmed
by observations of the cosmic microwave background radiation, combined
with clusters and baryon acoustic oscillation measurements [12, 13, 14, 15].
However the common interpretation of such constant as a quantum vacuum
energy collides with the theoretical conundrums caused by the discrepancy
between observed value of Λ and evaluations of the quantum vacuum energy,
i.e. of order the Planck scale. This gives rise to the coincidence problem
[16, 17, 18, 19] and to the fine tuning problem [20, 21]. The coincidence
problem concerns the fact that the value of the cosmological constant seems
chosen such that its dominance in the cosmic energy density balance arose
very close to the present epoch. As it is a constant the fine tuning prob-
lem, which is more directly concerned with the discrepancy between its value
and the Planck scale which ruled the quantum vacuum scale at early time
and should have given initial values for all running constants, is embedded
together with the coincidence problem in the value of the cosmological con-
stant.

In this paper, we consider the possibility that such a constant is not gen-
erated from quantum vacuum considerations at the formation of the universe
but rather has a topological origin. Contrary to [10], where the solutions that
correspond to GR settings don’t depend on the topology, the effective cos-
mological constant in the solutions we are investigating here are completely
topological, that is we have no cosmological constant a priori, assuming some
symmetry consideration will have set the bare constant to zero. Starting from
the inclusion in the GR action of the topological classes densities consistent
with a space-time manifold, i. e. the Nieh-Yan, the Euler and the Pontryagin
classes, we introduce the torsion, for which the restriction to GR will lead to
some more constraints. In this context, a topological effective cosmological
constant naturally arises. Due to its nature, it renders moot the fine tuning
problem since its scale is no longer connected to the large Planck density,
but rather to the small inverse manifold volume, and we propose to link its
value with the topology of the universe.
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The paper organises as follows: we will first introduce the articulation of
the Einstein-Hilbert action with topological invariants in Sec. 2. We will then
return to the action and present the supplementary dynamics introduced by
these invariants in Sec. 3. Then, Sec. 4 will extract the effective cosmological
constant from imposing that gravity shall be described by GR.Finally, we
will discuss our findings and conclude in Sec. 5.

2. General Relativity and topological invariants

In this section we will describe how introducing topological invariants in
the action of GR generates the emergence of torsion.

2.1. General relativity and Cartan formalism

The standard General Relativity (GR) can be obtained by considering
the following action over a four manifold M

SEH[e
c, ω̄a

b] =

∫

M

1

κ

(

ǫabcdea ∧ eb ∧ R̄cd +
Λ

6
ǫ

)

, (1)

where Λ is the cosmological constant, ea denotes the 1-form frame fields or
vierbein, κ is the Gravitation constant, ǫ is the volume form ǫ

.
= 1

4!
ǫabcde

a∧eb∧
ec ∧ ed and ω̄a

b is the Levi-Civita connection 1-form. The later is equivalent
to the Einstein-Hilbert action, where R̄ab is the curvature two-form ans is
defined by

R̄ab .
= dω̄ab + ω̄a

c ∧ ω̄cb. (2)

where d (·) is the exterior derivative. The Palatini variation of (1) gives the
Einstein’s Field equations and the null torsion condition

T̄ a .
= dω̄e

a = 0.

where dω̄ (·) denotes the covariant derivative with respect to the connection
ω̄ab. Due to the nullity of the previous equation, it is possible to write the
action as well as the connection entirely in terms of the vierbein.

2.2. Adding characteristic classes to GR: The appearance of Torsion

On an oriented space-time M the characteristic classes of the tangent
bundle available and consistent with the space-time structure are the Euler
class e (M), the Pontryagin class p1 (TM) ∈ H4 (M;Z) = Z and the Chern
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class c2 (M) = c2 (TM) ∈ H4 (M,Z) (Nieh-Yan) [22, 7, 8, 23]. The previous
have the following representations as 4-forms, respectively

CP = Ra
b ∧ Rb

a, (3)

CE = ǫabcd R
ab ∧ Rcd, (4)

CNY = T a ∧ Ta − Rab ∧ ea ∧ eb. (5)

As it is clear from the previous equations, the addition of characteristic
classes directly in the Lagrangian will result in a non zero torsion T a. A
way to acknowledge these new settings is through what is known as first

order formalism [24, 25, 26, 27, 28, 29, 30], where the key is to consider a
generalized connection one-form to be

ωab .
= ω̄ab +Kab, (6)

T a .
= dωe

a, (7)

where Kab is called the contortion one form. It is immediate to note that
the previous equation leads immediately to the relation

T a = Kab ∧ eb. (8)

Is in this sense that the contortion Kab is the responsible for the appearance
of torsion T a. Similarly, the curvature two-form can thus be written in the
following way

Rab = R̄ab + dωK
ab −Ka

c ∧Kcb, (9)

where equations (2) and (6) have been used. To complete the picture, the
Bianchi identities

dωT
a = Ra

b ∧ eb, (10)

dωR
a
b = 0. (11)

hold for Rab and Ta.

3. Einstein-Hilbert with topological invariants

As it was done in [10], when considering the following family of actions

S [ec, ωa
b, ϕi, ni]

.
= SEH [e

c, ωa
b]−

∫

M

∑

i

ϕi

(

Ci −
ni

VM

ǫ

)

= S
eff
EH [ec, ωa

b, ϕi, ni]−

∫

M

∑

i

ϕi Ci, (12)
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where i = P,NY,E, and VM =
∫

M

ǫ the additional parameters ni are the

Nieh-Yan, Pontryagin and the Euler numbers, respectively, ϕi : M → R are
coupling zero forms and Ci are the characteristic classes defined in (3 -5),
where we have written

S
eff
EH [e

c, ωa
b, ϕi, ni]

.
=

∫

M

1

κ

(

ǫabcdea ∧ eb ∧Rcd +
Λeff

6
ǫabcdea ∧ eb ∧ ec ∧ ed

)

,

(13)
an apparent quasi topological effective cosmological constant seems to arise,
which has been defined as

Λeff [Λ, ϕi, ni]
.
= Λ +

1

4 VM

∑

i

ni ϕi. (14)

Note that the first form of equation (12) shows explicitly how the Lagrange
multipliers are inserted containing only non-holonomic restrictions.

Regarding the ni parameters, they have been inserted joined with the
characteristic densities in a way that will force them to be integers by con-
struction. We will elaborate further on this aspect, let us recall that for any
simply connected oriented smooth 4-manifold it has been proven that the
topological numbers ni ∈ Z [31, 22]. That the manifold is oriented comes
from the fact that when this is so it is necessary to have a differentiable
four-form which in this case is ensured by the existence of the volume form
ǫ = 1

4!
ǫabcde

a ∧ eb ∧ ec ∧ ed inserted directly in Eq. (12). On the other hand,
the couplings ϕi fulfill

Ci =
ni

VM

ǫ,

=
ni

VM

⋆ (1) ,

=

〈

ni

VM

, 1

〉

I,

= niĨ, (15)

where, again, ǫ is the volume form, ⋆ is the Hodge dual, 〈·, ·〉 is the inner
product for forms (in this case 0-forms), I is the unit (diagonal) form, and
at the last step we have defined the density form Ĩ = 1

VM
I (also diagonal).

At this point, by the use of the De Rham’s theorem we can think of the
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characteristic densities to be elements of the H2 (M;R) × H2 (M;R) kind,
which are forced to be diagonal. If we interpret these to be diagonal intersec-
tion forms QM , by Donaldson’s theorem we are ensuring that the considered
manifold is smooth and simply connected [31]. Therefore, the topological
numbers ni ∈ Z, i.e are known to be integers, necessarily.

The setup described above was considered in [10], where several particular
cases were studied, provided that M be non-compact in order to maintain
the topological degrees of freedom. With this proviso, the variation of the
action (12) yields the following field equations

δe : 0 = −ǫabcde
b ∧Rcd +

Λeff

3
ǫabcde

b ∧ ec ∧ ed + dϕNY ∧ Ta, (16)

δω : 0 = −2ǫabcdT
c ∧ ed − 2dϕP ∧Rab − dϕNY ∧ ea ∧ eb − 2ǫabcddϕE ∧ Rcd,

(17)

δϕ : nNY

VM
ǫ = T a ∧ Ta − Rab ∧ ea ∧ eb, (18)

δχ : nE

VM
ǫ = ǫabcdR

ab ∧ Rcd, (19)

δτ : nP

VM
ǫ = Ra

b ∧Rb
a . (20)

With the additional condition that the couplings are some pullback of a
common zero-form η : M → R such that ϕi = φ∗

i η, it can be proven that the
previous system of differential equations lead to the following expression for
the torsion

Ta = −

(

γ
∂ϕP

∂ϕE

+
Λeff

3

)

dϕE ∧ ea +

−
1

4σ

(

2Λeff

3
+

∂ϕNY

∂ϕP

+ 8σγ
∂ϕE

∂ϕP

)

ǫabcde
b ∧ ec ∧ Ld (ϕP ) , (21)

where σ = +1 when the metric is Euclidean-like or σ = −1 when Lorentzian-
like, respectively, and La (ϕi)

.
= ia (dϕi) is the Lie derivative of zero forms and

iec (·) ≡ ic (·) is the interior (or slant) product with respect to the vierbein.
On the other hand, by a generalization of the procedure used in [10] the

curvature two-form must be of the form

Rab =

(

Λeff

3

)

ea ∧ eb +
∑

i

dϕi ∧ [Lb (ϕi) ea −La (ϕi) eb] +

+
∑

i

γidϕi ∧ (ea − eb) + γǫabcde
c ∧ ed, (22)
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where γ : M → R and γi : M → R are introduced as auxiliary zero-forms to
be matched when comparing with equation (9). These auxiliary zero-forms
fulfill the following restrictions

nE

4!VM

= 2γ2 +

(

Λeff

3

)2

−

(

Λeff

3

)

La (Σiϕi)L
a (Σjϕj) +

−
∑

j

γj

[

L3 (ϕj) + L0 (ϕj) +
2

3
(L2 (ϕj) + L1 (ϕj))

]

, (23)

nP

4!VM

= −2
Λeff

3
γ. (24)

It is important to mention that this generalization does not affect the
solution of the torsion two form (equation (21)).

4. Getting General Relativity back: A Topological Cosmological

Constant

Let us recall equation (14) for the effective cosmological constant, which
we repeat here for later convenience. By setting Λ = 0, we get

Λ∗

eff

.
= Λeff |Λ=0 =

1

4 VM

∑

i

ni ϕi, (25)

which only depends on the couplings ϕi and the topological numbers ni.
This means that, under suitable conditions, it is not necessary to include
a cosmological constant a priori as the expression in (25) can provide the
same effect. In other words, as it was suggested in [10], we can claim a quasi

topological origin for the cosmological constant. We will prove that this quasi
topological turns into topological if we impose those restrictions required by
General Relativity.

Note that recovering GR is equivalent to set the conditions Ta = 0 and
Rab ∧ eb = 0 that we pass on to study in a more detailed fashion on what
follows.

4.1. Imposing Ta = 0.

Before embarking on this we need to recall that the previous solutions
have been obtained by considering the couplings to be some pullback of a
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common zero-form η on which we will heavily base our results. Note that
when combining equations (16) and (17) we obtain the expression

T b ∧ [2 (⋆{eb ∧ ea})− ηab (dϕE ∧ dϕNY )] +

+dϕP ∧ (dωTa) =

(

Λ∗
eff

3

)

dϕE ∧ ǫabcde
b ∧ ec ∧ ed. (26)

where ηab is the Minkowski metric. The previous equation tell us that in
the absence of torsion (Ta = 0) while at the same times having a non zero

effective cosmological constant (Λ∗

eff 6= 0), we necessarily need to consider
dϕE = 0, or equivalently

∂ϕE

∂η
= 0, (27)

where η is the aforementioned common zero form. On the other hand, directly
from (21), we get the following set of equations

0 = γ
∂ϕP

∂ϕE

+
Λ∗

eff

3
, (28)

0 =
2Λ∗

eff

3
+

∂ϕNY

∂ϕP

+ 8σγ
∂ϕE

∂ϕP

. (29)

These expressions link the Jacobians of the different coupling zero-forms ϕi.
Finally, from equation (5), an immediate consequence of taking a null torsion
is the fact that

nNY = 0. (30)

Hence, as it was expected, a topological restriction for the nullity of the
Nieh-Yan number has appeared since it is the only topological class that
solely depends on the torsion two-form.

4.2. Imposing Rab ∧ eb = 0.

Now we consider the second restriction. By imposing this on equation
(22) we get the following system of equations

0 = γ, (31)

0 =
∑

i

γidϕi, (32)

It is immediate now, from equations (28) and (24), that

nP = 0. (33)
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Henceforth, a second strong restriction has been found for the Pontryagin
number. Remember that for a four-manifold nE = p1 (TM) = 0, meaning
that the space-time posses at least one orientation reversing diffeomorphism
[22].

Note that at this point, by the aim of equations (27), (25), (30) and (33)
we can write the effective cosmological constant Λ∗

eff as

Λ∗

eff =

(

ϕ
(0)
E

4VM

)

nE , (34)

where ϕ
(0)
E 6= 0 is a constant. Its character is still quasi topological due to the

presence of ϕ
(0)
E . However, one immediate result is that, under the suggested

conditions proposed, the the Euler number must be different from zero.
Note that equations (28), (29) and (31) are consistent only if we consider

∂ϕP

∂η
6= 0, which gives the following equation between the remaining Jacobians

∂ϕNY

∂η
= −2

(

Λeff

3

)

∂ϕP

∂η
. (35)

Let us now consider equation (24), that by the aim of equations (35) and
(29) can be written in the form

1

2ϕ
(0)
E

=

(

Λeff

3

)

−

[

1− 2

(

Λeff

3

)]2(
∂ϕP

∂η

)2

[La (η)L
a (η)] . (36)

The latter can be thought as a second order equation for
Λeff

3
that generally

will depend on the Lie derivatives of the auxiliary zero form η as well as the
Jacobian ∂ϕP

∂η
6= 0.

4.3. Eikonal propagation of topological information

At this point, the constancy of all the terms but one imposes it to be
constant

(

∂ϕP

∂η

)2

[La (η)L
a (η)] = [La (ϕP )L

a (ϕP )] = K, (37)

which can be rewritten as

La (ϕP )L
a (ϕP ) = ηabLa (ϕP )Lb (ϕP ) = gµν∂µϕP∂νϕP = K, (38)

i.e. ϕP must satisfy the inhomogeneous eikonal equation in space time.
This represents the propagation of Pontryagin topological information. As
this result must be valid for any spacetime, the high energy regime imposes
the eikonal equation to be homogeneous and thus K = 0 [32, 33].

9



4.4. the effective cosmological constant

Equation (38) inserted in (36) for K = 0 sets the value of ϕ
(0)
E to

ϕ
(0)
E =

√

6VM

nE

⇒
Λeff

3
=

(

1

4!VM

)
1

2

(nE)
1

2 , (39)

i.e. the Λ∗
eff ∝ (nE)

1

2 . At this point it is important to mention the result by
Berger [34, 35] that states that nE ≥ 0 for compact manifolds. This not a
bound for us since we are considering non-compact manifolds. However, we
are finding the stronger condition nE > 0.

5. Conclusion

This work have discussed the application to the cosmological constant
problem of the topological invariants examined in [10], introduced as La-
grange multipliers, that are compatible with GR for cosmological manifolds.
At the level of the Einstein-Hilbert action, this results in the emergence of a
topological effective cosmological constant from the Euler number. To do so,
we have recovered GR by setting the resulting torsion to zero. This induces
constraints on the topological invariants and yields the form of the topolog-
ical effective cosmological constant, assuming that symmetry considerations
have set the bare constant to zero. For torsion to be zero, both the Nieh-
Yan and Pontryagin numbers have to be set to zero, leaving only the Euler
number as source of effective cosmological constant.

On one hand this allows to propose a solution for the so-called fine tuning
problem of the cosmological constant [20, 21], as the value observed is no
longer related to the quantum vacuum energy density, but rather to the Euler
number of the manifold, when it is of finite volume. In fact observations tend
to favour slightly closed models [12, 13, 14, 15] so we expect that volume to
be very large, hence favouring a small effective cosmological constant. On
another hand, this opens the possibility of determining from observations
that Euler number which describes some of the topological characteristics of
the universe.

Recall that the Euler number can be measured locally by computing

∫

M

ǫabcdR
ab ∧Rcd =nE ,
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that ultimately comes from the metric extrapolated from our measured local
patch. However, in the case of the topological origin of the cosmological
constant, as its value is unchanged over the whole manifold, any local measure
reflects its global value.

It turns out that the smallness of the cosmological constant with respect
to Planck density, one of the deepest puzzles of modern cosmology, is actu-
ally quite important considering the inverse volume of the universe and that
consequently its value is very natural and leading to a positive Euler number
determining the shape of the universe.

A dynamic theory of the topology of the universe in the line of emerging
geometry [36, 37, 38, 39] should provide the framework for solving as well the
coincidence problem [16, 17, 18, 19] by producing a mechanism of selection
for the genus.
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