
HAL Id: hal-01169018
https://hal.science/hal-01169018

Submitted on 26 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sound Processing in OpenMusic
Jean Bresson

To cite this version:
Jean Bresson. Sound Processing in OpenMusic. International Conference on Digital Audio Effects
(DAFx’06), 2006, Montréal, Canada. �hal-01169018�

https://hal.science/hal-01169018
https://hal.archives-ouvertes.fr

Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

SOUND PROCESSING IN OPENMUSIC

Jean Bresson

IRCAM - CNRS, Music Representations Team
Paris, France

bresson@ircam.fr

ABSTRACT

This article introduces some new possibilities of audio manipula-
tions and sound processing in the Computer-Aided Composition
environment OpenMusic. Interfaces with underlying sound pro-
cessing systems are described, with an emphasis on the use of the
symbolic and visual programming environment for the design of
sound computation processes.

1. INTRODUCTION

OpenMusic (OM) [1] is a visual programming language special-
ized in the symbolic processing of musical objects that provides
composers with high-level musical representations. Following the
tradition of the IRCAM’s Computer-Aided Composition (CAC) sys-
tems [2], the main proposal of OM is that of the formalization of
the musical structures, which makes it possible the creation of the
corresponding computing models. However, the idea of a sym-
bolic manipulation of musical data, close to the compositional con-
cepts, historically tended to make these systems diverge from the
sound-related concerns.

The development of contemporary musical practices, which
incorporate sounds in the compositional processes, led to a renew
interest for bringing together these two different fields. In this
context, the OM environment provides possibilities for bridging
the compositional and signal processing domains.

In a first step, this connection has been implemented with the
automatic generation of scripting or parameter files bound to exter-
nal processing tools. Various OM libraries were developed in this
scope, in relation with different software synthesizers (generation
of Csound scores [3], of Diphone [4] scripts, of SuperVP parame-
ter files [5], etc.) Some direct interfaces with these sound process-
ing tools were then created, which allowed an easier experimen-
tation, by launching sound processing tasks directly from the OM
visual programs (patches) [6]. More than a simple convenience
of use, this allows to unite sound processing programs and sym-
bolic musical processes in a same environment and in a common
computational flow, which induces improved possibilities for the
control and integration of these programs in compositional models
(e.g. [7]).

Our current works in OpenMusic are heading towards new
tools and interfaces for adapting the computational and symbolic
tools to sound processing applications. The articulation between
sound signal and musical symbolism in composition is one of the
main problematics of this project, which points at exploring the
symbolic resources bestowed by computers and CAC in order to
describe audio signals and processes.

This article presents some new possibilities of sound manipu-
lations in OpenMusic. The IRCAM’s analysis/synthesis tools Su-
perVP and pm2 are particularly targeted, following the idea of an

integrated programming environment where various cycles of the
musical materials, from sound to symbolic data, and from sym-
bolic data to sounds, could be developed.

2. NEW AUDIO INTERFACE IN OPENMUSIC

Since version 5.0, the OpenMusic audio architecture is based on
the GRAME’s LibAudioStream library [8]. This library provided
a better control for sounds scheduling and rendering through the
concept of sound stream structures. The sound objects now can
be individually assigned volume or panoramic values. They are
possibly split up into different audio tracks, which allows a global
interactive control through a graphical mixing console (Figure 1).

Figure 1:Audio interface in OM 5.

3. A COMPOSITIONAL APPROACH OF SOUNDS

3.1. The Digital Sound

Once it is recorded, the sound can become an abstract compo-
sitional object , thanks to the “material” support [9]. From this
perspective, the digitalization constitutes a major revolution in the
realm of the possibilities for a compositional approach of sounds.

An audio file, digital support of a sound, is made of a sequence
of samples; each one of them carries a small quantity of informa-
tion, but the sequence constitutes a whole bigger than the sum of
all the individual samples: a stable acoustic waveform that can be
observed and manipulated. From a theoretical point of view, this
idea can be compared with the symbolic/sub-symbolic distinction

DAFX-1

http://recherche.ircam.fr/equipes/repmus/
mailto:bresson@ircam.fr

Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

formulated in [10]. In this division, sub-symbolic data are void of
sense out of their context, while symbolic data are structured and
bring semantic information: they have an intrinsic meaning and
are straightforward to be used in musical constructions.

3.2. Sound Objects and Symbolic Processing

Considered as a continuous stream, the sound samples constitute a
coherent data set (a digital waveform), close to the acoustic reality
and to the musical material.

The basic musical manipulations on this sound representation
are the cut, mixing, and sequencing, as could be done with a “phys-
ical” tape. In the context of visual programming, these operations
correspond to functional call boxes on which can be connected
sound objects. They are permitted by the LibAudioStream func-
tionalities. Sound streams can thus be created, cut, mixed, and
sequenced in visual programs (see Figure 2). The programming
tools allow to make algorithmically the “montage” and mixing
of sounds, generally “hand-made” using sequencing environments
after recording, processing, or synthesizing them.

Figure 2: Manipulations of sounds with the OM audio tools. A
section of the first sound is sequenced with the second one and this
sequence is repeated two times. The result is then mixed with a
third sound.

3.3. Abstraction of Sound

An abstraction of a sound can be any symbolic data that represent
this sound in a compositional purpose. Between the symbolic and
sub-symbolic domains, the data extracted from a sound following
a scientific or musical demarche constitute the successive steps of
abstraction that allow for its compositional manipulation.

The segmentation can be a first method for considering a sound
in a symbolic manner, since it identifies primitives for a symbolic
processing (the sound segments). The segmentation can be inte-
grated in the sound objects by the use of temporal markers. In

OM, markers can be assigned to a sound either by a program (in a
patch), or manually inside the sound editor (see Figure 3).

Figure 3:Editing of temporal markers in an audio file.

However, the size of the segments that will allow for a sym-
bolic manipulation remains hard to decide. Segments of two sam-
ples remain sub-symbolic, while an intelligent segmentation, that
discriminates syllables for example, constitutes symbolic data. Be-
tween these two limits, the size of a sound analysis window (e.g.
512 samples), or the units of a concatenative sound synthesis algo-
rithm, can be considered either in one or another category.

In another general approach, a set of isolated samples, ex-
tracted from a waveform by any formalized way (e.g. downsam-
pling, see Figure 4), can also be regarded as an abstraction of the
digital sonic material.

Figure 4:Extracting sound samples from an audio file with a given
sampling rate.

This method was used for example by K. Haddad in the piece
Adagio for String Quartet, described in [11].

Sound analysis is another way to get sound representations in
compositional processes. This will be detailed in the next section.

4. SOUND ANALYSIS

Sound analysis data are frequently used in computer-assisted com-
position programs, either for being transformed and dispatched in
sound synthesis processes, or for being used as basic composi-
tional material. The SDIF file format [12] allows the different
computer music tools and software to share sound descriptions
data: a special class (SDIFFile) is used to represent it in OpenMu-
sic. This class constitutes an abstract support for sound descrip-
tions [13]; it will generally correspond to an intermediate object
in the visual program, used to store the analysis data coming from
the sound processing kernels. SDIF file objects can be visualized
using SDIF-EDIT [14], and inspected in order to extract the de-
scription data .

DAFX-2

Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

SuperVP [15] and pm2 are two sound processing tools devel-
oped by the Analysis/Synthesis team of IRCAM. They are the
processing kernels of the AudioSculpt software [16]. Used au-
tonomously in OM, they provide various types of sound analysis,
and return SDIF description files.

4.1. Spectral Analysis

Most of the sound processing algorithms in the SuperVP phase
vocoder [17] are based on the short time Fourier transform (STFT),
which provides a time/frequency representation of sounds. This
analysis function can be called in OpenMusic by theFFT box (see
Figure 5). The analysis data is then transferred into the OM pro-
gram via an SDIF file.

For this analysis, the main input data to provide to theFFT
box (in addition to the sound file to be analyzed) are the FFT size,
and the size, shape and step of the STFT analysis window. These
parameters should be adjusted depending on the initial sound and
the expected characteristics of the analysis data.

Figure 5:SuperVP FFT analysis in OpenMusic. The SDIF anal-
ysis data can be viewed usingSDIF-EDIT and extracted in the
patch.

The fundamental frequency estimate (F0) analysis [18] is an-
other description provided by SuperVP and which is likely to be
used in compositional and sound processing programs: its direct
musical meaning helps musical interpretations and manipulations.
In addition to the FFT settings, some supplementary parameters
must be set to thef0-estimatebox (frequency ranges for analysis,
noise threshold, smoothing order, etc.) An example will be given
in section 7 (Figure 11).

OpenMusic can also invoke the transient detection analysis
[19] from SuperVP. This analysis provides an automatic temporal
segmentation of the sound files. This segmentation can be useful
for correlating sound descriptions to symbolic rhythms or temporal
structures, as will be illustrated in the example of Figure 10.

4.2. Additive Analysis

Pm2 is an additive analysis/synthesis software that can process
partial tracking analysis of sound files. The partial tracking con-
sists in the detection of the most important partials (sinusoidal
components of a sound signal) and the following of their frequency
and dynamic evolutions [20].

This analysis can be either harmonic, in which case a funda-
mental frequency evolution must be provided and the partials will
be considered as harmonics of this fundamental frequency, or in-
harmonic, in which case each partial constitutes an independent
component with individual beginning and ending times, frequency
and amplitude evolutions.

The results of the pm2 partial tracking analysis are also stored
in SDIF files, and can then be converted into achord-sequence
object [21], as illustrated in Figure 6.

Figure 6:Partial tracking analysis of a sound and conversion into
a chord sequence.

Thechord-sequence-analysisis another kind of additive anal-
ysis based on a set of temporal markers. These markers can be is-
sued from the sound object (see Figure 3), or being processed by a
preliminary transient detection analysis. The additive components
are thus averaged frequencial components that can be directly con-
verted into chords or notes.

5. TREATMENTS

We call treatment the fact of synthesizing a sound by applying
a transformation to an initial sound. Such treatments can be ap-
plied directly on the waveform representation, or by the analy-
sis/processing/synthesis method.

5.1. Sound Streams Processing

Transforming a sound by processing its samples stream is what is
generally called an effect. We currently experiment the integration
of such process in OM using Faust [22], a language for the design
and compilation of digital sound processing (DSP) objects. The
symbolic primitives and syntax of this language make it a suitable
tool for the design of sound treatments in a compositional con-
text. The LibAudioStream interface then allows to apply Faust
compiled effects to the sound streams (see Figure 7).

DAFX-3

Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

Figure 7:Applying a transformation to a sound usingFaust. The
framed code is a fragment of theFausteffect definition file.

5.2. Analysis-driven Processing: SuperVP

The analysis/treatments/synthesis method proposed by SuperVP
and AudioSculpt allows for original and powerful manipulations
of sounds. Thanks to a treatments sequencer, various kinds of
sound transformations can be created and combined, and eventu-
ally applied in a processing phase for creating a new sound.

In the OM visual programming framework, the corresponding
system is centred on thesupervp-processingfunction, a general
box for transforming a sound using various combinations of the
SuperVP treatments. Each available treatment is represented with
another particular box. These boxes include the time stretching,
pitch shifting, transposition, band filter, formant filter, breakpoint
filter, clipping, and freeze treatments. Each treatement may re-
quire some special parameters settings, and can be applied to the
entire sound or to a time interval in it. They can be used alone or
combined, connected to the generalsupervp-processingbox as a
list of treatments (see Figure 8).

Figure 8: Applying treatments (time stretch, transposition, and
clipping) with thesupervp-processingbox.

The parameters (e.g. stretching factors, transposition intervals,
etc.) can be set with constant values or with time-varying data us-
ing imported parameter files or break point functions (BPF). These

data can thus come from complex compositional processes imple-
mented in OM. Section 7 will give examples of sound processing
patches.

6. SYNTHESIS

Several works have been carried out regarding sound synthesis
models and interfaces in OM, most often using Csound [23] which
provides a wide range of sound synthesis possibilities. Some inter-
faces have also been developed with the IRCAM’s sound process-
ing tools.

In addition to the treatments processing discussed in the previ-
ous section, thesupervp-cross-synthesisandsupervp-sourcefilter-
synthesisare other boxes that call the corresponding SuperVP func-
tions (see Figure 9).

Figure 9:: Source-Filter synthesis with SuperVP.

The pm2 additive synthesis, performed from an SDIF additive
description file, also exists as a function call box.

The CHANT synthesizer [24] can be used in OM as well, by
formatting SDIF parameters files and calling the synthesis kernel.
Future works should improve this interface in order to allow for
easier and better use of this synthesizer’s potentialities.

Finally, the OM-Modalys library allows the design of Modalys
physical models synthesis in OM programs [25].

Most of these tools are “direct” interfaces that do not exactly
represent the abstract methods generally targeted in CAC applica-
tions. They might nonetheless provide a base for the development
of higher-level control interfaces.

7. USING OPENMUSIC FOR SOUND PROCESSING

The interest in creating sound processing programs in OM relies
on two principal points that we will detail in this section.

7.1. Computation of Processing Parameters

Using sound processing tools in OM allows to set the parameters
of the treatments by complex programs and with the symbolic data
structures provided by the environment. We will show two exam-
ples, where the sound analysis tools presented above are used to-
gether with symbolic data structures, for the computaion of some
processing parameters.

In the example of Figure 10, a time-stretching factor evolution
is computed starting from the attack transients detected in a sound
file and from a targeted rhythm: this variable factor will stretch the
sound segments in order to make them match with this rhythm.

DAFX-4

Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

Figure 10: Variable time stretching: matching sound segments
with a rhythm.

The example of Figure 11 is another program which trans-
poses a sound using time-varying data coming from the F0 analy-
sis. The transposition data is computed by an operation of symme-
try between the F0 and a given pitch, so that the result is a sound
with a constant fundamental frequency (the value of the reflection
axis), which keeps all the other characteristics (timbre, transients,
noise, etc.) from the original sound.

In the same perspective, the OM-AS library functions [5], ded-
icated to the automatic generation of SuperVP treatment parame-
ters files, can also be connected to the corresponding treatment
boxes, provinding a symbolic mean to generate these parameters
(e.g. computing a sound transposition parameter file starting from
achord-seqmelody, etc.)

7.2. Iterative Processes

The visual programming tools may also be used for managing mul-
tiple processing operations. A sound, or a sound bank, can be pro-
cessed iteratively using theomloopcontrol structure, in order to
create another set of sound files depending on fixed or dynami-
cally generated parameters (see Figure 12).

The output sounds can then possibly be arranged in amaquette
[1] (Figure 12), or directly mixed/sequenced as a single sound file
using the audio processing tools discussed in section 3.2.

8. CONCLUSION

We presented the possibilities of an algorithmic and symbolic ma-
nipulation of sounds in the OpenMusic visual programming en-
vironment, using the audio framework (manipulation of the sound
objects) and the IRCAM sound processing tools interfaces (fft anal-
ysis, F0 analysis, transient detection, partial tracking analysis, sound

Figure 11:Fundamental frequency analysis (F0) of a sound and
transposition using the mirror of the F0.

treatments, cross-synthesis, etc.) All these tools are available and
documented with tutorial patches in the latest OM releases, either
included in the OM core distribution (audio features) or in the new
OM-SuperVP library (SuperVP and pm2 tools).

Graphical programming interfacing with sound analysis and
processing facilitates sound manipulations in a compositional con-
text. The iterative processes, coupled with visual representations
and audio processing tools, allow for efficient and intuitive exper-
imentations. We have in mind that more interfaces with external
tools could be added to this framework, which will be completed
with higher-level abstractions and assorted with further musical
experiences and applications.

9. ACKNOWLEDGEMENTS

We would like to thank Stephane Letz fromGRAME for his help
and support with the LibAudioStream library. The SuperVP boxes
and the examples presented in this article have been created with
Jean Lochard from the IRCAM pedagogic department. SuperVP
and pm2 are currently developed and maintained by Axel Röbel in
the IRCAM Analysis/Synthesis team.

DAFX-5

Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

Figure 12:Iterative creation and superposition of sounds by trans-
posing a sound file following the intervals of a chord.

10. REFERENCES

[1] C. Agon, OpenMusic: Un Langage Visuel pour la Compo-
sition Assist́ee par Ordinateur, Ph.D. thesis, University of
Paris 6, 1998.

[2] G. Assayag, “Computer-Assisted Composition Today,” in
First Symposium on Music and Computers, Corfu, 1998.

[3] K. Haddad, “OpenMusic OM2CSound,”Ircam Software
Documentation, 1999.

[4] X. Rodet and A. Lefevre, “The Diphone Program: New
Features, New Synthesis Engines and Experience of Musi-
cal Use,” inProceedings ICMC, Thessaloniki, Greece, 1997,
pp. 418–421.

[5] H. Tutschku, “OpenMusic OM-AS Library,”Ircam Software
Documentation, 1998.

[6] J. Bresson, M. Stroppa, and C. Agon, “Symbolic Control

of Sound Synthesis in Computer Assisted Composition,” in
Proceedings ICMC, Barcelona, Spain, 2005, pp. 303–306.

[7] C. Agon, M. Stroppa, and G. Assayag, “High Level Musical
Control of Sound Synthesis in OpenMusic,” inProceedings
ICMC, Berlin, Germany, 2000, pp. 332–335.

[8] “LibAudioStream,” http://libAudioStream.sourceforge.net/.

[9] P. Schaeffer,Traité des Objets Musicaux, Editions du Seuil,
1966.

[10] M. Leman, “Symbolic and subsymbolic description of mu-
sic,” in Music Processing, G. Haus, Ed., pp. 119–164. Ox-
ford University Press, 1993.

[11] K. Haddad, “Timesculpt in OpenMusic,” inThe OM Com-
poser’s Book, C. Agon, G. Assayag, and J. Bresson, Eds., pp.
45–62. Ircam - Delatour, 2006.

[12] “Sound Description Interchange Format,”
http://www.ircam.fr/sdif/.

[13] J. Bresson and C. Agon, “SDIF sound description data rep-
resentation and manipulation in computer assisted composi-
tion,” in Proceedings ICMC, Miami, USA, 2004, pp. 520–
527.

[14] “SDIF-Edit: Visualization of SDIF sound description files,”
http://recherche.ircam.fr/equipes/repmus/bresson/sdifedit
/sdifedit.html.

[15] Ph. Depalle and G. Poirot, “A Modular System for Analysis,
Processing and Synthesis of Sound Signals,” inProceedings
ICMC, Montreal, Canada, 1991, pp. 161–164.

[16] N. Bogaards and A. R̈obel, “An interface for analysis-driven
sound processing,” inAES 119th Convention, New York,
USA, 2004.

[17] M. Dolson, “The Phase Vocoder : A Tutorial,”Computer
Music Journal, vol. 10, no. 4, pp. 14–27, 1986.

[18] B. Doval and X. Rodet, “Estimation of Fundamental Fre-
quency of Musical Sound Signals,” inProceedings IEEE-
ICASSP 91, Toronto, Canada, 1991, pp. 3657–3660.

[19] A. Röbel, “Transient detection and preservation in the phase
vocoder,” inProceedings ICMC, Singapore, 2003, pp. 247–
250.

[20] R. J. McAulay and T. F. Quatieri, “Speech analysis/synthesis
based on a sinusoidal representation,”IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 34, no. 4, pp.
744–754, 1986.

[21] P. Hanappe and G. Assayag, “Intégration des représenta-
tions temps/fŕequence et des reprsentations musicales sym-
boliques,” in Recherches et applications en informatique
musicale, M. Chemillier and F. Pachet, Eds., pp. 199–207.
Hermes, 1998.

[22] Y. Orlarey, D. Fober, and S. Letz, “Syntactical and Seman-
tical Aspects of Faust,”Soft Computing, vol. 8, no. 9, pp.
623–632, 2004.

[23] R. Boulanger,The Csound Book, MIT Press, 2000.

[24] X. Rodet, Y. Potard, and J.-B. Barrière, “The CHANT
project: From the synthesis of the singing voice to synthe-
sis in general,”Computer Music Journal, vol. 8, no. 3, pp.
15–31, 1984.

[25] N. Ellis, J. Bensoam, and R. Caussé, “Modalys Demonstra-
tion,” in Proceedings ICMC, Barcelona, Spain, 2005, pp.
101–102.

DAFX-6

http://libAudioStream.sourceforge.net/
http://www.ircam.fr/sdif/
http://recherche.ircam.fr/equipes/repmus/bresson/sdifedit/sdifedit.html
http://recherche.ircam.fr/equipes/repmus/bresson/sdifedit/sdifedit.html

	1 Introduction
	2 New Audio Interface In OpenMusic
	3 A Compositional Approach of Sounds
	3.1 The Digital Sound
	3.2 Sound Objects and Symbolic Processing
	3.3 Abstraction of Sound

	4 Sound Analysis
	4.1 Spectral Analysis
	4.2 Additive Analysis

	5 Treatments
	5.1 Sound Streams Processing
	5.2 Analysis-driven Processing: SuperVP

	6 Synthesis
	7 Using OpenMusic for Sound Processing
	7.1 Computation of Processing Parameters
	7.2 Iterative Processes

	8 Conclusion
	9 Acknowledgements
	10 References

