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Introduction

The problem of completing matrices with missing entries can be traced back to the works of Prony in 1795, and has been addressed since in various fields including: system identification and control [START_REF] Schutter | Minimal state-space realization in linear system theory: an overview[END_REF][START_REF] Fazel | Hankel matrix rank minimization with applications in system identification and realization[END_REF][START_REF] Liu | Interior-point method for nuclear norm approximation with application to system identification[END_REF], graph theory [START_REF] Trosset | Distance matrix completion by numerical optimization[END_REF] collaborative filtering [START_REF] Candès | Matrix completion with noise[END_REF], compressed sensing [START_REF] Candès | Exact matrix completion via convex optimization[END_REF][START_REF] Chen | Robust spectral compressed sensing via structured matrix completion[END_REF][START_REF] Gross | Recovering low-rank matrices from few coefficients in any basis[END_REF] information theory [START_REF] Gray | An Introduction to Statistical Signal Processing[END_REF], chemometrics [START_REF] Bro | Parafac, tutorial and applications[END_REF], seismics [START_REF] Kreimer | Tensor completion based on nuclear norm minimization for 5d seismic data reconstruction[END_REF], estimation problems and sensor networks [START_REF] Candès | Matrix completion with noise[END_REF], to cite a few. It also appears as a subproblem in the computation of symmetric tensor Canonical Polyadic (CP) decompositions [START_REF] Brachat | Symmetric tensor decomposition[END_REF].

Matrix completion

We are interested in affine matrix structures (affine maps C N → C n×n ) of the form

S (p) = S 0 + N k=1 p k S k ,
where S k ∈ C n×n are known matrices.

Typically, matrix S 0 represents the known part of a matrix, and the Low-Rank Matrix Completion (LRMC) problem consists in finding the vector p so as to minimize the rank of S (p). A convex relaxation of this minimization problem can be obtained by replacing the rank by the nuclear norm (sum of singular values) [START_REF] Recht | Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization[END_REF]:

p = arg min p∈C N S (p) * (1) 
Our goal is to find when the two minimization problems (i.e. rank and nuclear norm) yield the same solution.

Most results in the literature (e.g., [START_REF] Recht | Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization[END_REF][START_REF] Gross | Recovering low-rank matrices from few coefficients in any basis[END_REF]), are proved for random structures. To our knowledge, for fixed structure there exists only one result [START_REF] Dai | On the nuclear norm heuristic for a Hankel matrix completion problem[END_REF], in a very simple case: Theorem 1 ([7, Th.1]) Let S be the Hankel structure

S (p) =       1 λ • • • λ n λ λ 2 . . . p 1 . . . . . . . . . . . . λ n p 1 • • • p n-1      
, where λ ∈ (-1; 1). Then the solution of (1) (with constraint p ∈ R n-1 ) is unique, is given by p k = λ n+k , and coincides with a minimal rank (rank-1) completion.

In this paper, we extend Theorem 1 in two directions: (i) to arbitrary Hankel complex matrices; and (ii) to quasi-Hankel matrices, which are particularly interesting in the context of symmetric tensor CP decomposition.

Symmetric tensor CP decomposition

Consider a symmetric tensor T of order d and dimension m as an array of numbers with d indices, each varying in the range {1, . . . , m}. The CP decomposition is:

T ij..k = R r=1 a i (r)a j (r) .. a k (r) (2) 
The minimal number R of terms that are necessary to have an exact fit is called the symmetric tensor rank of T . The CP decomposition is also equivalent to Waring decomposition of a homogeneous polynomial as a sum of powers of linear forms [START_REF] Comon | Decomposition of quantics in sums of powers of linear forms[END_REF]. This equivalence allows to describe the link between (2) and the LRMC for quasi-Hankel matrices [START_REF] Brachat | Symmetric tensor decomposition[END_REF] (we omit it due to space limitations).

Quasi-Hankel matrices

In the remainder, we shall use multi-indices, which offer a more compact notation [START_REF] Comon | Decomposition of quantics in sums of powers of linear forms[END_REF]. First, for a multi-index α

= (α 1 , α 2 , • • • , α m ) ∈ N m , the monomial x α1 1 x α2 2 .
.x αm m will be denoted as x α , and its degree is |α| = α . Next, we shall denote by (m,d) ⊂ N m the set of multiindices {α ∈ N m : |α| ≤ d}. For sets A, B ⊂ N m , we define their Minkowski sum as A + B := {α + β | α ∈ A, β ∈ B}, with a shorthand notation 2A := A + A. It is easy to see that (m,d1) + (m,d2) = (m,d1+d2) . For m = 1, we have that (1,d) = {0, . . . , d} and {0, . . . , d 1 } + {0, . . . , d 2 } = {0, . . . , d 1 + d 2 }. For m = 2, an example is shown in Fig. 1 (the multi-indices are depicted as black dots). (2,2) and (2,2) . Finally, let A = {α 1 , . . . , α M } ⊂ N m be an ordered set of multi-indices (according to a certain degree-compatible multi-index order), and {h α } α∈2A ⊂ C be an indexed set of numbers. Then the quasi-Hankel matrix is defined as

H A (h) := [h αi+αj ] M,M i,j=1
For example, for A = (1,d) = {0, . . . , d}, M = d + 1 and the quasi-Hankel matrix is the ordinary Hankel matrix

H A (h) = [h k+l ] d,d k,l=0 =       h 0 h 1 • • • h d h 1 h 2 . . . h d+1 . . . . . . . . . . . . h d h d+1 • • • h 2d       . (3) 
For A = (2,2) (and 2A = (2,4) , as in Fig. 1), the quasi-Hankel matrix has the form 

H A (h) =         h 00 h
        . (4)

The matrix completion problem

The completion problem we consider is the following: Given A = (m,d) and the values of {h α } α∈A , h α ∈ C, we aim at minimizing the rank of H A (h) (by optimizing over the remaining elements {h α } α∈2A\A ). For example, in [START_REF] Candès | Matrix completion with noise[END_REF], only the values h 0 , . . . , h d shown in gray are known and h d+1 , . . . , h 2d are to be completed. In the general case, the upper block-triangular part of the matrix is known (e.g., in (4) it is shown in gray).

The completion problem can be easily put in the notation of Section 1.1, in terms of S (p): S 0 coincides with the matrix H A (h) containing all the known elements (and others set to zeros), and S k are matrices of zeros and ones, with ones put in the positions of unknown elements. For example, for m = 1, the matrices S k , k ≥ 1, have zero elements except on the (M + k)th antidiagonal. For an explicit derivation of S k in the general case see [START_REF] Usevich | Quasi-Hankel Low-Rank Matrix Completion: a Convex Relaxation[END_REF].

Optimality conditions

The main idea of the paper is to consider the cases when the solution to the rank minimization problem is known, and to check that this solution is also a solution of [START_REF] Brachat | Symmetric tensor decomposition[END_REF].

For this, we use an optimality condition from [START_REF] Usevich | Quasi-Hankel Low-Rank Matrix Completion: a Convex Relaxation[END_REF], which is a modified first-order optimality condition suitable for the complex-valued case (a real-valued version of this condition was used in [START_REF] Dai | On the nuclear norm heuristic for a Hankel matrix completion problem[END_REF]). First, we define the matrix S := vec(S 1 ) . . . vec(S N ) ,

and for a matrix P ∈ C n×n we define

A (P ) := S T ((I -P ) ⊗ (I -P )) ∈ R N ×n 2 , (6) 
where ⊗ denotes the Kronecker product.

Proposition 2 Let p * ∈ C n , S k are real and symmetric, (for k ∈ {1, . . . , N }), and S (p * ) = U ΣV H be an SVD. Then the point p * is a minimum of (1) iff ∃M ∈ C n×n such that M 2 < 1 and

A (P ) vec(M ) = -S T vec(B) (7) 
is satisfied, where B := U V H , and P := U U H is the orthogonal projector onto the column space of S (p * ).

If, in addition to [START_REF] Dai | On the nuclear norm heuristic for a Hankel matrix completion problem[END_REF] it holds that rank{A (P )} = N , then the point p * is the unique minimizer of (1).

It is easy to prove that conditions of the proposition are satisfied for a special class of projectors.

Lemma 3 Let r, s be such that r ≤ s ≤ m+ d 2 m
, and n := m+d m . Let P 0 ∈ C s×s be a rank-r projector and

P 0 := P 0 0 0 0 ∈ C n×n , (8) 
Then, for the matrices S k in the quasi-Hankel matrix completion (in Section 1.4), we have that P T 0 S k P 0 = 0 for any k = 1, . . . , N . If, in addition, r ≤ m+ d-1 2 m , then rank{A (P 0 )} = N .

A straightforward proof can be found in [START_REF] Usevich | Quasi-Hankel Low-Rank Matrix Completion: a Convex Relaxation[END_REF].

For Hankel matrices (m = 1) the solution of the matrix completion problem is known. We review the solution based on the algebraic theory of Hankel matrices [START_REF] Heinig | Algebraic methods for Toeplitz-like matrices and operators[END_REF]. Definition 4 ( [START_REF] Heinig | Algebraic methods for Toeplitz-like matrices and operators[END_REF]) Given a finite sequence of complex numbers, h = [h 0 , . . . , h d ] T , the "first characteristic degree" of h (denoted as hrank (h)) is the smallest number r such that ∃q = [q 0 , q 1 , . . . , q r-1 , q r ] T = 0 satisfying: q T [h k , . . . , h k+r ] = 0, ∀k ∈ {0, . . . , d -r}.

The corresponding vector q is called the "characteristic vector" of h [12, p.81]. It defines a characteristic polynomial of degree r with s distinct roots:

q(z) = r j=0 q j z j = c • s k=1 (z -λ k ) ν k (9)
where ν k denotes the multiplicity of root λ k .

It is known [START_REF] Heinig | Algebraic methods for Toeplitz-like matrices and operators[END_REF] that for any h, hrank (h) ≤ d+2 2 ; moreover, if hrank (h) < d+2 2 then the characteristic vector q is unique (up to scaling). The characteristic polynomial determines the form of h. For example, if q r = 0 and all the roots λ k are simple, then ∃c k : h t = r k=1 c k λ t k . The main result on the completion (see [START_REF] Heinig | Algebraic methods for Toeplitz-like matrices and operators[END_REF]) is: Proposition 5 Let h ∈ C d+1 be a sequence with a characteristic vector q with q r = 0. Then

• for the completion (3), the minimal rank is r = hrank (h); • a minimal rank completion is given by the recursion

h r+k = - 1 q r r-1 j=0 q j h k+j , ∀k > d -r (10) 
which we will call Canonical Completion. (If q is nonunique, the canonical completion is nonunique);

• if h t = r k=1 c k λ t
k , then the minimal rank completion [START_REF] Gray | An Introduction to Statistical Signal Processing[END_REF] is given by the same formula. It is easy to see that Theorem 1 treats just the case q = [-λ, 1] T . Next, we consider arbitrary q with q r = 0. Theorem 6 For any d and r < d+2 2 there exists a constant ρ = ρ(d, r) > 0 such that for all h with hrank (h) = r a characteristic vector q with q r = 0, and |λ k | < ρ, the solution of (1) is unique and coincides with the canonical completion [START_REF] Gray | An Introduction to Statistical Signal Processing[END_REF]. Sketch of the proof.

The main idea is to show that for ∀ε > 0, ∃ρ > 0 such that for all corresponding h and with the completion [START_REF] Gray | An Introduction to Statistical Signal Processing[END_REF], the projector P on the span of H A (h) is close to P 0 = Ir 0 0 0 , i.e., P -P 0 2 < . The existence of such ρ follows from results on eigenvalues of Toeplitz matrices.

By Lemma 3, we have that P 0 satisfies the optimality conditions of Proposition 2. Finally by continuity, the optimality conditions are also satisfied in a neighborhood of P 0 . The complete proof can be found in [START_REF] Usevich | Quasi-Hankel Low-Rank Matrix Completion: a Convex Relaxation[END_REF].

Quasi-Hankel matrices

Here we consider the general case (m > 1), and try to generalize the results of Section 3 to quasi-Hankel matrices. It turns out that some results no longer hold true with the same generality, as subsequently shown.

In Section 4.1 we describe solutions of matrix completion problems for a class of quasi-Hankel matrices. In Section 4.2, we state an analogue of Theorem 6.

Completion

First, consider a class of low-rank quasi-Hankel matrices. Lemma 7 Let A = {α 1 , . . . , α M } ⊂ N m , and let an array {h α } α∈2A be given by h α = r k=1 c k z α k , for some c 1 , . . . , c r ∈ C and z 1 , . . . , z r ∈ C m . Then the corresponding quasi-Hankel matrix admits the factorization

H A (h) = V A (z 1 , .., z r ) Diag{c 1 , .., c r }V T A (z 1 , .., z r ) (11) where V A (z 1 , .., z r ) := [(z j ) αi ] M,r i,j=1 is the quasi- Vandermonde matrix.
For instance, for A = (2,2) , r = 3 and z k = λ k µ k , k = 0, 1, 2, the quasi-Vandermonde matrix has the form

V A (z 1 , z 2 , z 3 ) =   1 λ 1 µ 1 λ 2 1 λ 1 µ 1 µ 2 1 1 λ 2 µ 2 λ 2 2 λ 2 µ 2 µ 2 2 1 λ 3 µ 3 λ 2 3 λ 3 µ 3 µ 2 3   T Definition 8
Let A ⊂ N m be a set of multi-indices. We say that the points z 1 , . . . , z r ∈ C m are A-independent if rank{V A (z 1 , . . . , z r )} = r. The notion of A-independence is equivalent to the fact the monomials {x α } α∈A taken on the grid of points {z 1 , . . . , z r } form a set of #A = M vectors spanning a linear space of dimension r. Hence, these monomials can interpolate any function on this grid. Note also that if z 1 , . . . , z r are A-independent and c 1 , . . . , c r ∈ C \ {0}, then rank{H A (h)} = r in Lemma 7.

Finally, assume that the values {h α } α∈A are known and we have to complete the remaining values {h α } α∈2A\A . We describe below the solution based on the flat extension theorem of [START_REF] Laurent | A generalized flat extension theorem for moment matrices[END_REF] (see [START_REF] Usevich | Quasi-Hankel Low-Rank Matrix Completion: a Convex Relaxation[END_REF] for more details).

Proposition 9 Let A = (m,d) , d := d 2 , B := (m,d ) (it
is easy to se that 2B ⊂ A). Assume that the values {h α } α∈A are given as in Lemma 7, where the points z 1 , . . . , z r are B-independent and c 1 , . . . , c r are nonzero. Then, the following hold true 1. The rank of the minimal completion in Section 1.4 is r. A minimal completion is given by setting

h α = r k=1 c k z α k , α ∈ 2A \ A, (12) 
this will be referred to as the Canonical Completion.

Nuclear norm minimization

Now we would like to prove similar results as those of Section 3. First, we show that for quasi-Hankel matrices of the form [START_REF] Gross | Recovering low-rank matrices from few coefficients in any basis[END_REF], where points z 1 , . . . , z r are in general position, the limit of certain projectors has the form [START_REF] Schutter | Minimal state-space realization in linear system theory: an overview[END_REF].

Lemma 10 Let A = (m,d) , r ≤ m+d-1 m
, and y 1 , . . . , y r ∈ C m be some points. Furthermore, assume that there exists 0 ≤ d 0 < d such that

( m+d0-1 m ) =: K < r ≤ ( m+d0 m
) , and that there exists a set D, (m,d0-1) ⊂ D ⊆ (m,d0) , #D = r such that the points y 1 , . . . , y r are Dindependent. Let P (ρ) denote the projector onto the column space of V A (ρy 1 , . . . , ρy r ).

Then if r = m+d0 m , lim ρ→0 P (ρ) = Ir 0 0 0 , (13) 
and else if r < m+d0 m , lim ρ→0 P (ρ) =

I K 0 0 0 P 2 0 0 0 0 , (14) 
where P 2 ∈ C L×L is a projector, with L = m+d0 m -K and rank{P 2 } = r -K.

The proof of Lemma 10 is based on the properties of border bases of polynomial ideals. The main theorem is a consequence of the previous lemmas [START_REF] Usevich | Quasi-Hankel Low-Rank Matrix Completion: a Convex Relaxation[END_REF], and the proof is analogous to the proof of Theorem 6. Furthermore, let y 1 , . . . , y r ∈ C m satisfy the conditions of Lemma 10. Then there exist a constant ρ 0 = ρ 0 (y 1 , . . . , y r ) > 0 such that for any ρ: 0 < ρ < ρ 0 and points z k defined as z k = ρy k , the following holds true: for any c 1 , . . . , c r and the initial elements of h defined in Lemma 7, the canonical completion (12) is also the unique solution of (1). Note that unlike in Theorem 6, it is not possible to give a universal bound on z 1 , . . . , z r so that the projector P on the column space of H A (h) is arbitrarily close to a P 0 as in Lemma 3 (due to fundamental issues in polynomial interpolation). Instead, we showed that for a particular arrangement of points in general position, the points can be rescaled so that P is close to a certain P 0 . Also, in the case m = 1, Theorem 11 is a weak version of Theorem 6.
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If d is odd, the completion given in (12) is unique.

If d is even, and z 1 , . . . , z r are (m,d -1)independent, then the completion (12) is unique.
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