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On the Lr Hodge theory in complete non compact

riemannian manifolds.

Eric Amar

Abstract

We study solutions for the Hodge laplace equation ∆u = ω on p forms with Lr estimates for

r > 1. Our main hypothesis is that ∆ has a spectral gap in L2. We use this to get non classical

Lr Hodge decomposition theorems. An interesting feature is that to prove these decompositions

we never use the boundedness of the Riesz transforms in Ls.

These results are based on a generalisation of the Raising Steps Method to complete non

compact riemannian manifolds.
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1 Introduction.

In the sequel, a riemannian manifold (M, g) means a C∞ smooth connected riemannian manifold
of dimension ≥ 3.

In this work we study the problem of Lr estimates of the Laplace equation ∆u = ω for the Hodge
laplacian on p-forms and the Hodge decomposition theorems on complete non compact riemannian
manifolds.

This problem was studied by a several authors, in particular N. Lohoué in [19] (see also the
references therein). Also the problem of Hodge decompositions has a long history and for the recent
developments one can see the papers by X.D. Li [15], [18], [17] and also related to several complex
variables [16] (see also the references therein).

In all those works the boundedness of the Riesz transforms are explicitely used and in this work,
where the Hodge decompositions are not the classical ones, we shall see that it is not the case.

Let me describe the method we shall use.
Suppose you are interested by solving an equation Du = ω, in a manifold M with estimates of

type Lebesgue Lr or Sobolev W d,r ; you know how to solve it globally with "threshold" estimates
Ls → Ls and locally with estimates Lr → Lt with a strict increase of the regularity, for instance
1

t
=

1

r
− δ, δ > 0 for any r ≤ s, then the Raising Steps Method (RSM for short) gives a global

solution v of Dv = ω which is essentially in Lt(M) for ω ∈ Lr(M).
I introduced this method in [1] to get solutions for the ∂̄ equation with good estimates in relatively

compact domains in Stein manifold. I extend it to linear partial differential operator D of any finite
order m in [2] and I apply it to study the Poisson equation for the Hodge laplacian on forms in
spaces Lr(M) where (M, g) is a compact riemannian manifold. This gave Lr Hodge decomposition
theorems as was done by C. Scott [22], but by an entirely different approach.

The aim of this work is to extend it to the case of complete non compact riemannian manifold,
and, as we shall see, at no point we shall use the boundedness of the Riesz transforms.

1.1 Solutions of the Poisson equation for the Hodge laplacian.

Let (M, g) be a C∞ smooth connected riemannian manifold with metric tensor g and n = dimM ≥
3 ; let d be the exterior derivative, d∗ its formal adjoint with respect to the Riemannian volume
measure dvg =

√

detgdx, where dx is the Lebesgue measure in the chart x, and ∆ = ∆p := dd∗+d∗d
the Hodge laplacian acting on p forms. Let Lr

p(M) be the space of p forms on M in the Lebesgue
space Lr(M).

We get the local solution of the Hodge Laplacian ∆u = ω in a ball B(x,R) in (M, g) with a
radius R(x) small enough to make this ball "not too different" to a ball in the euclidean space R

n ;
this "admissible" radius is a special case of the "harmonic radius" of Hebey and Herzlich [13]. If ω
is a p form in Lr(B(x,R)) then we get a p form solution u in the Sobolev space W 2,r(B(x, r)) of

the ball, hence in Lt(B(x,R)) with
1

t
=

1

r
−

2

n
by the Sobolev embeddings. This is done classically

by use of the Newtonian potential. So the first assumption for the RSM is true : we have locally a
strict increase of the regularity.

In order to get global solutions we need to cover the manifold M with our "admissible balls" and
for this we use a classical "Vitali type covering" with a uniformly finite overlap. We shall denote it
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by C.

When comparing non compact M to the compact case treated in [2], we have two important
issues :

(i) the "admissible" radius may go to 0 at infinity, which is the case, for instance, if the canonical
volume measure dvg of (M, g) is finite and M is not compact ;

(ii) if dvg is not finite, which is the case, for instance, if the "admissible" radius is bounded below,
then p forms in Lt

p(M) are generally not in Lr
p(M) for r < t.

We address these problems by use of adapted weights on (M, g). These weights are relative to
the covering C : they are positive functions which vary slowly on the balls of the covering C.

To deal with the problem (i) we shall use a weight

w0(x) = R(x)−2k (1.1)

for an adapted integer k, where R(x) is the admissible radius at the point x ∈M.

To deal with the problem (ii) we shall use a weight α(x) which is in Lµ(M) with µ :=
2t

2− t
, for

a t < 2, i.e.

γ(w, t) :=

∫

M

w
2t
2−t dvg <∞. (1.2)

This is done to get L2
p(M) ⊂ Lt

p(M,α).
Our Hodge decompositions are not the classical ones because we do not use the laplacian adapted

to those weights, but we always use the standard laplacian.
We define the Sobolev spaces W d,r

p (M) of (M, g) following E. Hebey [12], and we set

Definition 1.1. We shall define the Sobolev exponents Sk(r) by
1

Sk(r)
:=

1

r
−
k

n
.

Then our first result is a "twisted" Calderon Zygmund inequalities (CZI) with weight, different from
results in [11] because we have weights and our forms are not asked to have compact support.

Theorem 1.2. Let (M, g) be a complete riemannian manifold. Let w be a weight relative to the
Cǫ associated covering {B(xj , 5r(xj))}j∈N and set w0 := R(x)−2. Let u ∈ Lr

p(M,wwr
0) such that

∆u ∈ Lr
p(M,w) ; then there are constants C1, C2 depending only on n = dimRM, r and ǫ such that:
‖u‖W 2,r(M,w) ≤ C1‖u‖Lr(M,wwr

0
) + C2‖∆u‖Lr(M,w).

Moreover we have for t = S2(r) that u ∈ Lt
p(M,wt) with ‖u‖Lt(M,wt) ≤ c‖u‖W 2,r(M,wrwt

0
).

We set, for a weight α,Hr
p(M,α) := Lr

p(M,α)∩ker∆p, the space of harmonic p forms in Lr(M,α).
This is our main hypothesis :

(HL2,p) ∆ = ∆p has a spectral gap in L2
p(M), i.e. there is no spectrum of ∆p in an open interval

(0, η) with η > 0.
This assumption allows us to use L2

p(M) as a threshold for the Raising Steps Method.
The (HL2,p) assumption is known to be true in the case of the hyperbolic manifold H

2n of
dimension 2n for any value of p ∈ {0, 2n}. For p 6= n the space H2

p is reduced to 0. For H
2n+1 the
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(HL2,p) is valid for p 6= n and p 6= n + 1 and, out of these two cases, the space H2
p is reduced to 0

as was proved by Donnelly [6].
When Ric(M) ≥ −c2 and M is open at infinity then 0 /∈ Sp∆0 by a result of Buser, see Lott [20],

proposition 6, p. 353, hence (HL2,0) is true. If M is a normal covering of a compact manifold X
with covering group Γ, then 0 /∈ Sp∆0 iff Γ is not amenable by a result of Brooks, see Lott [20],
corollary 3, p. 354, for precise references. Hence (HL2,0) is true if Γ is not amenable.

For r = 2, there is the orthogonal projection H from L2
p(M) on H2

p(M) ; we shall prove that this

projection extends to Lr(M,wr
0), with w0 := R(x)−2k and R(x) the admissible radius at x ∈ M, as

in (1.1), i.e.

∀r ≤ 2, H : Lr(M,wr
0) → H2

p(M) (1.3)

boundedly and we get the following results on solutions of the Poisson equation.

Theorem 1.3. Suppose that (M, g) is a complete riemannian manifold ; let r < 2 and choose
a weight α ∈ L∞(M) verifying γ(α, r) < ∞. Set t := min(2, S2(r)). If t < 2, take the weight
α ∈ L∞(M) verifying also γ(α, t) <∞. Suppose we have conditions (HL2,p).

Take k big enough so that the threshold Sk(r) ≥ 2, and set w0(x) := R(x)−2k, then for any
ω ∈ Lr

p(M,wr
0) verifying Hω = 0, for the orthogonal projection H defined in corollary 6.8, there is

a u ∈ W 2,r
p (M,α) ∩ Lt

p(M,α), such that ∆u = ω.
Moreover the solution u is given linearly with respect to ω.

Here k was chosen such that Sk(r) ≥ 2 in order to use L2
p(M) as a threshold for the Raising Steps

Method.

Setting r′ for the conjugate exponent for r,
1

r′
+

1

r
= 1, by duality from theorem 1.3, we get

Theorem 1.4. Suppose that (M, g) is a complete riemannian manifold ; suppose we have r < 2
and (HL2,p), then with k :: Sk(r) ≥ 2, and w0(x) := R(x)−k, for any ϕ ∈ L2

p(M)∩Lr′

p (M), Hϕ = 0,

there is a u ∈ Lr′(M,wr
0) such that ∆u = ϕ. This solution is linear with respect to ϕ.

If we add the hypothesis that the ǫ0 admissible radius is bounded below, we get
u := (T − C)∗ϕ, u ∈ W 2,r′

p (M) and u verifies ∆u = ϕ.

By theorem 1.3 in Hebey [12], we have that the harmonic radius rH(1+ ǫ, 2, 0) is bounded below
if the Ricci curvature Rc verifies ‖∇Rc‖∞ < ∞ and the injectivity radius is bounded below. This
implies that the ǫ admissible radius is also bounded below.

1.2 Hodge decomposition in Lr spaces. Known results.

In 1949, Kodaira [14] proved that the L2-space of p-forms on (M, g) has the orthogonal decom-
position :

L2
p(M) = H2

p ⊕ dDp−1(M)⊕ d∗Dp+1(M),

and in 1991 Gromov [10] proved a strong L2 Hodge decomposition, under the hypothesis (HL2,p) :
L2
p(M) = H2

p ⊕ dW 1,2
p−1(M)⊕ d∗W 1,2

p+1(M).
In 1995 Scott [22] proved a strong Lr Hodge decomposition but on compact riemannian manifold

∀r > 1, Lr
p(M) = Hr

p ⊕ dW 1,r
p−1(M)⊕ d∗W 1,r

p+1(M).
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Let d∗ϕ be the formal adjoint of d relatively to the measure dµ(x) = e−ϕ(x)dvg(x), where ϕ ∈ C2(M),
and let ∆ϕ,p := dd∗ϕ + d∗ϕd acting on p forms. Setting ∆ = Tr∇2 the covariant Laplace Beltrami
operator acting on p forms and L = ∆ − ∇ϕ · ∇, then, in 2009 X-D. Li [15] proved, among other
nice results, a strong Lr Hodge decomposition on complete non compact riemannian manifold :

Theorem 1.5. (X-D. Li) Let r > 1, r′ =
r

r − 1
. Let (M, g) be a complete riemannian manifold,

ϕ ∈ C2(M), and dµ(x) = e−ϕ(x)dvg(x). Suppose that the Riesz transforms d∆−1/2
ϕ,p and d∗∆−1/2

ϕ,p are

bounded in Lr and Lr′, and the Riesz potential is bounded in Lr. Suppose also that (M, g) is L
stochastically complete, then the strong Lr Hodge direct sum decomposition holds on p forms :

Lr
p(M,µ) = Hr

p(M,µ)⊕ dW 1,r
p−1(M,µ)⊕ d∗ϕW

1,r
p+1(M,µ).

These results are valid for the family of weights ϕ ∈ C2(M) and for the Hodge laplacian associated
to them, in the Witten sense [25]. Nevertheless it is worthwhile to notice that, even in the classical
case ϕ ≡ 0, this result was new at the time it was proved, 2007, by X-D. Li.

1.3 Non classical Hodge decomposition in Lr spaces. Main results.

The results of X-D. Li are based on the boundedness of the Riesz transforms in Lr and Lr′ and
the results we get use mainly the spectral gap hypothesis (HL2,p). X-D. Li was already concerned
by the fact that the bottom of the spectrum of ∆ should be strictly positive ; the difference here is
that we allow an eigenvalue 0 but a gap without spectrum after it, which gives the possible existence
of non trivial harmonic functions in L2. This is the meaning of (HL2,p).

In this way our results may appear to be the natural generalisation of Gromov results from L2

to Lr. On the other hand our results are proved only in the case ϕ = 0.
Our decompositions are non classical because we use weights to get estimates, but we use the

usual laplacian, not the Witten laplacian adapted to these weights.
We shall need the following definition.

Definition 1.6. Let α be a weight on M, we define the space W̃ 2,r
p (M,α) to be

W̃ 2,r
p (M,α) := {u ∈ Lr

p(M,α) :: ∆u ∈ Lr
p(M,α)}

with the norm
‖u‖W̃ 2,r

p (M,α) := ‖u‖Lr
p(M,α) + ‖∆u‖Lr

p(M,α).

To get these decomposition theorems we shall apply our results on solutions of the Poisson
equation.

Theorem 1.7. Let (M, g) be a complete riemannian manifold. Let r < 2 and take a weight
α ∈ L∞(M) be such that γ(α, r) <∞ ; with k :: Sk(r) ≥ 2, set w0 = R(x)−2k, and suppose we have
hypothesis (HL2,p). We have the direct decomposition given by linear operators :

Lr
p(M,wr

0) = H2
p ⊕∆(W 2,r

p (M,α)).
With r′ > 2, the conjugate exponent to r, we have the weaker decomposition, still given by linear
operators :

Lr′

p (M) ∩ L2
p(M) = H2

p ∩ Hr′

p +∆(W̃ 2,r′

p (M)).

Because H : Lr(M,wr
0) → H2

p(M) boundedly by (1.3), where H is the orthogonal projection

from L2
p(M) on H2

p(M), this explain the appearance of L2
p(M) and H2

p(M) in the second part of
the previous theorem.
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To replace W̃ 2,r′

p (M)) by W 2,r′

p (M,α)) the price is the hypothesis that the ǫ0 admissible radius is
bounded below. So we get

Corollary 1.8. Suppose the admissible radius is bounded below and suppose also hypothesis (HL2,p).
Take r′ > 2, then we have the direct decomposition given by linear operators

Lr′

p (M) ∩ L2
p(M) = H2

p ∩ Hr′

p ⊕∆(W 2,r′

p (M)).

As a corollary we get

Corollary 1.9. Let r < 2 and choose a weight α ∈ L∞(M) such that γ(α, r) <∞ ; with k :: Sk(r) ≥
2, set w0 = R(x)−2k, and suppose we have hypothesis (HL2,p). We have the direct decompositions
given by linear operators

Lr
p(M,wr

0) = H2
p ⊕ d(W 1,r

p (M,α))⊕ d∗(W 1,r
p (M,α)).

With r′ > 2 the conjugate exponent of r, and adding the hypothesis that the ǫ0 admissible radius is
bounded below, we get

Lr′

p (M) ∩ L2
p(M) = H2

p ∩ Hr′

p ⊕ d(W 1,r′

p (M))⊕ d∗(W 1,r′

p (M)).

We also have weak Lr Hodge decompositions, where d∗ is the adjoint of d with respect to the
usual volume measure, not the weighted one, despite the weight appearing here.

We shall need another hypothesis :
(HWr) if the space Dp(M) is dense in W 2,r

p (M).
We already know that (HWr) is true if :
• either : the injectivity radius is strictly positive and the Ricci curvature is bounded [[12] theorem

2.8, p. 12].
• or : M is geodesically complete with a bounded curvature tensor [[11] theorem 1.1 p.3].

Theorem 1.10. Suppose that (M, g) is a complete riemannian manifold, fix r < 2 and choose a
bounded weight α with γ(α, r) <∞.
Take k with Sk(r) ≥ 2, and set the weight w0 := R(x)−2k. Suppose we have (HL2,p) and (HW2).
Then Lr

p(M,α) = Hr
p(M,α)⊕∆(Dp(M)), the closure being taken in Lr(M,α).

We also have a weak Lr Hodge decomposition without hypothesis (HWr):

Theorem 1.11. Suppose that (M, g) is a complete riemannian manifold and suppose we have
(HL2,p). Fix r < 2 and take a weight α verifying γ(α, r) <∞. Then we have:

Lr
p(M,α) = Hr

p(M,α)⊕ d(Dp−1(M))⊕ d∗(Dp+1(M)),
the closures being taken in Lr(M,α).

For the case r > 2 we need a stronger hypothesis, namely that the ǫ0 admissible radius is bounded
below. Then we get a classical weak Hodge decompositions.

Theorem 1.12. Suppose that (M, g) is a complete riemannian manifold and suppose the ǫ0 admis-
sible radius is bounded below and (HWr) and suppose also hypothesis (HL2,p). Fix r > 2, then we
have

Lr
p(M) = Hr

p(M)⊕∆(Dp(M)).
Without (HWr) we still get

Lr
p(M) = Hr

p(M)⊕ d(Dp−1(M))⊕ d∗(Dp+1(M)).
All the closures being taken in Lr(M).
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Remark 1.13. By theorem 1.3 in Hebey [12], we have that the harmonic radius rH(1 + ǫ, 2, 0) is
bounded below if the Ricci curvature Rc verifies ‖∇Rc‖∞ <∞ and the injectivity radius is bounded
below. This implies that the ǫ admissible radius is also bounded below.
Moreover if we add the hypothesis that the Ricci curvature Rc is bounded below then by Proposition
2.10 in Hebey [12], we have hypothesis (HWr).

These results are based on the raising steps method :

Theorem 1.14. (Raising Steps Method) Let (M, g) be a riemannian manifold and take w a weight
relative to the Vitali covering {B(xj , 5r(xj))}j∈N.
For any r ≤ 2, any threshold s ≥ r, take k ∈ N such that tk := Sk(r) ≥ s then, with w0(x) :=
w(x)R(x)−2k,

∀ω ∈ Lr
p(M,wr

0), ∃v ∈ Lr
p(M,wr)∩Ls1

p (M,ws1)∩W 2,r(M,wr), ∃ω̃ ∈ Ls
p(M,ws) :: ∆v = ω+ω̃

with s1 = S2(r) and we have the control of the norms :
∀q ∈ [r, s1], ‖v‖Lq

p(M,wq) ≤ Cq‖ω‖Lr
p(M,wr

0
) ; ‖v‖W 2,r

p (M,wr) ≤ Cr‖ω‖Lr
p(M,wr

0
) ;

‖ω̃‖Ls
p(M,ws) ≤ Cs‖ω‖Lr

p(M,wr
0
).

Moreover v and ω̃ are linear in ω.
If M is complete and ω is of compact support, so are v and ω̃.

I thank the referee for his pertinent questions and remarks making precise the meaning of these
non classical Hodge decompositions.

This work will be presented in the following way.
In section 2 we define the admissible balls, the admissible radius and the basic facts relative to

them.
In section 3 we use a Vitali type covering lemma with our admissible balls and we prove that its

overlap is finite.
In section 4 we define the Sobolev spaces, following E. Hebey [12].
In section 5 we prove the local estimates for the Hodge Laplacian. This is essentially standard

by use of classical results from Gilbarg and Trudinger [9].
In section 6 we develop the Raising Steps Method in the non compact case. The useful weights

are defined here.
This is the basis of our results.

In section 7 we prove Calderon Zygmund inequalities with weights.
In section 8 we deduce the applications to the Poisson equation associated to the Hodge Laplacian.
In section 9 we use these solutions to get non classical strong Lr Hodge decomposition theorems.

We also get non classical weak Lr Hodge decomposition theorems.

2 Basic facts.

Definition 2.1. Let (M, g) be a riemannian manifold and x ∈ M. We shall say that the geodesic
ball B(x,R) is ǫ admissible if there is a chart ϕ : (x1, ..., xn) defined on it with

1) (1− ǫ)δij ≤ gij ≤ (1 + ǫ)δij in B(x,R) as bilinear forms,

2)
∑

|β|=1

sup i,j=1,...,n, y∈Bx(R)

∣

∣∂βgij(y)
∣

∣ ≤ ǫ.

7



Definition 2.2. Let x ∈M, we set R′(x) = sup {R > 0 :: B(x,R) is ǫ admissible}. We shall say
that Rǫ(x) := min (1, R′(x)) is the ǫ admissible radius at x.

Our admissible radius is smaller than the harmonic radius rH(1+ ǫ, 1, 0) defined in Hebey [[12],
p. 4].

By theorem 1.3 in Hebey [12], we have that the harmonic radius rH(1+ ǫ, 2, 0) is bounded below
if the Ricci curvature Rc verifies ‖∇Rc‖∞ < ∞ and the injectivity radius is bounded below. This
implies easily that the ǫ admissible radius is also bounded below.

Remark 2.3. By its very definition, we always have Rǫ(x) ≤ 1.

Of course, without any extra hypotheses on the riemannian manifold M, we have ∀ǫ > 0, ∀x ∈ M,
taking gij(x) = δij in a chart on B(x,R) and the radius R small enough, the ball B(x,R) is ǫ
admissible.
We shall use the following lemma.

Lemma 2.4. Let (M, g) be a riemannian manifold then with R(x) = Rǫ(x) = the ǫ admissible
radius at x ∈M and d(x, y) the riemannian distance on (M, g) we get :

d(x, y) ≤
1

4
(R(x) +R(y)) ⇒ R(x) ≤ 4R(y).

Proof.

Let x, y ∈ M :: d(x, y) ≤
1

4
(R(x) + R(y)) and suppose for instance that R(x) ≥ R(y). Then

y ∈ B(x,R(x)/2) hence we have B(y, R(x)/4) ⊂ B(x,
3

4
R(x)). But by the definition of R(x), the

ball B(x,
3

4
R(x)) is admissible and this implies that the ball B(y, R(x)/4) is also admissible for

exactly the same constants and the same chart ; this implies that R(y) ≥ R(x)/4. �

3 Vitali covering.

Lemma 3.1. Let F be a collection of balls {B(x, r(x))} in a metric space, with ∀B(x, r(x)) ∈
F , 0 < r(x) ≤ R. There exists a disjoint subcollection G of F with the following property :

every ball B in F intersects a ball C in G and B ⊂ 5C.

This is a well known lemma, see for instance [7], section 1.5.1].

So fix ǫ > 0 and let ∀x ∈ M, r(x) := Rǫ(x)/120, where Rǫ(x) is the admissible radius at x,
we built a Vitali covering with the collection F := {B(x, r(x))}x∈M . So lemma 3.1 gives a disjoint
subcollection G such that every ball B in F intersects a ball C in G and we have B ⊂ 5C. We
set G ′ := {xj ∈ M :: B(xj , r(xj)) ∈ G} and Cǫ := {B(x, 5r(x)), x ∈ G ′} : we shall call Cǫ the ǫ
admissible covering of (M, g).

Then we have :

8



Proposition 3.2. Let (M, g) be a riemannian manifold, then the overlap of the ǫ admissible

covering Cǫ is less than T =
(1 + ǫ)n/2

(1− ǫ)n/2
(120)n, i.e.

∀x ∈M, x ∈ B(y, 5r(y)) where B(y, r(y)) ∈ G for at most T such balls.
So we have

∀f ∈ L1(M),
∑

j∈N

∫

Bj
|f(x)| dvg(x) ≤ T‖f‖L1(M).

Proof.

Let Bj := B(xj , r(xj)) ∈ G and suppose that x ∈
k
⋂

j=1

B(xj , 5r(xj)). Then we have

∀j = 1, ..., k, d(x, xj) ≤ 5r(xj)
hence

d(xj, xl) ≤ d(xj , x) + d(x, xl) ≤ 5(r(xj) + r(xl)) ≤
1

4
(R(xj) +R(xl)) ⇒ R(xj) ≤ 4R(xl)

and by exchanging xj and xl, R(xl) ≤ 4R(xj).
So we get

∀j, l = 1, ..., k, r(xj) ≤ 4r(xl), r(xl) ≤ 4r(xj).
Now the ball B(xj , 5r(xj) + 5r(xl)) contains xl hence the ball B(xj , 5r(xj) + 6r(xl)) contains the
ball B(xl, r(xl)). But, because r(xl) ≤ 4r(xj), we get

B(xj , 5r(xj) + 6×4r(xj)) = B(xj , r(xj)(5 + 24)) ⊃ B(xl, r(xl)).
The balls in G being disjoint, we get, setting Bl := B(xl, r(xl)),

k
∑

j=1

Vol(Bl) ≤ Vol(B(xj , 29r(xj))).

The Lebesgue measure read in the chart ϕ and the canonical measure dvg on B(x,Rǫ(x)) are
equivalent ; precisely because of condition 1) in the admissible ball definition, we get that :

(1− ǫ)n ≤ |detg| ≤ (1 + ǫ)n,
and the measure dvg read in the chart ϕ is dvg =

√

|detgij|dξ, where dξ is the Lebesgue measure in
R

n. In particular :
∀x ∈M, Vol(B(x, Rǫ(x))) ≤ (1 + ǫ)n/2νnR

n,
where νn is the euclidean volume of the unit ball in R

n.
Now because R(xj) is the admissible radius and 4×29r(xj) < R(xj), we have

Vol(B(xj, 29r(xj))) ≤ 29n(1 + ǫ)n/2vnr(xj)
n.

On the other hand we have also
Vol(Bl) ≥ vn(1− ǫ)n/2r(xl)

n ≥ vn(1− ǫ)n/24−nr(xj)
n,

hence
k
∑

j=1

(1− ǫ)n/24−nr(xj)
n ≤ 29n(1 + ǫ)n/2r(xj)

n,

so finally

k ≤ (29×4)n
(1 + ǫ)n/2

(1− ǫ)n/2
,

which means that T ≤
(1 + ǫ)n/2

(1− ǫ)n/2
(120)n.

Saying that any x ∈M belongs to at most T balls of the covering {Bj} means that
∑

j∈N1Bj
(x) ≤

T, and this implies easily that :
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∀f ∈ L1(M),
∑

j∈N

∫

Bj

|f(x)| dvg(x) ≤ T‖f‖L1(M). �

Lemma 3.3. Let (M, g) be a non compact connected complete riemannian manifold and C :=
{Bj}j∈N a Vitali covering of M with balls of radius less than δ > 0. For any compact set K in M
covered by O :=

⋃

k∈FK
Bk, with FK finite, we can find a compact set K ′ ⊃ K such that ∂K ′ can be

covered by elements of C not intersecting Ō.

Proof.
If this was not the case then there is a compact K covered by O :=

⋃

k∈FK

Bk and such that for any

compact K ′ ⊃ K and any covering of ∂K ′ by elements Bk of C, then Bk ∩ Ō 6= ∅. Because the balls
have radius less than δ, this means that ∂K ′ is at most at a distance 2δ of O hence M is bounded,
hence the completeness of M implies that M is compact. �

Clearly the assumption that the radii are uniformly bounded is necessary as the example of Rn

shows.

4 Sobolev spaces.

We have to define the Sobolev spaces in our setting, following E. Hebey [[12], p. 10].
First define the covariant derivatives by (∇u)j := ∂ju in local coordinates, while the components
of ∇2u are given by

(∇2u)ij = ∂iju− Γk
ij∂ku, (4.4)

with the convention that we sum over repeated index. The Christoffel Γk
ij verify [3] :

Γk
ij =

1

2
gil(

∂gkl
∂xj

+
∂glj
∂xk

−
∂gjk
∂xl

). (4.5)

If k ∈ N and r ≥ 1 are given, we denote by Cr
k(M) the space of smooth functions u ∈ C∞(M) such

that
∣

∣∇ju
∣

∣ ∈ Lr(M) for j = 0, ..., k. Hence

Cr
k(M) := {u ∈ C∞(M), ∀j = 0, ..., k,

∫

M

∣

∣∇ju
∣

∣

r
dvg <∞}

Now we have [12]

Definition 4.1. The Sobolev space W k,r(M) is the completion of Cr
k(M) with respect to the norm :

‖u‖W k,r(M) =

k
∑

j=0

(
∫

M

∣

∣∇ju
∣

∣

r
dvg

)1/r

.

We shall be interested only by k ≤ 2 and we extend in a natural way this definition to the case
of p forms.
Let the Sobolev exponents Sk(r) as in the definition 1.1, then the k th Sobolev embedding is true
if we have

∀u ∈ W k,r(M), u ∈ LSk(r)(M).
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This is the case in R
n, or if M is compact, or if M has a Ricci curvature bounded from below and

inf x∈Mvg(Bx(1)) ≥ δ > 0, due to Varopoulos [24], see [12] theorem 3.14, p. 31].

Lemma 4.2. We have the Sobolev comparison estimates where B(x,R) is a ǫ admissible ball in
M and ϕ : B(x,R) → R

n is the admissible chart relative to B(x,R),
∀u ∈ W 2,r(B(x,R)), ‖u‖W 2,r(B(x,R)) ≤ (1 + ǫC)

∥

∥u ◦ ϕ−1
∥

∥

W 2,r(ϕ(B(x,R)))
,

and, with Be(0, t) the euclidean ball in R
n centered at 0 and of radius t,

‖v‖W 2,r(Be(0,(1−ǫ)R)) ≤ (1 + 2Cǫ)‖u‖W 2,r(B(x,R)).

Proof.
We have to compare the norms of u, ∇u, ∇2u with the corresponding ones for v := u ◦ ϕ−1 in R

n.
First we have because (1− ǫ)δij ≤ gij ≤ (1 + ǫ)δij in B(x,R) :

Be(0, (1− ǫ)R) ⊂ ϕ(B(x,R)) ⊂ Be(0, (1 + ǫ)R).

Because
∑

|β|=1

sup i,j=1,...,n, y∈Bx(R)

∣

∣∂βgij(y)
∣

∣ ≤ ǫ in B(x,R), we have the estimates, with ∀y ∈

B(x,R), z := ϕ(y),
∀y ∈ B(x,R), |u(y)| = |v(z)| , |∇u(y)| ≤ (1 + Cǫ) |∂v(z)| .

Because of (4.5) and (4.4) we get
∀y ∈ B(x,R),

∣

∣∇2u(y)
∣

∣ ≤
∣

∣∂2v(z)
∣

∣ + ǫC |∂v(z)| .
Integrating this we get

∥

∥∇2u
∥

∥

Lr(B(x,R))
≤
∥

∥

∣

∣∂2v
∣

∣+ ǫC |∂v|
∥

∥

Lr(Be(0,(1+ǫ)R))
≤
∥

∥∂2v
∥

∥

Lr(Be(0,(1+ǫ)R))
+Cǫ‖∂v‖Lr(Be(0,(1+ǫ)R)),

and
‖∇u‖Lr(B(x,R)) ≤ (1 + Cǫ)‖∂v‖Lr(Be(0,(1+ǫ)R)).

We also have the reverse estimates
∥

∥∂2v
∥

∥

Lr(Be(0,(1−ǫ)R))
≤
∥

∥∇2u
∥

∥

Lr(B(x,R))
+ Cǫ‖∇u‖Lr(B(x,R)),

and
‖∂v‖Lr(Be(0,(1−ǫ)R)) ≤ (1 + Cǫ)‖∇u‖Lr(B(x,R)).

So, using that
‖u‖W 2,r(B(x,R)) =

∥

∥∇2u
∥

∥

Lr(B(x,R))
+ ‖∇u‖Lr(B(x,R)) + ‖u‖Lr(B(x,R)),

we get
‖u‖rW 2,r(B(x,R)) ≤

∥

∥∂2v
∥

∥

Lr(Be(0,(1+ǫ)R))
+ Cǫ‖∂v‖Lr(Be(0,(1+ǫ)R)) + (1 + Cǫ)‖∂v‖Lr(Be(0,(1+ǫ)R))+

+‖v‖Lr(Be(0,(1+ǫ)R)) ≤
≤ (1 + 2ǫC)‖v‖W 2,r(Be(0,(1+ǫ)R)).

Of course all these estimates can be reversed so we also have
‖v‖W 2,r(Be(0,(1−ǫ)R)) ≤ (1 + 2Cǫ)‖u‖W 2,r(B(x,R)).

This ends the proof of the lemma. �

Lemma 4.3. Let B := B(x,R) be a ǫ admissible ball in M, we have the punctual estimates in B
(i) ∃C > 0, ∀χ ∈ C2(B), ∀u ∈ C2

p(B), |∇(χu)| ≤ (1 + Cǫ)(|χ| |∇u|+ |∇χ| |u|).
(ii) ∃C > 0, ∀χ ∈ C2(B), ∀u ∈ C2

p(B), |∇2(χu)| ≤ (1 + Cǫ)(|χ| |∇2u|+ |∇2χ| |u|+ |∇χ| |∇u|).

Proof.
We have to compare the modulus of u, ∇u, ∇2u with the corresponding ones for v := u ◦ ϕ−1 in
R

n.
First we have because (1− ǫ)δij ≤ gij ≤ (1 + ǫ)δij in B(x,R) :

Be(0, (1− ǫ)R) ⊂ ϕ(B(x,R)) ⊂ Be(0, (1 + ǫ)R).
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Because
∑

|β|=1

sup i,j=1,...,n, y∈Bx(R)

∣

∣∂βgij(y)
∣

∣ ≤ ǫ in B(x,R), we have the estimates, with ∀y ∈

B(x,R), z := ϕ(y),
∀y ∈ B(x,R), |u(y)| = |v(z)| , |∇u(y)| ≤ (1 + Cǫ) |∂v(z)| .

Now replacing u by χu, clearly we have for χ ◦ ϕ−1v ◦ ϕ−1 what we want, just using Leibnitz rule.
Then the computations above gives the existence of a new constant C such that

|∇(χu)| ≤ (1 + Cǫ)(|χ| |∇u|+ |∇χ| |u|)
at all point of B which gives (i).

Because of (4.5) and (4.4) we get
∀y ∈ B(x,R),

∣

∣∇2u(y)
∣

∣ ≤
∣

∣∂2v(z)
∣

∣ + ǫC |∂v(z)| .
Now replacing u by χu, clearly we have for χ ◦ ϕ−1v ◦ ϕ−1 what we want, again just using Leibnitz
rule. Then the computations above gives the existence of a new constant C such that

∣

∣∇2(χu)
∣

∣ ≤ (1 + Cǫ)(
∣

∣χ∇2u
∣

∣ +
∣

∣∇2χu
∣

∣+ |∇χ| |∇u|)
at all point of B which gives (ii) and ends the proof of this lemma. �

We have to study the behavior of the Sobolev embeddings w.r.t. the radius. Set BR := Be(0, R).

Lemma 4.4. We have, with s = S1(r), t = S2(r),
(i) ∀R, 0 < R ≤ 1, ∀u ∈ W 2,r(BR), ‖u‖Lt(BR) ≤ CR−2 ‖u‖W 2,r(BR)

and
(ii) ∀R, 0 < R ≤ 1, ∀u ∈ W 2,r(BR), ‖∂u‖Ls(BR) ≤ CR−1 ‖u‖W 2,r(BR)

the constant C depending only on n, r.

Proof.
We start with R = 1, then we have by Sobolev embeddings with t = S2(r),

∀v ∈ W 2,r(B1), ‖v‖Lt(B1)
≤ C‖v‖W 2,r(B1)

(4.6)

where C depends only on n. For u ∈ W 2,r(BR) we set
∀x ∈ B1, y := Rx ∈ BR, v(x) := u(y).

Then we have

∂v(x) = ∂u(y)×
∂y

∂x
= R∂u(y); ∂2v(x) = ∂2u(y)×(

∂y

∂x
)2 = R2∂2u(y).

So we get, because the jacobian for this change of variables is R−n,

‖∂v‖rLr(B1)
=

∫

B1

|∂v(x)|r dm(x) =

∫

BR

|∂u(y)|r
Rr

Rn
dm(x) = Rr−n‖∂u‖rLr(BR).

So

‖∂u‖Lr(BR) = R−1+n/r‖∂v‖Lr(B1)
. (4.7)

The same way we get

∥

∥∂2u
∥

∥

Lr(BR)
= R−2+n/r

∥

∥∂2v
∥

∥

Lr(B1)
(4.8)
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and of course
‖u‖Lr(BR) = Rn/r‖v‖Lr(B1)

.
So with 4.6 we get

‖u‖Lt(BR) = Rn/t‖v‖Lt(B1)
≤ CRn/t‖v‖W k,r(B1)

. (4.9)

But
‖u‖W 2,r(BR) := ‖u‖Lr(BR) + ‖∂u‖Lr(BR) +

∥

∥∂2u
∥

∥

Lr(BR)
,

and
‖v‖W 2,r(B1)

:= ‖v‖Lr(B1)
+ ‖∂v‖Lr(B1)

+
∥

∥∂2v
∥

∥

Lr(B1)
,

so
‖v‖W 2,r(B1)

:= R−n/r‖u‖Lr(BR) +R1−n/r‖∂u‖Lr(BR) +R2−n/r
∥

∥∂2u
∥

∥

Lr(BR)
.

Because we have R ≤ 1, we get
‖v‖W 2,r(B1)

≤ R−n/r(‖u‖Lr(BR) + ‖∂u‖Lr(BR) +
∥

∥∂2u
∥

∥

Lr(BR)
) = R−n/r‖u‖W 2,r(BR).

Putting it in (4.9) we get

‖u‖Lt(BR) ≤ CRn/t‖v‖W k,r(B1)
≤ CR−n( 1

r
− 1

t
)‖u‖W 2,r(BR).

But, because t = S2(r), we get (
1

r
−

1

t
) =

2

n
and

‖u‖Lt(BR) ≤ CR−2‖u‖W 2,r(BR).

To have the (ii) we proceed exactly the same way.
We start with R = 1, then we have by Sobolev embeddings with s = S1(r),

∀v ∈ W 2,r(B1), ‖∂v‖Ls(B1)
≤ C‖v‖W 2,r(B1)

and this leads as above to
‖∂u‖Lt(BR) ≤ CR−1‖u‖W 2,r(BR). �

The constant C depends only on n, r.

Lemma 4.5. Let x ∈M and B(x,R) be a ǫ admissible ball ; we have, with s = S1(r), t = S2(r),
(i) ∀u ∈ W 2,r(B(x,R)), ‖u‖Lt(B(x,R)) ≤ CR−2 ‖u‖W 2,r(B(x,R)),
and
(ii) ∀u ∈ W 2,r(B(x,R)), ‖∇u‖Ls(B(x,R)) ≤ CR−1 ‖u‖W 2,r(B(x,R)),
the constant C depending only on n, r and ǫ.

Proof.
This is true in R

n by lemma 4.4 so we can apply the comparison lemma 4.2. �

Lemma 4.6. Let B := B(0, R) be the ball in R
n of center 0 and radius R ≤ 1 and B′ = B(0, R/2).

Let u ∈ Lr(B) such that ∆u ∈ Lr(B) then we have
u ∈ W 2,r(B′), ‖u‖W 2,r(B′) ≤ c1R

−2‖u‖Lr(B) + c2‖∆u‖Lr(B),
where the constants c1, c2 depend only on n, r.

Proof.
We start with R = 1, then we have by the classical CZI for the usual laplacian ∆R in R

n, [ [9], Th.
9.11, p. 235]:
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∀v ∈ Lr(B), ∆v ∈ Lr(B), ‖v‖W 2,r(B′) ≤ c1‖v‖Lr(B) + c2‖∆v‖Lr(B), (4.10)

the constants c1, c2 depending only on n, r.
To go to any R we take u with the hypotheses of the lemma and we make the change of variables

y = Rx, dm(y) = Rndm(x), v(x) := u(Rx).
We set BR := Be(0, R) then we get

‖v‖rLr(B1)
:=

∫

B1

|v(x)|r dm(x) =

∫

BR

∣

∣

∣
v(
y

R
)
∣

∣

∣

r

R−ndm(y) =

∫

BR

|u(y)|r R−ndm(y) = R−n‖u‖rLr(BR).

And
∂iv(x) = ∂iu(Rx)R, ∂ijv(x) = ∂iju(Rx)R

2,
hence

‖∂iv‖
r
Lr(B1)

:=

∫

B1

|∂iv(x)|
r dm(x) =

=

∫

BR

|∂iv| (
y

R
)rR−ndm(y) =

∫

BR

Rr |∂iu(y)|
rR−ndm(y) = Rr−n‖∂iu‖

r
Lr(BR).

‖∂ijv‖
r
Lr(B1)

:=

∫

B1

|∂ijv(x)|
r dm(x) =

=

∫

BR

|∂ijv| (
y

R
)rR−ndm(y) =

∫

BR

R2r |∂iju(y)|
r R−ndm(y) = R2r−n‖∂iju‖

r
Lr(BR).

So we get by (4.10)
(R/2)1−n/r‖∂iu‖Lr(BR/2)

≤ c1(r)R
−n/r‖u‖Lr(BR) + c2(R)R

2−n/r‖∆u‖Lr(BR)

hence
‖∂iu‖Lr(BR/2)

≤ 2−1+n/r(c1(r)R
−1‖u‖Lr(BR) + c2(r)R‖∆u‖Lr(BR)).

And the same way
‖∂iju‖Lr(BR/2)

≤ 2−2+n/r(c1(r)R
−2‖u‖Lr(BR) + c2(r)‖∆u‖Lr(BR)).

So we get finally
‖u‖W 2,r(BR/2)

≤ c1(n, r)R
−2‖u‖Lr(BR) + c2(n, r)‖∆u‖Lr(BR)),

where the constants c1, c2 depend only on n, r. �

5 Local estimates for the laplacian.

All these local estimates are quite well known. I reprove them here to precise the notations and
the dependences of the constants.

Lemma 5.1. Let (M, g) be a riemannian manifold. For x ∈M, ǫ > 0, we take a ǫ admissible ball
Bx(R). Then there is a 0 < ǫ0 ≤ ǫ, hence a R = Rǫ0(x) > 0, and a constant C depending only on
n = dimRM, r and ǫ0 such that :

∀ω ∈ Lr
p(Bx(R)), ∃u ∈ W 2,r

p (Bx(R)) :: ∆u = ω, ‖u‖W 2,r(Bx(R)) ≤ C‖ω‖Lr(Bx(R)).
Moreover u is linear in ω.

Proof.
For x ∈M and ǫ > 0, we take a ǫ admissible ball Bx(R) and a chart ϕ : (y1, ..., yn), which means:

1) (1− ǫ)δij ≤ gij ≤ (1 + ǫ)δij in Bx(R) as bilinear forms,
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2)
∑

|β|=1 sup i,j=1,...,n, y∈Bx(R)

∣

∣∂βgij(y)
∣

∣ ≤ ǫ.
Of course the operator d on p forms is local and so is d∗ as a first order differential operator.

So the Hodge laplacian ∆ϕ read by ϕ in U := ϕ(Bx(R)) is still a second order partial differential
system of operators and with ∆R the usual laplacian in R

n acting on forms in U, we set: Aωϕ :=
∆ϕωϕ − ∆Rωϕ, where ωϕ is the p form ω read in the chart (Bx(R), ϕ) and A is a matrix valued
second order operator with C∞ smooth coefficients such that A := ∆ϕ −∆R : W 2,r(U) → Lr(U).

This difference A is controlled by the derivatives of the metric tensor up to order 1; for instance
for a function f we have in the chart ϕ

∆ϕf =
1

√

det(gij)
∂i(g

ij
√

det(gij)∂jf) = gij∂2ijf + Y0f,

where Y0 is a first order differential operator depending on g and its first derivatives;
more generally for a p form u, still in the chart ϕ, the formula 21.23, p. 169 in [23] gives ∆ϕu =
gij∂2iju+ Ypu, where Yp is a first order differential operator.
So ∆ϕ depends on the first order derivatives of g, hence the difference A := ∆ϕ − ∆R, where
∆Ru = δij∂2iju, is controlled by the first order derivatives of g, which, by condition 2), can be made
as small as we wish. So we have

∀y ∈ U, |A(u)(y)| ≤
∣

∣(gij(y)− δij)∂2iju(y)
∣

∣ + |E(u)(y)| , (5.11)

where E is a first order partial differential operator whose coefficients depend on the first order
derivatives of g, and are 0 for y = x. So |E(u)(y)| ≤ η |∇u(y)| for y ∈ U, where η is a continuous
function of the metric g and ∇g only; since |∇g| ≤ ǫ, η may be chosen to depend on ǫ > 0 only
and η(0) = 0.
Hence, integrating (5.11), we get:

‖Au‖Lr(U) ≤ ‖∇g‖L∞(U)‖u‖W 2,r(U) + η(ǫ)‖∇u‖Lr(U).
So, because ‖∇u‖Lr(U) is controlled by ‖u‖W 2,r(U), there is a 0 ≤ c(ǫ), c(0) = 0 and c continuous

at 0, such that ‖Au‖Lr(U) ≤ c(ǫ)‖u‖W 2,r(U).
Let γ be a p form in U ⊂ R

n. We know that ∆R operates component-wise on the p form γ, so we
have:

∀γ ∈ Lr
p(U), ∃v0 ∈ W 2,r

p (U) :: ∆Rv0 = γ, ‖v0‖W 2,r(U) ≤ C‖γ‖Lr(U),
simply setting the component of v0 to be the Newtonian potential of the corresponding component
of γ in U. These non trivial estimates are coming from Gilbarg and Trudinger [[9], Th 9.9, p. 230]
and the constant C = C(n, r) depends only on n and r.

So we get ∆Rv0 + Av0 = γ + γ1, with
γ1 = Av0 ⇒ ‖γ1‖Lr(U) ≤ c‖v0‖W 2,r(U) ≤ cC‖γ‖Lr(U).

We solve again
∃v1 ∈ W 2,r

p (U) :: ∆Rv1 = γ1, ‖v1‖W 2,r(U) ≤ C‖γ1‖Lr(U) = C2c‖γ‖Lr(U),
and we set

γ2 := Av1 ⇒ ‖γ2‖Lr(U) ≤ c‖v1‖W 2,r(U) ≤ C‖γ1‖Lr(U) ≤ C2c2‖γ‖Lr(U).
And by induction:

∀k ∈ N, γk := Avk−1 ⇒ ‖γk‖Lr(U) ≤ c‖vk−1‖W 2,r(U) ≤ C‖γk−1‖Lr(U) ≤ Ckck‖γ‖Lr(U)

and
∃vk ∈ W 2,r

p (U) :: ∆Rvk = γk, ‖vk‖W 2,r(U) ≤ C‖γk‖Lr(U) ≤ Ck+1ck‖γ‖Lr(U).
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Now we set v :=
∑

j∈N (−1)jvj . This series converges in norm W 2,r(U), provided that we choose

ǫ0 ≤ ǫ small enough to have c(ǫ0)C
2 < 1, and we get:

∆ϕv = ∆Rv + Av =
∑

j∈N

(−1)j(∆Rvj + Avj) = γ,

the last series converging in Lr
p(U).

Going back to the manifold M with γ := ωϕ and setting uϕ := v, we get the right estimates:
∃u ∈ W 2,r(Bx(R)) :: ∆u = ω in Bx(R), ‖u‖W 2,r(Bx(R)) ≤ C‖ω‖Lr(Bx(R)),

because, by use of the comparison lemma already seen, the Sobolev spaces for U go to the analogous
Sobolev spaces for Bx(R) in M. Moreover C depends only on n, r, ǫ0 and u is linear in ω. �

Lemma 5.2. Let BR := B(0, R) be the ball in R
n of center 0 and radius R ≤ 1 and B′

R =
B(0, 3R/4). Suppose we have, with a constant C depending only on n, r and the C1 bound of the
coefficients of ∆ϕ

∀v ∈ W 2,r(B1), ‖v‖W 2,r(B′

1
) ≤ C(‖v‖Lr(B1)

+ ‖∆ϕv‖Lr(B1)
).

Let u ∈ Lr(BR) such that ∆ϕu ∈ Lr(BR) and then we have:
u ∈ W 2,r(B′

R), ‖u‖W 2,r(B′

R) ≤ c1R
−2‖u‖Lr(BR) + c2‖∆ϕu‖Lr(BR),

where the constants c1, c2 depend only on n, r and the C1 bound of the coefficients of ∆ϕ.

Proof.
We start with R = 1, B := B(0, 1), then we have by assumption:

∀v ∈ W 2,r(B1), ‖v‖W 2,r(B′

1
) ≤ C(‖v‖Lr(B1)

+ ‖∆ϕv‖Lr(B1)
),

the constants C depending only on n, r and the C1 bound of the coefficients of ∆ϕ. It remains to
make the simple change of variables y = Rx, dm(y) = Rndm(x), v(x) := u(Rx) and to notice
that ∂jv(x) = R∂j(u)(Rx), ∂

2
ijv(x) = R2∂2ij(u)(Rx) in the integrals defining the Lr norm to get the

result. �

Lemma 5.3. Let ∆ϕ be a second order elliptic matrix operator with C∞ coefficients operating
on p forms v defined in U ⊂ R

n. Let B := B(0, R) a ball in R
n, B′ := B(0, 3R/4) and suppose

that B ⋐ U. Then we have an interior estimate: there are constants c1, c2 depending only on
n = dimRM, r and the C1norm of the coefficients of ∆ϕ in B̄ such that

∀v ∈ W 2,r
p (B), ‖v‖W 2,r(B′) ≤ c1R

−2‖v‖Lr(B) + c2‖∆ϕv‖Lr(B). (5.12)

Proof.
For a 0 form, this lemma is exactly theorem 9.11, in [9] plus lemma 5.2 to get the dependence in R.
For p forms we cannot avoid the use of deep results on elliptic systems of equations.

Let v be a p form in B ⊂ R
n. We use the interior estimates in [[21], §6.2, Thm 6.2.6]. In our

context, second order elliptic system, and with our notations, with r > 1, we get:
∃C > 0, ∀v ∈ W 2,r

p (B), ‖v‖W 2,r(B′) ≤ c1R
−2‖v‖Lr(B) + c2‖∆ϕv‖Lr(B),

already including the dependence in R.
The constants c1, c2 depend only on r, n := dimM and the bounds and moduli of continuity of

all the coefficients of the matrix ∆ϕ. (In Morrey’s book, p. 213: the constant depends only on E
and on E ′.)

In particular, if ∆ϕ has its coefficients near those of ∆R in the C1 norm, then the constants c1, c2
are near the ones obtained for ∆R. �
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Lemma 5.4. Let (M, g) be a riemannian manifold. For x ∈M, ǫ > 0, we take a ǫ admissible ball
Bx(R). We have a local Calderon Zygmund inequality on the manifold M. There are constants c1, c2
depending only on n = dimRM, r and ǫ such that:

∀u ∈ W 2,r(Bx(R)), ‖u‖W 2,r(Bx(R/2)) ≤ c1R
−2‖u‖Lr(Bx(R)) + c2‖∆u‖Lr(Bx(R)).

Proof.
We transcribe the problem in R

n by use of a coordinates path (V, ϕ). The Hodge laplacian is the
second order elliptic matrix operator ∆ϕ with C∞ coefficients operating in ϕ(V ) ⊂ R

n. By the choice
of a ǫ admissible ball Bx(R), and with R′ := 3R/4, we have:

U ′ := ϕ(Bx(R
′)) ⊂ Be(0, (1 + ǫ)R′), U := ϕ(Bx(R)) ⊂ Be(0, (1 + ǫ)R) ⊂ ϕ(V ).

We apply lemma 5.3, to the euclidean balls B′ := Be(0, (1+ ǫ)R
′), B := Be(0, (1+ ǫ)R) and we get,

with uϕ the p form u read in the chart (V, ϕ)
‖uϕ‖W 2,r(B′) ≤ c1R

−2‖uϕ‖Lr(B) + c2‖∆ϕuϕ‖Lr(B).

The fact that the coefficients of ∆ϕ are ǫ near, in the C1 norm, of those of ∆R, by condition 2) in
the definition of the ǫ admissible ball, implies that the constants c1, c2 depend only on n, r and ǫ.

The Lebesgue measure on U and the canonical measure dvg on Bx(R) are equivalent; precisely
because of condition 1) we get that (1 − ǫ)n ≤ |detg| ≤ (1 + ǫ)n, and the measure dvg read in the
chart ϕ is dvg =

√

|detgij |dξ, where dξ is the Lebesgue measure in R
n. So the Lebesgue estimates

and the Sobolev estimates up to order 2 on U are valid in Bx(R) up to a constant depending only
on n, r and ǫ by lemma 4.2. In particular:

∀x ∈M, Vol(Bx(R)) ≤ (1 + ǫ)n/2νnR
n, (5.13)

where νn is the euclidean volume of the unit ball in R
n.

So passing back to M, we get, with A := Bx((1 + 2ǫ)R) ⊃ ϕ−1(B), A′ := ϕ−1(B′)
‖u‖W 2,r(A′) ≤ c1R

−2‖u‖Lr(A) + c2‖∆u‖Lr(A)).
Now we notice that A′ ⊃ Bx(R

′) so a fortiori:
‖u‖W 2,r(Bx(R′)) ≤ c1R

−2‖u‖Lr(Bx((1+2ǫ)R) + c2‖∆u‖Lr(Bx((1+2ǫ)R).
Finally, choosing ǫ ≤ 1/4 we get:

‖u‖W 2,r(Bx(R′)) ≤ c1R
−2‖u‖Lr(Bx(3R/2) + c2‖∆u‖Lr(Bx(3R/2),

i.e. the CZI local interior inequalities on Bx(3R/4) ⊂ Bx(3R/2) ⊂ M. So changing R for 3R/2 we
proved the lemma. �

6 The raising steps method.

Let (M, g) be a riemannian manifold. From now on we take ǫ = ǫ0 with ǫ0 given by lemma 5.1
and we take the ǫ0 admissible radius and the Vitali covering {B(xj, 5r(xj))}j∈N associated to it.

Definition 6.1. Let (M, g) be a riemannian manifold. A weight relative to the covering {B(xj , 5r(xj))}j∈N
is a function w(x) > 0 on M such that :

there are two constants 0 < ciw ≤ 1 ≤ csw such that, setting

∀j ∈ N, Bj := B(xj , 5r(xj)), wj :=
1

vg(Bj)

∫

Bj

w(x)dvg(x),

we have ∀j ∈ N, ∀x ∈ Bj , ciwwj ≤ w(x) ≤ cswwj. By smoothing w if necessary, we shall also
suppose that w ∈ C∞(M).
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As an example we have the constant weight, ∀x ∈M, w(x) = 1.

This means that w varies slowly on Bj .
So let w(x) > 0 be any weight we say that ω ∈ Lr

p(M,w), if :

‖ω‖rLr(M,w) :=

∫

M

|ω(x)|r w(x)dvg(x) <∞.

6.1 The raising steps method.

We shall use the following lemma.

Lemma 6.2. For χ ∈ D(M) and u ∈ W 2,r
p (M), set B(χ, u) := ∆(χu)− χ∆(u). We have :

|B(χ, u)| ≤ |∆χ| |u|+ 2 |∇χ| |∇u| .

Proof.
Exactly as for Proposition G.III.6 in [3] we have in an exponential chart at a point x ∈M,

u =
∑

J,|J |=p

uJdx
J , gij(x) = δij and the basis {

∂

∂xj
}j=1,...,n is orthogonal.

In this chart and at the point x we have that the laplacian is diagonal so

∆u(x) =
∑

J,|J |=p

∂2uJ
∂x2j

(x)dxJ

hence, for any x ∈M,

B(χ, u)(x) = ∆χ(x)u(x)− 2
∑

J, |J |=p

(
n
∑

j=1

∂uJ
∂xj

∂χ

∂xj
)dxJ .

So we get
|B(χ, u)| ≤ |∆χ| |u|+ 2 |∇χ| |∇u| . �

Lemma 6.3. Let w be a weight relative to the covering Cǫ and set wj as in definition 6.1. If
v :=

∑

j∈N χjuj then we have

(i) ‖v‖sLs(M,ws) ≤ T scssw
∑

j∈N

ws
j‖uj‖

s
Ls(Bj)

.

(ii) ‖∇v‖sLs(M,ws) ≤ 2s/s
′

(1 + Cǫ)T scssw
∑

j∈N

ws
j(R

−s
j ‖uj‖

s
Ls(Bj)

+ ‖∇uj‖
s
Ls(Bj)

).

(iii)
∥

∥∇2v
∥

∥

s

Ls(M,ws)
≤ 3s/s

′

(1 + Cǫ)T scssw
∑

j∈N

ws
j(R

−2s
j ‖uj‖

s
Ls(Bj )

+
∥

∥∇2uj
∥

∥

s

Ls(Bj)
+R−s

j ‖∇uj‖
s
Ls(Bj )

).

Proof.
We have for (i)

‖v‖sLs(M,ws) =
∫

M
|v|s wsdvg ≤

∑

k∈N

∫

Bk

∣

∣

∣

∑

j∈N χjuj

∣

∣

∣

s

wsdvg.

But the support of χj is in Bj and the overlap of the covering is less that T so let
I(k) := {Bj :: Bj ∩ Bk 6= ∅}

then CardI(k) ≤ T and we have

‖v‖sLs(M,ws) ≤
∑

k∈N

∫

Bk

∣

∣

∣

∣

∣

∣

∑

j∈I(k)

χjuj

∣

∣

∣

∣

∣

∣

s

wsdvg.
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We have, comparing the l1and ls norms by Hölder inequalities,
∣

∣

∣

∣

∣

∣

∑

j∈I(k)

χjuj

∣

∣

∣

∣

∣

∣

s

≤ T s−1
∑

j∈I(k)

|χjuj|
s

so

‖v‖sLs(M,ws) ≤ T s−1
∑

k∈N

∑

j∈I(k)

∫

Bk

|χjuj|
s wsdvg. (6.14)

We still have, because χj is supported by Bj ,
∑

j∈I(k)

∫

Bk

|χjuj|
s wsdvg =

∑

j∈N

∫

Bk

|χjuj|
swsdvg

hence, exchanging the order of summation, all terms being positive,

‖v‖sLs(M,ws) ≤ T s−1
∑

j∈N

∑

k∈N

∫

Bk

|χjuj|
swsdvg.

The overlap being less than T we get
∑

k∈N

∫

Bk

|χjuj|
swsdvg ≤ T

∫

M

|χjuj|
s wsdvg

so

‖v‖sLs(M,ws) ≤ T s−1T
∑

j∈N

∫

M

|χjuj|
swsdvg = T s

∑

j∈N

∫

Bj

|χjuj|
swsdvg.

With the constants csw defined in definition 6.1,

‖v‖sLs(M,ws) ≤ T scssw
∑

j∈N

ws
j‖χjuj‖

s
Ls(Bj)

≤ T scssw
∑

j∈N

ws
j‖uj‖

s
Ls(Bj )

hence we get the (i) :

‖v‖sLs(M,ws) ≤ T scssw
∑

j∈N

ws
j‖uj‖

s
Ls(Bj)

.

For (ii).
v :=

∑

j∈N χjuj ⇒ |∇v| ≤ (1 + Cǫ)
∑

j∈N (|χj | |∇uj|+ |∇χj | |uj|)
by lemma 4.3.
Because {χj}j∈N is a partition of unity relative to the covering {Bj}j∈N, we have

|∇χj | ≤
1

Rj
;
∣

∣∇2χj

∣

∣ ≤
1

R2
j

.

Hence for the first term, A :=
∑

j∈N

|χj| |∇uj| we get, again exactly as above

‖A‖sLs(M,ws) ≤ T scssw
∑

j∈N

ws
j‖∇uj‖

s
Ls(Bj)

.

For the second one, B :=
∑

j∈N

|∇χj | |uj| we get also as above, using the estimate |∇χj| ≤
1

Rj

,

‖B‖sLs(M,ws) ≤ T scssw
∑

j∈N

R−s
j ws

j‖uj‖
s
Ls(Bj )

.

Because (a+ b)s ≤ 2s/s
′

(as + bs) we get

‖∇v‖sLs(M,ws) ≤ 2s/s
′

(1 + Cǫ)T scssw
∑

j∈N

ws
j(R

−s
j ‖uj‖

s
Ls(Bj)

+ ‖∇uj‖
s
Ls(Bj)

).
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Finally for (iii). By lemma 4.3 (ii), we get
|∇2(v)| ≤ (1 + Cǫ)

∑

j∈N (|χj | |∇
2uj|+ |∇2χj| |uj|+ |∇χj| |∇uj|)

So we get, for the two first terms, as above

C := (1 + Cǫ)
∑

j∈N

(|χj |
∣

∣∇2uj
∣

∣) ⇒ ‖D‖sLs(M,ws) ≤ (1 + Cǫ)T scssw
∑

j∈N

ws
j

∥

∥∇2uj
∥

∥

s

Ls(Bj)
.

And using the estimate
∣

∣∇2χj

∣

∣ ≤
1

R2
j

,

D := (1 + Cǫ)
∑

j∈N

(
∣

∣∇2χj

∣

∣ |uj|) ⇒ ‖C‖sLs(M,ws) ≤ (1 + Cǫ)T scssw
∑

j∈N

R−2s
j ws

j‖uj‖
s
Ls(Bj)

.

For the third one, we get using the estimate |∇χj| ≤
1

Rj
,

E := (1 + Cǫ)
∑

j∈N

(|∇χj| |∇uj|) ⇒ ‖D‖sLs(M,ws) ≤ (1 + Cǫ)T scssw
∑

j∈N

ws
jR

−s
j ‖∇uj‖

s
Ls(Bj)

.

Adding this, we get
∥

∥∇2v
∥

∥

s

Ls(M,ws)
≤ 3s/s

′

(1 + Cǫ)T scssw
∑

j∈N

ws
j(R

−2s
j ‖uj‖

s
Ls(Bj)

+
∥

∥∇2uj
∥

∥

s

Ls(Bj)
+R−s

j ‖∇uj‖
s
Ls(Bj)

). �

Lemma 6.4. Let w be a weight relative to the covering Cǫ and set wj as in definition 6.1. Suppose
that

Is =
∑

j∈N

ws
j‖uj‖

s
Ls(Bj)

,

and, with s ≥ r,
wj‖χjuj‖Ls(Bj)

≤ wjR
−γ
j c‖ω‖Lr(Bj )

,

Then we have, with ∀x ∈M, w̃(x) := R(x)−γw(x),
I ≤ cwT

s/r‖ω‖Lr(M,w̃r).

Proof.
By

∑

j∈N

asj ≤ (
∑

j∈N

arj)
s/r because s ≥ r,

we get

Is ≤

(

∑

j∈N

wr
jR

−γr
j ‖ω‖rLr(Bj)

)s/r

.

By lemma 2.4 we have

∀x ∈ Bj , d(x, xj) < Rj = 5r(xj) ≤
1

4
R(xj) ≤

1

4
(R(xj) +R(x)) ⇒ R(x) ≤ 4R(xj),

hence, because r(xj) =
R(xj)

120
and Rj = 5r(xj) =

R(xj)

24
,

∀x ∈ Bj , R(x) ≤ 4Rj ⇒ R−γr
j ≤ 96γrR(x)−γr. (6.15)

But, by definition 6.1, we have

R−2r
j wr

j‖ω‖
r
Lr(Bj)

≤ c−r
iwR

−γr
j

∫

Bj

|ω|r wrdvg.
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So
∑

j∈N

R−γr
j wr

j‖ω‖
r
Lr(Bj)

≤ c−r
iw

∑

j∈N

R−γr
j

∫

Bj

|ω|r wrdvg

and, by (6.15), we get
∑

j∈N

R−γr
j wr

j‖ω‖
r
Lr(Bj)

≤ 96γrc−r
iw

∑

j∈N

∫

Bj

|ω|r R(x)−γrwrdvg.

Set ∀x ∈M, w̃(x) := R(x)−γw(x).
Now, because the overlap is less that T, by proposition 3.2, we get

∑

j∈N

∫

Bj

|ω|r w̃rdvg ≤ 96γrT

∫

M

|ω(x)|r w̃(x)rdvg(x) = T‖ω‖rLr(M,w̃r).

Putting this in v, we get

Is ≤

(

∑

j∈N

R−γr
j wr

j‖ω‖
r
Lr(Bj)

)s/r

≤ 96γsc−s
iwC

s(T‖ω‖rLr(M,w̃r))
s/r,

so, setting cw := 96γc−1
iwC we get

I ≤ cwT
s/r‖ω‖Lr(M,w̃r). �

With R(x) the ǫ0 admissible radius at the point x ∈M, and Cǫ0 the ǫ0 admissible covering of M,
defined in section 3, we shall prove now :

Theorem 6.5. (Raising Steps Method) Let (M, g) be a riemannian manifold and take w a weight
relative to the Vitali covering {B(xj , 5r(xj))}j∈N.
For any r ≤ 2, any threshold s ≥ r, take k ∈ N such that tk := Sk(r) ≥ s then, with w0(x) :=
w(x)R(x)−2k,

∀ω ∈ Lr
p(M,wr

0), ∃v ∈ Lr
p(M,wr) ∩ Ls1

p (M,ws1) ∩W 2,r(M,wr), ∃ω̃ ∈ Ls
p(M,ws) :: ∆v = ω + ω̃

with s1 = S2(r) and we have the control of the norms :
∀q ∈ [r, s1], ‖v‖Lq

p(M,wq) ≤ Cq‖ω‖Lr
p(M,wr

0
) ; ‖v‖W 2,r

p (M,wr) ≤ Cr‖ω‖Lr
p(M,wr

0
) ;

‖ω̃‖Ls
p(M,ws) ≤ Cs‖ω‖Lr

p(M,wr
0
).

Moreover v and ω̃ are linear in ω.
If M is complete and ω is of compact support, so are v and ω̃.

Proof.
To simplify notations we do not put the p referring to the degree of the forms, i.e. we shall write
Lr instead of Lr

p, W
2,r instead of W 2,r

p , etc...
Set Rj := 5r(xj), Bj := B(xj , Rj) and apply lemma 5.1 to get, with c = c(n, r, ǫ0),

∃uj ∈ W 2,r(Bj) :: ∆uj = ω, ‖uj‖W 2,r(Bj )
≤ c‖ω‖Lr(Bj)

, (6.16)

with uj linear in ω|Bj
.

So by lemma 4.5 we get, with t = S1(r), s = S2(r),
uj ∈ Ls(Bj), ‖uj‖Ls(Bj)

≤ CR−2
j ‖u‖W 2,r(B(x,R)) ≤ cCR−2

j ‖ω‖Lr(Bj)

and
∇uj ∈ Lt(Bj), ‖∇uj‖Lt(Bj)

≤ CR−1
j ‖u‖W 2,r(B(x,R)) ≤ CcR−1

j ‖ω‖Lr(Bj)
.
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Hence, because uj ∈ Lr(Bj), we have by interpolation [4], that ∀s′ ∈ [r, s], uj ∈ Ls′(Bj) with
‖uj‖Ls′(Bj)

≤ cCR−2
j ‖ω‖Lr(Bj)

.

The same way, because ∇uj ∈ Lr(Bj), by interpolation we get ∀t′ ∈ [r, t], ∇uj ∈ Lt′(Bj) with

‖∇uj‖Lt′(Bj)
≤ cCR−1

j ‖ω‖Lr(Bj)
. (6.17)

Let {χj}j∈N be a partition of unity associated to the covering {B(xj , Rj)}j∈N then we set

v0 :=
∑

j∈N

χjuj.

Because the uj are linear in ω|Bj
, v0 is linear in ω.

We have, because ‖χj‖∞ = 1,
‖χjuj‖Ls(Bj)

≤ cCR−2
j ‖ω‖Lr(Bj)

,

and multiplying by the wj, given in definition 6.1,

wj‖χjuj‖Ls(Bj)
≤ wjR

−2
j c‖ω‖Lr(Bj )

. (6.18)

By lemma 6.3 (i), we have

‖v0‖
s
Ls(M,ws) ≤ T scssw

∑

j∈N

ws
j‖uj‖

s
Ls(Bj)

.

Now, because of (6.18), we can apply lemma 6.4 with I = ‖v0‖Ls(M,ws) and γ = 2 ; we get, with

cw := cw := 962c−1
iwC, and w̃2(x) := R(x)−2w(x).

‖v0‖Ls(M,ws) ≤ cwT
s/r‖ω‖Lr(M,w̃2r).

We also have v0 ∈ Lr(M,wr) because uj ∈ W 2,r(Bj) ⇒ uj ∈ Lr(Bj) as well, this means that
v0w ∈ Lr(M) ∩ Ls(M) hence by interpolation we have that

v0w ∈ Lt′(M) ⇒ v0 ∈ Lt′(M,wt′) for any t′ ∈ [r, s] with the same control of the norms.

Because uj ∈ W 2,r(Bj) we shall apply the same procedure to ∇v0 by use of lemma 6.3 (ii), with
s = r, v = v0, we get

‖∇v‖rLr(M,wr) ≤ 2r/r
′

(1 + Cǫ)T rcrsw
∑

j∈N

wr
j (R

−r
j ‖uj‖

r
Lr(Bj)

+ ‖∇uj‖
r
Lr(Bj )

). (6.19)

But, by (6.16),
‖uj‖W 2,r(Bj)

≤ c‖ω‖Lr(Bj)
⇒ ‖∇uj‖Lr(Bj)

≤ c‖ω‖Lr(Bj)
.

To the first term of (6.19), A :=
∑

j∈N

ws
jR

−s
j ‖uj‖

s
Ls(Bj)

, we can apply lemma 6.4 with s = r, I → A

and C → Tcsw, γ = 1 , w̃1(x) := R(x)−1w(x), to get
‖A‖Lr(M,wr) ≤ cwT‖ω‖Lr(M,w̃r

1
).

To the second term of (6.19), B :=
∑

j∈N

wr
j‖∇uj‖

r
Lr(Bj)

we can apply lemma 6.4 with s = r, I →

B, uj → ∇uj and C → Tcsw, γ = 0 , w̃(x) := w(x), to get
‖v‖Lr(M,wr) ≤ cwT‖ω‖Lr(M,wr).

Adding these terms, we get
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‖∇v‖Lr(M,wr) ≤ 21/r
′

(1 + Cǫ)1/rTcswcwT (‖ω‖Lr(M,w̃r
1
) + ‖ω‖Lr(M,wr)).

Again because uj ∈ W 2,r(Bj) we shall apply the same procedure to ∇2v0 by use of lemma 6.3
(iii), with s = r, v = v0, w̃2(x) := R−2(x)w(x), we get
∥

∥∇2v0
∥

∥

r

Lr(M,wr)
≤ 3r/r

′

(1 + Cǫ)T rcrsw
∑

j∈N

wr
j (R

−2r
j ‖uj‖

r
Lr(Bj)

+
∥

∥∇2uj
∥

∥

r

Lr(Bj)
+R−r

j ‖∇uj‖
r
Lr(Bj )

).

But, by (6.16),
‖uj‖W 2,r(Bj)

≤ c‖ω‖Lr(Bj)
⇒ ‖∇uj‖Lr(Bj)

≤ c‖ω‖Lr(Bj)

and
∥

∥∇2uj
∥

∥

Lr(Bj )
≤ c‖ω‖Lr(Bj)

.

So playing the same game for each term, we get
∥

∥∇2v0
∥

∥

r

Lr(M,wr)
≤ 31/r

′

(1 + Cǫ)1/rTcswcwT (‖ω‖Lr(M,w̃2r) + ‖ω‖Lr(M,w̃r
1
) + ‖ω‖Lr(M,wr)).

Because we always have R(x) ≤ 1, we get that ‖ω‖Lr(M,w̃r
2
) ≥ ‖ω‖Lr(M,w̃r

1
) ≥ ‖ω‖Lr(M,wr) so finally

‖v0‖Lr(M,wr) ≤ C0‖ω‖Lr(M,wr) ;
‖∇v0‖Lr(M,wr) ≤ C1‖ω‖Lr(M,w̃r

1
) ;

∥

∥∇2v0
∥

∥

r

Lr(M,wr)
≤ C2‖ω‖Lr(M,w̃r

2
).

Because
‖v0‖W 2,r(M,wr) := ‖v0‖Lr(M,wr) + ‖∇v0‖Lr(M,wr) +

∥

∥∇2v0
∥

∥

Lr(M,wr)
we get

‖v0‖W 2,r(M,wr) ≤ C‖ω‖Lr(M,w̃r
2
),

where the constant C depends only on n, ǫ, T and the constants of the weight w relative to the
covering Cǫ.

If ω is of compact support and if M is complete, by lemma 3.3 we can cover Supp ω by a finite
set {Bj}j=1,...,N and then add a layer {Bj}j=N0+1,...,N1

not intersecting Supp ω, to cover ∂K ′ where
K ′ is a compact containing K. This means that we can cover K ′ by a finite set {Bj}j=1,...,N1

. By

linearity we get ∀j = N0+1, ..., N1, ωj = 0 ⇒ uj = 0 and setting now v0 :=

N1
∑

j=1

χjuj we can extend

v0 as 0 outside

N1
⋃

j=1

Bj hence we get that v0 is compactly supported.

We set, as in lemma 6.2, B(χj, uj) = ∆(χjuj)− χj∆uj. Now consider ∆v0, we get

∆v0 =
∑

j∈N

∆(χjuj) =
∑

j∈N

χj∆uj +
∑

j∈N

B(χj , uj) = ω + ω1,

with ω1 :=
∑

j∈N

B(χj , uj).

Clearly ∆v0 is linear in ω so is ω1.

The {χj}j∈N being a partition of unity relative to the covering {Bj}j∈N, we have |∇χj | ≤
1

Rj
and

|∆χj | ≤
1

R2
j

. We also have, because ‖uj‖W 2,r(Bj)
≤ c‖ω‖Lr(Bj)

,

‖∇uj‖Lt(Bj)
≤ cR−1

j ‖ω‖Lr(Bj)

by lemma 4.4 (ii), and
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‖uj‖Ls(Bj)
≤ cR−2

j ‖ω‖Lr(Bj )
, (6.20)

with t = S1(r), s = S2(r) still by lemma 4.4 (i). Let q ∈ [r, t].

By Young’s inequality we get, because
1

t
=

1

s
+

1

n
,

‖uj‖Lt(Bj)
=
∥

∥1Bj
uj
∥

∥

Lt(Bj)
≤ ‖uj‖Ls(Bj )

∥

∥1Bj

∥

∥

Ln(Bj )
= ‖uj‖Ls(Bj )

|Bj |
1/n .

Because |B(x,R)| := Vol(B(x,R)) ≤ (1 + ǫ)n/2νnR
n by equation (5.13), we get, with cv =

c n

√

νn(1 + ǫ)n/2, |Bj |
1/n ≤ Rj.

Hence
‖uj‖Lt(Bj)

≤ Rj ‖uj‖Ls(Bj)
≤ cvR

−1
j ‖ω‖Lr(Bj )

,

the last inequality given by (6.20).
Hence a fortiori ‖uj‖Lq(Bj)

≤ cvR
−1
j ‖ω‖Lr(Bj )

.

By lemma 6.2 we have |B(χj , uj)| ≤ |∆χj | |uj| + 2 |∇χj | |∇uj| , so we get, because ∇uj ∈ Lq(Bj)
by (6.17),

‖B(χj , uj)‖Lq(Bj)
≤ ‖∇χj‖∞‖∇uj‖Lq(Bj)

+ ‖∆χj‖∞‖uj‖Lq(Bj)
≤ cvR

−2
j ‖ω‖Lr(Bj )

.

Multiplying by wj we get
wj‖B(χj, uj)‖Lq(Bj)

≤ R−2
j wjcv‖ω‖Lr(Bj)

.

Set ω1 :=
∑

j∈N

B(χj , uj), then

‖ω1‖
q
Lq(M,wq) ≤

∑

j∈N ‖B(χj , u,)‖
q
Lq(Bj ,wq)

Notice that χjB(χj , uj) = B(χj , uj), so again we apply lemma 6.4 with s = q, I → ‖ω1‖
q
Lq(M,wq), uj →

B(χj , uj) and γ = 2 , w̃(x) := R(x)−2w(x), to get
‖ω1‖Lq(M,wq) ≤ cwT

q/r‖ω‖Lr(M,w̃r).

Set t1 = t = S1(r), we have, with w1(x) = w(x), w0(x) = w̃(x) := w(x)R(x)−2, ∀q ∈ [r, t1]
‖ω1‖Lq(M,wq

1
) ≤ cwT

q/r‖ω‖Lr(M,wr
0
).

If ω is of compact support and if M is complete, by lemma 3.3 we have seen that v0 is also of
compact support hence so is ∆v0 = ω + ω1. Which means that ω1 is also of compact support.

Now we play the same game starting with ω1 in place of ω and we get, with
s2 = S2(t1), t2 = S1(t1) = S2(r), w2(x) = w(x), w1(x) = w(x)R(x)−2, w0(x) = w(x)R(x)−4,

that
∀q ∈ [r, t1], ∀s ∈ [r, s1], ∃v1 ∈ Ls(M,ws

2) ∩W
2,q(M,w1) :: ∆v1 = ω1 + ω2

and
∀t ∈ [r, t2], ω2 ∈ Lt(M,wt

2), ‖ω2‖Lt(M,wt
2
) . ‖ω1‖Lt1 (M,w

t1
1
)
. ‖ω‖Lr(M,wr

0
).

We keep the linearity of v1 w.r.t. to ω1 hence to ω. So ω2 is still linear w.r.t. ω.
So by induction we have, with

tk = Sk(r), wk(x) := w(x), wk−1(x) = w(x)R(x)−2, ..., w0(x) = w(x)R(x)−2k,
and, with sj+1 = S2(tj),

∀s ∈ [r, sj+1], ∀q ∈ [r, sj ] ∀j = 0, ..., k − 1, vj ∈ Lq(M,wq
j+1) ∩W

2,q(M,wj),
and
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∀q ∈ [r, tk], ωk ∈ Lq(M,wq
k), ‖ωk‖Lq(M,wq

k)
. · · · . ‖ω1‖Lt1(M,w

t1
1
)
. ‖ω‖Lr(M,wr

0
). (6.21)

Setting now v :=
k−1
∑

j=0

(−1)jvj and ω̃ := (−1)kωk, we have that ∆v = ω + ω̃ and

∀q ∈ [r, s1], vj ∈ Lq(M,wq
j+1) ∩W

2,r(M,w), s1 = S2(t1), wj+1 = w(x)R(x)2(j+1−k),
this implies, because wk = w ≤ wj+1,

∀q ∈ [r, s1], vj ∈ Lq(M,wq), ‖vj‖Lq(M,wq) ≤ clT
1/r‖ω‖Lr(M,wr

0
).

So we have also for v :=

k−1
∑

j=0

(−1)jvj :

∀q ∈ [r, s1], v ∈ Lq(M,wq), ‖v‖Lq(M,wq) ≤ kclT
1/r‖ω‖Lr(M,wr

0
). (6.22)

We cannot go beyond s1 := S2(r) for v because of v0. For the same reason, we cannot go beyond
W 2,r(M,w).
For the remaining term ω̃, we get a better regularity, still because we set wk = w, ω̃ = (−1)kωk,

∀q ∈ [r, tk], ω̃ ∈ Lq(M,wq), ‖ω̃‖Lq(M,wq) . ‖ω‖Lr(M,wr
0
). (6.23)

Clearly the linearity is kept along the induction.
Now we choose k such that the threshold tk := Sk(r) ≥ s.

If ω is of compact support and if M is complete, by lemma 3.3 we have seen that v0 and ω1 also
and by induction all the vj and ωj are also of compact support. �

We shall refer to this theorem as RSM for short. We notice that we have no completeness
assumption on M to get the first part of the result.

Lemma 6.6. Set, for k ∈ N, wq
k = R(x)−qk, we have Lq

p(M,wq
k) ⊂ Lq

p(M) and
∀q > 1, ∀f ∈ Lq

p(M,wq
k), ‖f‖Lq

p(M) ≤ ‖f‖Lq
p(M,wq

k)
.

Proof.
We have, because ∀x ∈M, R(x) ≤ 1 ⇒ wq

k(x) ≥ 1,
‖f‖q

Lq
p(M)

=
∫

M
|f |q dvg ≤

∫

M
|f |q wq

kdvg = ‖f‖q
Lq
p(M,wq

k)
. �

Remark 6.7. We have, by inequalities (6.21), that ∀q ∈ [r, tk], ω̃ ∈ Lq(M,wq). With the choice of
w ≡ 1 for the weight relative to the covering, with the notations of the RSM, we get ∀q ∈ [r, tk], ω̃ ∈
Lq(M).

We also have that w ≡ 1 ⇒ ∀q ∈ [r, s1], v ∈ Lq(M), with s1 := S2(r).

Corollary 6.8. Let (M, g) be a complete riemannian manifold. For r ≤ 2, take ω ∈ Lr(M,wr
0)

with k ∈ N, w0(x) := R(x)−2k and s1 := S2(r).
Chosing k big enough for the threshold tk := Sk(r) ≥ 2 then the orthogonal projection H : L2

p(M) →

H2
p(M) extends boundedly from Lr

p(M,wr
0) to H2

p(M). This implies Hω = 0 ⇐⇒ Hω̃ = 0.
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Proof.
For ω ∈ Lr

p(M,wr
0) and ∀s ∈ [r, s1], ∀q ∈ [r, tk], the RSM, theorem 6.5, gives us two forms v ∈

Ls
p(M,ws), ω̃ ∈ Lq

p(M,wq), such that

v = Tω, ω̃ = Aω, ∆v = ω + ω̃. (6.24)

where T and A are bounded linear operators :
T : Lr

p(M,wr
0) → Ls

p(M,ws) ; A : Lr
p(M,wr

0) → Lq
p(M,wq).

Now choose w ≡ 1 ⇒ w0 = R(x)−2k. Then we have ω̃ ∈ Lq
p(M), and if k is such that the threshold

tk = Sk(r) ≥ 2, we have ω̃ ∈ L2
p(M).

Hence the projection H is well defined on ω̃. Suppose that H∆v = 0 then we were done because,
by (6.24), we would have 0 = H∆v = Hω +Hω̃ ⇒ Hω = −Hω̃.

We start by approximating ω by a sequence ωl ∈ Dp(M), ωl → ω in Lr
p(M,wr

0). Then apply the
RSM to ωl ; we get vl = Tωl, ω̃l = Aωl, ∆vl = ωl + ω̃l. We have that vl, ω̃l have compact support
and by linearity with (6.22)

∀s ∈ [r, s1], (v − vl) ∈ Ls(M), ‖v − vl‖Ls(M) ≤ kclT
1/r‖ω − ωl‖Lr(M,wr

0
)

so ‖v − vl‖Ls(M) → 0 and the same way with (6.23) we get
∀q ∈ [r, tk], (ω̃ − ω̃l) ∈ Lq(M), ‖ω̃ − ω̃l‖Lq(M) . ‖ω − ωl‖Lr(M,wr

0
)

hence ‖ω̃ − ω̃l‖Lq(M) → 0.
Then H is well defined on vl, ∆vl, ωl and ω̃l, because they are C∞ and compactly supported hence
in L2

p(M), and we have
∆vl = ωl + ω̃l ⇒ H∆vl = Hωl +Hω̃l.

Take tk ≥ 2, h ∈ L2
p(M) then 〈H∆vl, h〉L2(M) = 〈∆vl, Hh〉L2(M) because H is self adjoint. But

because M is complete, ∆ is essentially self adjoint on L2
p(M) by [8] and vl has compact support,

we have
〈∆vl, Hh〉L2(M) = 〈vl,∆Hh〉L2(M) = 0,

because Hh ∈ H2
p(M).

So we have ∀l ∈ N, H∆vl = 0 and this implies
∀l ∈ N, Hωl +Hω̃l = 0.

Now we have ω̃ ∈ L2
p(M) and the convergence ‖ω̃ − ω̃l‖L2

p(M) → 0 by lemma 6.6. So, because H is

bounded on L2
p(M), we get Hω̃l → Hω̃ in L2

p(M), and this means Hωl → −Hω̃ also in L2
p(M). So

we define, for any sequence ωl ∈ Dp(M), ωl → ω in Lr
p(M,w0), by :

Hω := lim l→∞Hωl = − lim l→∞Hω̃l = −Hω̃,
so we proved that Hωl converges in L2

p(M) to −Hω̃, with ω̃ given by the Raising Steps Method.
This limit is independent of the sequence of approximations ωl, and it is clearly a extension of the
projection H to Lr(M,wr

0).
This implies that Hω = 0 ⇐⇒ Hω̃ = 0. �

Corollary 6.9. Let (M, g) be a complete riemannian manifold. We get : ∀s ≥ 2, H2
p(M) →֒

Hs
p(M) with

∀h ∈ H2
p(M), h ∈ Hs

p(M) and ‖h‖Ls
p(M) ≤ Cs‖h‖L2

p(M).

Proof.
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Let ω ∈ Dp(M) and ϕ ∈ L2
p(M), then we have 〈Hω, ϕ〉 = 〈ω, H∗ϕ〉 by duality ; on the other

hand, because ω ∈ L2
p(M), we get

〈Hω, ϕ〉 = 〈ω, Hϕ〉 ;
so, against Dp(M), we have H = H∗.
Now take r ≤ 2, and ω ∈ Lr(M,wr

0) with k ∈ N, w0(x) := R(x)−k and s1 := S2(r). Chosing k big
enough for the threshold tk := Sk(r) ≥ 2, then the orthogonal projection H : L2

p(M) → L2
p(M)

extends boundedly from Lr
p(M,wr

0) to L2
p(M) by corollary 6.8 hence by duality H∗ : L2

p(M) →

Lr′

p (M,wr
0).

By density of Dp(M) in Lr(M,wr
0) we get that H = H∗ : L2

p(M) → Lr′

p (M,wr
0).

We also have by lemma 6.6 Lr′

p (M,wr
0) ⊂ Lr′

p (M) with norm less than one, hence H : L2
p(M) →

Lr′

p (M) boundedly and

h ∈ H2
p(M) ⇒ h = Hh ∈ Lr′

p (M) ⇒ h ∈ Hr′

p (M).
Now we choose r = s′ the conjugate exponent of s to end the proof of the corollary. �

We already know that harmonic forms are smooth, see for instance [[5] corollary 5.4], so corol-
lary 6.9 gives another kind of smoothness.

7 Weighted Calderon Zygmund inequalities.

In the same spirit of theorem 1.2 by Guneysu and Pigola [11], we get the following "twisted"
Calderon Zygmund inequality with weights and being valid directly for forms not a priori in Dp(M).

These CZI are twisted because there are 2 different weights in the inequality.

Theorem 7.1. Let (M, g) be a complete riemannian manifold. Let w be a weight relative to the
Cǫ associated covering {B(xj , 5r(xj))}j∈N and set w0 := R(x)−2. Let u ∈ Lr

p(M,wwr
0) such that

∆u ∈ Lr
p(M,w) ; then there are constants C1, C2 depending only on n = dimRM, r and ǫ such that:
‖u‖W 2,r(M,w) ≤ C1‖u‖Lr(M,wwr

0
) + C2‖∆u‖Lr(M,w).

Moreover we have for t = S2(r) that u ∈ Lt
p(M,wt) with ‖u‖Lt(M,wt) ≤ c‖u‖W 2,r(M,wrwt

0
).

Proof.
Let u ∈ Lr(M,wwr

0), ∆u ∈ Lr(M,w). Set Rj := 5r(xj), Bj := B(xj , Rj), B
′
j = B(xj , 2Rj) and

apply lemma 5.4 to get :
there are constants c1, c2 depending only on n = dimRM, r, ǫ such that

‖u‖W 2,r(Bj)
≤ c1R

−2
j ‖u‖Lr(B′

j)
+ c2‖∆u‖Lr(B′

j)
. (7.25)

Recall that
‖u‖W 2,r(M,w) :=

∥

∥∇2u
∥

∥

Lr(M,w)
+ ‖∇u‖Lr(M,w) + ‖u‖Lr(M,w),

so we have to compute those three terms.
‖∇2u‖

r
Lr(M,w) =

∫

M
|∇2u|

r
wdvg ≤

∑

j∈N ‖∇
2u‖

r
Lr(Bjw).

By (7.25) we get
∥

∥∇2u
∥

∥

Lr(Bj ,w)
≤ (c1R

−2
j cswwj‖u‖Lr(B′

j)
+ c2cswwj‖∆u‖Lr(B′

j )
)r ≤

≤ 2r/r
′

crsw(c1R
−2r
j wj‖u‖

r
Lr(B′

j)
+ c2wj‖∆u‖

r
Lr(B′

j)
).

Hence
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∥

∥∇2u
∥

∥

r

Lr(M,w)
≤ 2r/r

′

crswc
−r
iw c1

∑

j∈N

R−2r
j ‖u‖rLr(B′

j ,w) + c2wj‖∆u‖
r
Lr(B′

j ,w)). (7.26)

Exactly as in the proof of the RSM we get

R−2r
j

∫

B′

j

|u(x)|r w(x)dvg(x) ≤ 962r
∫

B′

j

|u(x)|r R(x)−2rw(x)dvg(x)

hence, because the overlap of the Vitali covering is bounded by T, even for the double balls B′
j, we

get
∑

j∈NR
−2r
j

∫

B′j
|u(x)|r w(x)dvg(x) ≤ 962rT

∫

M
|u(x)|r R(x)−2rw(x)dvg(x).

Easier we get
∑

j∈N

∫

B′

j

|∆u(x)|r w(x)dvg(x) ≤ T

∫

M

|∆u(x)|r w(x)dvg(x).

So, putting in (7.26), we get
∥

∥∇2u
∥

∥

Lr(M,w)
≤ 21/r

′

962T 1/rc1‖u‖Lr(M,wwr
0
) + 21/r

′

T 1/rc2‖∆u‖Lr(M,w).

Exactly the same way we get
‖∇u‖Lr(M,w) ≤ 21/r

′

962T 1/rc1‖u‖Lr(M,wwr
0
) + 21/r

′

T 1/rc2‖∆u‖Lr(M,w).
Hence

‖u‖W 2,r(M,w) ≤ C1‖u‖Lr(M,wwr
0
) + C2‖∆u‖Lr(M,w)

with
C1 := 1 + 21/r

′

962T 1/rc1 ; C2 := 21/r
′

T 1/rc2.

To get the "moreover" we proceed the same way. By lemma 4.5 (i), we get for the ǫ admissible
ball Bj,

t = S2(r), ∀u ∈ W 2,r(Bj), ‖u‖Lt(Bj)
≤ CR−2

j ‖u‖W 2,r(Bj)
.

So, because w is relative to the covering,
‖u‖tLt(M,w) ≤ csw

∑

j∈N wj

∫

Bj
|u|t dvg = csw

∑

j∈Nwj‖u‖
t
Lt(Bj)

.

But, as above,
∫

Bj

|u|t dvg ≤ CtR−2t
j ‖u‖tW 2,r(Bj)

≤ CtR−2t
j (

∥

∥∇2u
∥

∥

t

Lr(Bj)
+ ‖∇u‖tLr(Bj)

+ ‖u‖tLr(Bj)
).

Hence
‖u‖tLt(M,wt) ≤ Ctcsw

∑

j∈N

wt
jR

−2t
j (

∥

∥∇2u
∥

∥

t

Lr(Bj)
+ ‖∇u‖tLr(Bj )

+ ‖u‖tLr(Bj)
).

But
∑

j∈N

atj ≤ (
∑

j∈N

arj)
t/r because t ≥ r,

hence we get

A1 :=
∑

j∈N

wt
jR

−2t
j

∥

∥∇2u
∥

∥

t

Lr(Bj )
≤ (
∑

j∈N

wr
jR

−2r
j

∥

∥∇2u
∥

∥

r

Lr(Bj )
)t/r.

hence, putting the radius and the weight into the integral, which gives the wt
0,

wr
jR

−2r
j

∥

∥∇2u
∥

∥

r

Lr(Bj )
≤ c−r

iw

∫

Bj

∣

∣∇2u
∣

∣

r
wrwr

0dvg,

So

A1 ≤ c−t
iw(
∑

j∈N

∫

Bj

∣

∣∇2u
∣

∣

r
wrwr

0dvg)
t/r.

28



The overlap of the Vitali covering is bounded by T, so

A1 ≤ c−t
iw(T

∫

M

∣

∣∇2u
∣

∣

r
wrwr

0dvg)
t/r = c−t

iwT
t/r
∥

∥∇2u
∥

∥

t

Lr(M,wrwr
0
)
.

Exactly the same way, we get

A2 :=
∑

j∈N

wt
jR

−2t
j ‖∇u‖tLr(Bj)

≤ c−t
iwT

t/r‖∇u‖tLr(M,wrwr
0
),

and
A3 :=

∑

j∈N

wt
jR

−2t
j ‖u‖tLr(Bj)

≤ c−t
iwT

t/r‖u‖tLr(M,wrwr
0
),

Adding we get
‖u‖tLt(M,wt) ≤ Ctcswc

−t
iw(A1 + A2 + A3) ≤

≤ Ctcswc
−t
iwT

t/r(
∥

∥∇2u
∥

∥

t

Lr(M,wrwr
0
)
+ ‖∇u‖tLr(M,wrwr

0
) + ‖u‖tLr(M,wrwr

0
)) ≤

≤ Ctcswc
−t
iwT

t/r(
∥

∥∇2u
∥

∥

Lr(M,wrwr
0
)
+ ‖∇u‖Lr(M,wrwr

0
) + ‖u‖Lr(M,wrwr

0
))

t ≤

≤ Ctcswc
−t
iwT

t/r(‖u‖W r(M,wrwr
0
))

t.
Taking the t root we get

‖u‖Lt(M,wt) ≤ Ccswc
−1
iw T

1/r‖u‖W r(M,wrwr
0
).

Which ends the proof of the theorem. �

Corollary 7.2. Let (M, g) be a complete riemannian manifold. Set w0 := R(x)−2. Let u ∈
Lr
p(M,wr

0) such that ∆u ∈ Lr
p(M) ; then there are constants C1, C2 depending only on n = dimRM, r

and ǫ such that :
‖u‖W 2,r

p (M) ≤ C1‖u‖Lr
p(M,wr

0
) + C2‖∆u‖Lr

p(M).

Moreover we have for t = S2(r) that u ∈ Lt
p(M) with ‖u‖Lt

p(M) ≤ c‖u‖W 2,r
p (M,wt

0
).

Proof.
We choose the weight w ≡ 1. �

Corollary 7.3. If the complete riemannian manifold (M, g) is such that the ǫ0 admissible radius
is positive, then we get the classical Calderon Zygmund inequalities :

∀r, 1 < r <∞, ‖u‖W 2,r(M) ≤ C1‖u‖Lr(M) + C2‖∆u‖Lr(M).
Moreover we have the classical Sobolev inequality :

for t = S2(r) we get that u ∈ Lt
p(M) with ‖u‖Lt(M) ≤ c‖u‖W 2,r(M).

Proof.
If ∀x ∈M, R(x) ≥ δ > 0, then w0(x)

r ≃ 1 hence the weights disappear. �

Recall that, by theorem 1.3 in Hebey [12], we have that the harmonic radius rH(1 + ǫ, 2, 0) is
bounded below if the Ricci curvature Rc verifies ‖∇Rc‖∞ <∞ and the injectivity radius is bounded
below. This implies that the ǫ admissible radius is also bounded below. Hence we get the conclusion
of corollary 7.3 in that case.

8 Applications.

Lemma 8.1. Let t < 2, if the weight α ∈ Lµ with µ :=
2t

2− t
, i.e. γ(α, t) = ‖α‖µLµ(M) =

∫

M

α
2t
2−tdvg <∞, we have :
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ω ∈ L2
p(M) ⇒ ω ∈ Lt

p(M,α).

Proof.

Young’s inequality gives ‖fg‖Lt ≤ ‖f‖L2‖g‖Lq with
1

t
=

1

2
+

1

q
, so let ω ∈ L2

p(M), then, with t < 2,

we get
(
∫

M

|ω|t αdvg

)1/t

≤

(
∫

M

|ω|2 dvg.

)1/2(∫

M

α
2t
2−tdvg

)
2−t
2t

.

So if the weight α is such that γ(α, t) =

∫

M

α
2t
2−tdvg <∞, we are done. �

For instance take any origin 0 ∈M, M a complete riemannian manifold, and set ρ(x) := dg(0, x).
We can choose a weight α, function of ρ, α(x) := f(ρ(x)), such that γ(α, t) < ∞, provided that
α(x) goes to 0 quickly enough at infinity.

Recall that R(x) is the ǫ0 admissible radius at x ∈M.

Corollary 8.2. Suppose that (M, g) is a complete riemannian manifold ; let r < 2 and choose
a weight α ∈ L∞(M) verifying γ(α, r) < ∞. Set t := min(2, S2(r)). If t < 2, take the weight
α ∈ L∞(M) verifying also γ(α, t) <∞. Suppose we have condition (HL2,p).

Take k big enough so that the threshold Sk(r) ≥ 2, and set w0(x) := R(x)−2k, then for any
ω ∈ Lr

p(M,wr
0) verifying Hω = 0, for the orthogonal projection H defined in corollary 6.8, there is

a u ∈ W 2,r
p (M,α) ∩ Lt

p(M,α), such that ∆u = ω.
Moreover the solution u is given linearly with respect to ω.

Proof.
Take ω ∈ Lr

p(M,wr
0), with the choice of w ≡ 1 and Sk(r) ≥ 2, the RSM theorem 6.5, gives linear

operators
T : Lr

p(M,wr
0) → Lr

p(M) ; A : Lr
p(M,wr

0) → L2
p(M),

such that
v := Tω ∈ Lr(M) ∩ Ls(M) ∩W 2,r(M) verifies ∆v = ω + ω̃,

with s = S2(r) and ω̃ := Aω.
But

v ∈ Lt(M) ⇒ v ∈ Lt(M,α) because α(x) ∈ L∞(M) is bounded :
‖v‖tLt(M,α) =

∫

M
|v(x)|t α(x)dv(x) ≤ ‖α‖∞

∫

M
|v(x)|t dv(x) = ‖α‖∞‖v‖tLt(M).

And the same v ∈ Lr(M) ⇒ v ∈ Lr(M,α).
By corollary 6.8 if Hω = 0 then Hω̃ = 0.
Now we have tk := Sk(r) ≥ 2 and we use the assumption (HL2,p) :

it gives the existence of a bounded linear operator L : L2
p(M) →W 2,2

p (M) such that
∆Lg = g, provided that Hg = 0,

by the spectral theorem (see, for instance, the proof of theorem 5.10, p. 698 in Bueler [5]).
So setting f := Lω̃ ∈ L2

p(M) we have ∆f = ω̃ ∈ L2
p(M).

We set u = v − f then ∆u = ω + ω̃ − ω̃ = ω. Let us see the estimates on u.
Because γ(α, r) < ∞, we have by lemma 8.1, f ∈ Lr(M,α). If t < 2, we have also γ(α, t) < ∞
hence lemma 8.1 gives f ∈ Lt(M,α).

So in this case we have u ∈ Lr(M,α) ∩ Lt(M,α).
If s ≥ 2, then we have t = 2, v ∈ L2(M) by interpolation between Lr(M) and Ls(M), so now we

have u ∈ L2(M) ⊂ Lt(M,α).
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Because v ∈ W 2,r(M), we get that ∇v, ∇2v are also in Lr(M) so, the weight α being chosen
bounded, we get that ∇v, ∇2v are in Lr(M, α) so v ∈ W 2,r(M, α) We also have that ∇f, ∇2f
are in L2

p(M), hence because γ(α, r) < ∞, we get that ∇f, ∇2f are in Lr(M, α). This gives that

f ∈ W 2,r(M, α) hence u = v − f∈ W 2,r(M, α).
Hence in any case we get u ∈ W 2,r

p (M,α) ∩ Lt
p(M,α) and ∆u = ω. �

Now we shall use the linearity of our solution to get, by duality, results for exponents bigger than
2. Take r < 2 and r′ > 2 its conjugate.
Let T : Lr

p(M,wr
0) →W 2,r

p (M) ⊂ Lr
p(M), A : Lr

p(M,wr
0) → L2

p(M) be the linear operators, given
by the RSM, such that

∆Tω = ω + Aω.
The hypothesis (HL2,p) gives the existence of a bounded linear operator L : L2

p(M) → W 2,2
p (M)

such that
∆Lω̃ = ω̃, provided that Hω̃ = 0 ⇐⇒ Hω = 0 by corollary 6.8.

Hence, setting C = LA : Lr
p(M,wr

0) → W 2,2
p (M) we get

∀ω ∈ Lr
p(M,wr

0), ∆(T − C)ω = ω.
We notice that ∀ψ ∈ Dp(M),

∆(T − C)∆ψ = ∆ψ,
just setting ω = ∆ψ. This is possible because

∀ψ ∈ Dp(M), ∀ϕ ∈ L2
p(M), 〈H∆ψ, ϕ〉 = 〈∆ψ,Hϕ〉 = 〈ψ,∆(Hϕ)〉 = 0,

where we used that ∆ is essentially self adjoint, M being complete, and ∆(Hϕ) = 0 because Hϕ is
harmonic. So H∆ψ = 0 and we can set ω = ∆ψ because then Hω = 0. Hence

(T − C)∆ψ = ψ + h, (8.27)

with h ∈ Hp.
Now let ϕ ∈ L2

p(M) ∩ Lr′

p (M) and consider u := (T − C)∗ϕ, the ∗ meaning the adjoint operator.
This is meaningful because

T ∗ : (W 2,r(M))′ ⊃ Lr′(M) → Lr′(M,wr
0)

and
C∗ : (W 2,2(M))′ ⊃ L2(M) → Lr′(M,wr

0)
hence u ∈ Lr′(M,wr

0). We get
∀ψ ∈ D(M) ∩ Lr(M,wr

0), 〈∆u, ψ〉L2(M,wr
0
) = 〈∆(T − C)∗ϕ, ψ〉L2(M,wr

0
) =

=

∫

M

∆((T − C)∗ϕ)ψwr
0dvg =

∫

M

(T − C)∗ϕ∆(ψwr
0)dvg = 〈(T − C)∗ϕ,∆(ψwr

0)〉L2(M),

because ∆ is essentially self adjoint and ψwr
0 has compact support.

Hence by (8.27)
〈∆u, ψ〉L2(M,wr

0
) = 〈ϕ, (T − C)∆(ψwr

0)〉L2(M) = 〈ϕ, ψwr
0 + h〉L2(M) = 〈ϕ, ψwr

0〉L2(M),
provided that ϕ ⊥ H, i.e. Hϕ = 0. Putting back the weight in the integral, we get

〈∆u, ψ〉L2(M,wr
0
) = 〈ϕ, ψ〉L2(M,wr

0
). (8.28)

Now let ψ′ ∈ Dp(M) and set ψ := ψ′w−r
0 = ψ′R(x)2kr with R(x) the ǫ admissible radius at the

point x ∈ M. We have seen that ∀x ∈ M, R(x) > 0 and we can smooth R(x) to make it C∞(M)
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without changing the properties we used. For instance set R̃(x) :=
∑

j∈N χj(x)Rj where {χj}j∈N
is a partition of unity subordinated to our Vitali covering Cǫ = {B(xj, Rj)} ; then the Lipschitz
regularity of R(x) contained in lemma 5.1 gives the existence of a constant C > 0 depending only

on n, ǫ such that ∀x ∈M,
1

C
R(x) ≤ R̃(x) ≤ CR(x).

So we have that ψ ∈ Dp(M) and
〈∆u, ψ〉L2(M,wr

0
) = 〈ϕ, ψ′〉L2(M) ; 〈ϕ, ψ〉L2(M,wr

0
) = 〈ϕ, ψ′〉L2(M),

so (8.28) gives us
〈∆u, ψ′〉L2(M) = 〈ϕ, ψ′〉L2(M).

This being true for any ψ′ ∈ Dp(M) we get ∆u = ϕ in distributions sense, so we proved

Corollary 8.3. Suppose that (M, g) is a complete riemannian manifold with (HL2,p) ; suppose
we have r < 2 with k :: Sk(r) ≥ 2, setting w0(x) := R(x)−2k, for any ϕ ∈ L2

p(M)∩Lr′

p (M), Hϕ = 0
we get

u := (T − C)∗ϕ, u ∈ Lr′

p (M,wr
0) and u verifies ∆u = ϕ.

Adding the hypothesis that the ǫ0 admissible radius is bounded below, we get more.

Corollary 8.4. Suppose that (M, g) is a complete riemannian manifold and suppose the ǫ0 admis-
sible radius verifies ∀x ∈M, R(x) ≥ δ > 0, and suppose also hypothesis (HL2,p). Suppose we have
r < 2 with k :: Sk(r) ≥ 2, setting w0(x) := R(x)−2k, for any ϕ ∈ L2

p(M) ∩ Lr′

p (M), Hϕ = 0 we get

u := (T − C)∗ϕ, u ∈ W 2,r′

p (M) and u verifies ∆u = ϕ.

Proof.
Because wr

0(x) ≥ 1, we get that Lr′

p (M,wr
0) ⊂ Lr′

p (M) hence, applying this to u, we get
that

u ∈ Lr′

p (M,wr
0) ⇒ u ∈ Lr′

p (M).
Because the ǫ0 admissible radius verifies ∀x ∈ M, R(x) ≥ δ > 0, we have the classical Calderon
Zygmund inequalities, corollary 7.3 :

∀r, 1 < r <∞, ‖u‖W 2,r(M) ≤ C1‖u‖Lr(M) + C2‖∆u‖Lr(M).

The solution u given by corollary 8.3, u := (T − C)∗ϕ is in u ∈ Lr′

p (M) by (8). Because we have

∆u = ϕ ∈ Lr′

p (M), we get by CZI that u ∈W 2,r′

p (M), with control of the norms. �

9 Non classical strong Lr Hodge decomposition

We shall need :

Lemma 9.1. Let r ≤ 2 and γ ∈ W 1,r
p+1(M) ; β ∈ W 1,r

p−1(M), h ∈ H2
p(M) then

〈dγ, h〉 = 〈d∗β, h〉 = 0.

Proof.
Because h ∈ H2

p, we have that dh = d∗h = 0 by theorem 5.5, p. 697 in Bueler [5]. By the density

of Dk(M) in W 1,r
k (M) which is always true in a complete riemannian manifold by theorem 2.7, p.

13 in [12], there is a sequence γk ∈ Dp+1(M) such that ‖γ − γk‖W 1,r(M) → 0 and there is a sequence
βk ∈ Dp−1(M) such that ‖β − βk‖W 1,r(M) → 0.

By use of corollary 6.9, we have that h ∈ H2
p ⇒ h ∈ Hr′

p because r′ > 2, hence, because dγ ∈ Lr
p(M),
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〈dγ, h〉 = lim k→∞〈dγk, h〉 = lim k→∞〈γk, d
∗h〉 = 0,

because d∗ is the formal adjoint of d, γk ∈ Dp+1(M) and d∗h = 0.
The same way we get 〈d∗β, h〉 = 0. �

Definition 9.2. Let α be a weight on M, we define the space W̃ 2,r
p (M,α) to be

W̃ 2,r
p (M,α) := {u ∈ Lr

p(M,α) :: ∆u ∈ Lr
p(M,α)}

with the norm
‖u‖W̃ 2,r

p (M,α) := ‖u‖Lr
p(M,α) + ‖∆u‖Lr

p(M,α).

With just the hypothesis (HL2p) we get the Hodge decomposition.

Theorem 9.3. Let (M, g) be a complete riemannian manifold. Let r ≤ 2 and take a weight
α ∈ L∞(M) such that γ(α, r) < ∞ ; with k :: Sk(r) ≥ 2, set w0 = R(x)−2k, and suppose we have
hypothesis (HL2,p). We have the direct decomposition given by linear operators :

Lr
p(M,wr

0) = H2
p ⊕∆(W 2,r

p (M,α)).
With r′ > 2, the conjugate exponent to r, we have the weaker decomposition, still given by linear
operators :

Lr′

p (M) ∩ L2
p(M) = H2

p ∩ Hr′

p +∆(W̃ 2,r′

p (M)).

Proof.
Let ω ∈ Lr

p(M,wr
0) the remark 6.7 following the RSM with w ≡ 1, w0 = R(x)−2k, gives u := Tω ∈

W 2,r
p (M), ω̃ := Aω ∈ L2

p(M) such that ∆u = ω + ω̃. So we get
ω = ∆u− ω̃ = ∆u− (ω̃ −Hω̃)−Hω̃.

This is well defined because ω̃ ∈ L2
p(M) and H is the orthogonal projection from L2

p(M) on H2
p.

Now H(ω̃−Hω̃) = 0 hence by (HL2p) we get f := L(ω̃−Hω̃) solves ∆f = ω̃−Hω̃, f ∈ W 2,2
p (M).

So we get

ω = ∆u− ω̃ = −Hω̃ +∆u−∆f, (9.29)

with Hω̃ ∈ H2
p.

This gives a first decomposition :

ω = −Hω̃ +∆u−∆f, (9.30)

with Hω̃ ∈ H2
p(M), u ∈ W 2,r

p (M) and f ∈ W 2,2
p (M).

With the weight α ∈ L∞(M) such that γ(α, r) < ∞ we have, by lemma 8.1, L2
p(M) ⊂ Lr

p(M,α),

hence the derivatives of f up to second order are in L2
p(M) this implies that f ∈ W 2,r

p (M,α).

Because α is bounded, we also have u ∈ W 2,r
p (M,α).

It remains to set v := u− f ∈ W 2,r
p (M,α) to get the decomposition. Because each step is linear,

we get that this decomposition can be made linear with respect to ω.
To get the uniqueness we consider the first decomposition (9.30) :

ω = h+∆(u− f) with h ∈ H2
p and u ∈ W 2,r

p (M), f ∈ W 2,2
p (M).

If there is another one ω = h′ +∆(u′ − f ′) then 0 = h− h′ +∆(u− u′ − (f − f ′)) ; so we have to
show that

0 = h+∆(u− f) with h ∈ H2
p and u ∈ W 2,r

p (M), f ∈ W 2,2
p (M),
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implies h = 0 and ∆(u− f) = 0.
Now ∆u = d(d∗u) + d∗(du) = dα + d∗β, with α = d∗u ∈ W 1,r

p+1(M) and β = du ∈ W 1,r
p−1(M). By

lemma 9.1 we get 〈dα, h〉+ 〈d∗β, h〉 = 0, so 〈∆u, h〉 = 0. Exactly the same proof with r = 2 gives
〈∆f, h〉 = 0, so, from h+∆u−∆f = 0, we get

0 = 〈h, h〉+ 〈∆u, h〉+ 〈∆f, h〉 = ‖h‖L2(M),
which implies ∆(u− f) = 0 and proves the uniqueness of this decomposition.

Now let ω ∈ Lr′

p (M) ∩ L2
p(M), then we have

ω = Hω + (ω −Hω) with H(ω −Hω) = 0.
We have that Hω ∈ H2

p(M) hence, by corollary 6.9 because ω ∈ L2
p(M), we get that Hω ∈ Hr′

p (M)

so ω̃ := ω − Hω ∈ Lr′

p (M) ∩ L2
p(M) and Hω̃ = 0. Now we have by corollary 8.3 a u ∈ Lr′

p (M,wr
0)

such that ∆u = ω̃. Again this implies that u ∈ Lr′

p (M) hence we have the decomposition

∀ω ∈ Lr′

p (M) ∩ L2
p(M), ω = Hω +∆u = h +∆u, (9.31)

with h ∈ H2
p(M) ∩ Hr′

p (M) and u ∈ W̃ 2,r′

p (M).
Because at each step we keep the linearity w.r.t. ω, we get that the decomposition is also linear
w.r.t. ω. �

There are two extreme cases done in the next corollaries.

Corollary 9.4. Suppose the ǫ0 admissible radius verifies ∀x ∈M, R(x) ≥ δ > 0, and suppose also
hypothesis (HL2,p). Take r ≤ 2 and let the weight α ∈ L∞(M) be such that γ(α, r) <∞. Then we
have the direct decomposition given by linear operators

Lr
p(M) = H2

p ⊕∆(W 2,r
p (M,α)).

Proof.

In that case we have ∀x ∈ M, 0 < δ ≤ R(x) ≤ 1 hence 1 ≤ wr
0 ≤

1

δkr
hence Lr

p(M,wr
0) = Lr

p(M).

So we get this decomposition. �

Corollary 9.5. Suppose the admissible radius verifies ∀x ∈ M, R(x) ≥ δ > 0, and suppose also
hypothesis (HL2,p). Take r′ > 2, then we have the direct decomposition given by linear operators

Lr′

p (M) ∩ L2
p(M) = H2

p ∩ Hr′

p ⊕∆(W 2,r′

p (M)).

Proof.
The classical CZI true in this case by corollary 7.3, gives

∀r, 1 < r <∞, ‖u‖W 2,r(M) ≤ C1‖u‖Lr(M) + C2‖∆u‖Lr(M).

So u ∈ W̃ 2,r′

p (M)) ⇒ u ∈ W 2,r′

p (M)) and we get the decomposition

Lr′

p (M) ∩ L2
p(M) = H2

p ∩ Hr′

p +∆(W 2,r′

p (M)).
Now let us prove the uniqueness.

We have the decomposition (9.31)
∀ω ∈ Lr′

p (M) ∩ L2
p(M), ω = h+∆u,

with h ∈ H2
p(M) ∩ Hr′

p (M) and u ∈ W 2,r′

p (M).
By (HL2,p) we have

∃v ∈ W 2,2
p (M) :: ∆v = ω̃ := ω − h.
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But ∆v = ∆u = ω̃, so if there is another such decomposition
ω = h′ +∆u′ = h′ +∆v′

then
0 = h− h′ +∆(u− u′) = h− h′ +∆(v − v′),

Still with v − v′ ∈ W 2,2
p (M). So changing names we have

0 = h+∆u = h+∆v (9.32)

with h ∈ H2
p(M) and v ∈ W 2,2

p (M).

Again ∆v = dα+ d∗β with α = d∗v ∈ W 1,2
p−1(M) and β = d∗v ∈ W 1,2

p+1(M) and by lemma 9.1 we get
〈dα, h〉+ 〈d∗β, h〉 = 0, so 〈∆v, h〉 = 0.
Hence 〈∆u, h〉 = 〈∆v, h〉 = 0. But by (9.32) we have

0 = 〈h, h〉+ 〈∆u, h〉 so ‖h‖L2(M) = 0 ⇒ h = 0
which ends the proof of uniqueness. �

The admissible radius verifies ∀x ∈ M, R(x) ≥ δ > 0, if, for instance, the Ricci curvature of M
is bounded and the injectivity radius is strictly positive [13].

We also have

Corollary 9.6. Let r ≤ 2, and, with k :: Sk(r) ≥ 2, set w0 = R(x)−k and suppose the riemannian
volume is finite and hypothesis (HL2,p). We have the direct decomposition given by linear operators
:

Lr
p(M,wr

0) = H2
p ⊕∆(W 2,r

p (M)).

Here the weight α is no longer necessary because the volume being finite, if a form is in L2(M)
then it is already in Lr(M). �

Corollary 9.7. Let r ≤ 2 and choose a weight α ∈ L∞(M) such that γ(α, r) <∞ ; with k :: Sk(r) ≥
2, set w0 = R(x)−k, and suppose we have hypothesis (HL2,p). We have the direct decompositions
given by linear operators

Lr
p(M,wr

0) = H2
p ⊕ d(W 1,r

p (M,α))⊕ d∗(W 1,r
p (M,α)).

With r′ > 2 the conjugate exponent of r, and adding the hypothesis that the ǫ0 admissible radius is
bounded below, we get

Lr′

p (M) ∩ L2
p(M) = H2

p ∩ Hr′

p ⊕ d(W 1,r′

p (M))⊕ d∗(W 1,r′

p (M)).

Proof.
For the first part, we have, by (9.30) : ∀ω ∈ Lr

p(M,wr
0),

ω = −Hω̃ +∆u−∆f,
with Hω̃ ∈ H2

p(M), u ∈ W 2,r
p (M) and f ∈ W 2,2

p (M). Again

∆u = dγ + d∗β, with γ ∈ W 1,r
p−1(M) and β ∈ W 1,r

p+1(M),
and

∆f = dγ′ + d∗β ′, with γ′ ∈ W 1,2
p−1(M) and β ′ ∈ W 1,2

p+1(M),
Hence

ω = h+ d(γ − γ′) + d∗(β − β ′).
With the weight α we get γ ∈ W 1,r

p−1(M) ⇒ γ ∈ W 1,r
p−1(M,α) and the same for β. And also

γ′ ∈ W 1,2
p−1(M) ⇒ γ′ ∈ W 1,r

p−1(M,α) and the same for β ′. So, setting µ := γ−γ′, δ = β−β ′, we have
the decomposition
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ω ∈ Lr
p(M,wr

0) ⇒ ω = h+ dµ+ d∗δ,

with h ∈ H2
p(M) ∩ Hr

p(M,α), µ ∈ W 1,r
p−1(M,α), δ ∈ W 1,r

p+1(M,α).

For the uniqueness, suppose that
0 = h+ d(γ − γ′) + d∗(β − β ′),

by use of lemma 9.1, we get 〈dγ, h〉+ 〈d∗β, h〉 = 0 and also 〈dγ′, h〉+ 〈d∗β ′, h〉 = 0, so h = 0. So we
have

0 = d(γ − γ′) + d∗(β − β ′).
This implies that

dγ + d∗β = dγ′ + d∗β ′, (9.33)

hence
dγ + d∗β ∈ Lr

p(M) ∩ L2
p(M) ; dγ′ + d∗β ′ ∈ Lr

p(M) ∩ L2
p(M),

because
dγ + d∗β ∈ Lr

p(M) and dγ′ + d∗β ′ ∈ L2
p(M).

Now take ϕ ∈ Dp(M), because (HL2,p) is true we have the L2 decomposition :
ϕ = Hϕ+ dγµ+ d∗δ with µ, δ ∈ W 1,2(M).

We have
〈d(γ − γ′), ϕ〉 = 〈d(γ − γ′), Hϕ+ dµ+ d∗δ〉 ;

by use of lemma 9.1, we get 〈d(γ − γ′), Hϕ〉 = 0. By density we have µ = lim k→∞µk, γk ∈ Dp−1

and δ = lim k→∞δk, δk ∈ Dp+1, the convergence being in W 1,2(M), so dµ = lim k→∞dµk and
d∗δ = lim k→∞d

∗δk in L2
p(M). So we get

〈d(γ − γ′), dµ+ d∗δ〉 = lim k→∞〈d(γ − γ′), dµk + d∗δk〉.
But

∀k ∈ N, 〈d(γ − γ′), d∗δk〉 =
〈

(γ − γ′), d∗2δk
〉

= 0
because d∗ is the formal adjoint of d and d∗δk has compact support and d∗2 = 0. So

〈d(γ − γ′), ϕ〉 = lim k→∞〈d(γ − γ′), dµk〉.
With (9.33) we get

∀k ∈ N, 〈d(γ − γ′), dµk〉 − 〈d∗(β − β ′), dµk〉 = 0,
and

∀k ∈ N, 〈d∗(β − β ′), dµk〉 = 0,
because d∗ is the formal adjoint of d, dγk has compact support and d2 = 0. So

∀k ∈ N, 〈d(γ − γ′), dµk〉 = 0,
which gives

〈d(γ − γ′), ϕ〉 = lim k→∞〈d(γ − γ′), dµk〉 = 0,
and this being true for any ϕ ∈ Dp(M), we get d(γ− γ′) = 0 ; this gives with (9.33) d∗(β− β ′) = 0.

For the second case we already have , by theorem 9.3 plus CZI given by corollary 7.3, ω = Hω+∆u
with u ∈ W 2,r(M). Now ∆u = d(d∗u) + d∗(du) = dγ + d∗β, with γ = d∗u ∈ W 1,r′

p+1(M) and

β = du ∈ W 1,r′

p−1(M). This gives the decomposition.
For the uniqueness the proof is exactly the same as above, so we are done. �
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9.1 Non classical weak Lr Hodge decomposition.

Now we shall need another hypothesis :
(HWr) if the space Dp(M) is dense in W 2,r

p (M).
We already know that (HWr) is true if :
• either : the injectivity radius is strictly positive and the Ricci curvature is bounded [[12] theorem

2.8, p. 12].
• or : M is geodesically complete with a bounded curvature tensor [[11] theorem 1.1 p.3].
We have a non classical weak Lr Hodge decomposition theorem :

Theorem 9.8. Suppose that (M, g) is a complete riemannian manifold, fix r ≤ 2 and choose a
bounded weight α with γ(α, r) <∞.
Take k with Sk(r) ≥ 2, and set the weight w0 := R(x)−2k. Suppose we have (HL2,p) and (HW2) ;
then

Lr
p(M,α) = Hr

p(M,α)⊕∆(Dp(M)),
the closure being taken in Lr(M,α).

Proof.
Take ω ∈ Lr

p(M,α). By density there is a ωǫ ∈ Dp(M) such that ‖ω − ωǫ‖Lr(M,α) < ǫ.
Then, because ωǫ ∈ Dp(M), we have ωǫ ∈ Lr

p(M,wr
0) hence by RSM :

∀s ≥ r, ∃vǫ ∈ Lr
p(M) ∩ Ls1

p (M) :: ∆vǫ = ωǫ + ω̃ǫ,
with s1 := S2(r), ω̃ǫ ∈ Ls

p(M). Moreover, because ωǫ is of compact support, so are vǫ and ω̃ǫ.

Taking s = 2, by (HL2,p) there is a fǫ ∈ W 2,2
p (M) :: ∆fǫ = ω̃ǫ −Hω̃ǫ.

By (HW2) there is a gǫ ∈ Dp(M) :: ‖fǫ − gǫ‖W 2,2(M) < ǫ and this implies
‖∆fǫ −∆gǫ‖L2(M) < ǫ.

Now we set uǫ := vǫ − gǫ, then uǫ is of compact support and we have
∆uǫ = ∆vǫ −∆gǫ = ∆vǫ −∆fǫ + (∆fǫ −∆gǫ) = ωǫ + ω̃ǫ − ω̃ǫ +Hω̃ǫ + Eǫ = ωǫ +Hω̃ǫ + Eǫ,

where we set Eǫ := ∆fǫ −∆gǫ.
So we get

ω = −Hω̃ǫ +∆uǫ + (ω − ωǫ) + Eǫ.
Because γ(α, r) < ∞, we get ‖Eǫ‖Lr(M,α) ≤ C‖∆fǫ −∆gǫ‖L2(M) < Cǫ. For the same reason we

have Hω̃ǫ ∈ H2
p(M) ⊂ Hr

p(M,α), so we get ω ∈ Hr
p(M,α) + ∆(Dp(M)), the closure being taken in

Lr(M,α).
For the uniqueness we proceed as before. We have to show that if 0 = lim

k→∞
(hk + ∆uk) with

hk ∈ H2
p(M) ⊂ Hr

p(M,α) and uk ∈ Dp(M), the convergence in Lr(M,α), then lim
k→∞

hk = 0 and

lim
k→∞

∆uk = 0.

We have ∆uk = dγk+ d
∗βk, with γk = d∗uk ∈ Dp+1(M), and βk = duk ∈ Dp−1(M). So we can apply

lemma 9.1 to get
∀k, 〈hk, dγk〉 = 〈hk, d

∗βk〉 = 0,
hence

lim
k→∞

〈hk, hk〉 = 0 ⇒ lim
k→∞

hk = 0 and hence lim
k→∞

∆uk = 0. �

We also have a weak Lr Hodge decomposition without hypothesis (HWr) :

Theorem 9.9. Suppose that (M, g) is a complete riemannian manifold and suppose we have
(HL2,p). Fix r < 2 and take a weight α verifying γ(α, r) <∞. Then we have
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Lr
p(M,α) = Hr

p(M,α)⊕ d(Dp−1(M))⊕ d∗(Dp+1(M)),
the closures being taken in Lr(M,α).

Proof.
We start exactly the same way as for theorem 9.8 to have

vǫ ∈ Lr
p(M) ∩ Ls1

p (M) :: ∆vǫ = ωǫ + ω̃ǫ,
and

fǫ ∈ W 2,2
p (M) :: ∆fǫ = ω̃ǫ −Hω̃ǫ.

Now we set directly uǫ := vǫ − fǫ ⇒ ∆uǫ = ωǫ +Hω̃ǫ. The point here is that uǫ is not of compact
support because fǫ is not.
Nevertheless we have :

ω = −Hω̃ǫ + (Hω̃ǫ + ωǫ) + (ω − ωǫ) = −Hω̃ǫ +∆uǫ + (ω − ωǫ). (9.34)

But we can approximate d∗uǫ by γǫ ∈ D(M) in W 1,2(M), and duǫ by βǫ ∈ D(M) in W 1,2(M), and
this is always possible by theorem 2.7, p. 13 in [12]. So we have

‖d∗uǫ − γǫ‖W 1,2(M) < ǫ, ‖duǫ − βǫ‖W 1,2(M) < ǫ.
And this implies

‖∆uǫ − dγǫ − d∗βǫ‖L2
p(M) ≤ 2ǫ⇒ ‖∆uǫ − dγǫ − d∗βǫ‖Lr

p(M,α) ≤ 2Cǫ,

because γ(α, r) <∞. As above we have Hω̃ǫ ∈ Hr
p(M,α) so putting all this in (9.34) we get

ω ∈ Hr
p(M,α) + d(Dp−1(M)) + d∗(Dp+1(M)),

the closure being taken in Lr
p(M,α).

The proof of the uniqueness is exactly as in the proof of theorem 9.8, so we are done. �

Remark 9.10. It seems not "geometrically natural" to take the closure of d∗(Dp+1(M)) with respect
to Lr

p(M,α) because here the adjoint of d, d∗, is taken with respect to the volume measure without
any weight. Nevertheless this is "analytically" correct and we get nothing more here. This is why
we call the two previous results "non classical".

For the case r > 2 we need a stronger hypothesis, namely that the ǫ0 admissible radius is bounded
below. Then we get a classical weak Hodge decompositions for r ≥ 2.

Theorem 9.11. Suppose that (M, g) is a complete riemannian manifold and suppose the ǫ0 admis-
sible radius verifies ∀x ∈ M, R(x) ≥ δ > 0, suppose (HWr) and suppose also hypothesis (HL2,p).
Fix r ≥ 2, then we have

Lr
p(M) = Hr

p(M)⊕∆(Dp(M)).
Without (HWr) we still get

Lr
p(M) = Hr

p(M)⊕ d(Dp−1(M))⊕ d∗(Dp+1(M)).
All the closures being taken in Lr(M).

Proof.
Take ω ∈ Lr

p(M), then by density there is a ωǫ ∈ Dp(M) such that ‖ω − ωǫ‖Lr(M) ≤ ǫ. This

implies, because r > 2 and ωǫ is compactly supported, that ωǫ ∈ Lr(M) ∩ L2(M). So we have
Hωǫ ∈ L2(M) ⇒ Hωǫ ∈ Lr(M) by corollary 6.9.

So let ϕǫ := ωǫ −Hωǫ ∈ Lr(M) ∩ L2(M), we have Hϕǫ = 0 hence by corollary 8.4 we have
∃uǫ ∈ Lr(M,wr

0) ∩W
2,r
p (M) :: ∆uǫ = ϕǫ.
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So if we have (HWr) then ∃vǫ ∈ Dp(M) such that ‖uǫ − vǫ‖W 2,r(M) < ǫ and this implies
‖∆uǫ −∆vǫ‖Lr(M) < ǫ.

Now we can write
ω = Hωǫ+(ω−ωǫ)+(ωǫ−Hωǫ) = Hωǫ+(ω−ωǫ)+∆uǫ = Hωǫ+(ω−ωǫ)+∆vǫ+(∆uǫ−∆vǫ).

The term Eǫ := (ω − ωǫ) + (∆uǫ −∆vǫ) is an error term small in Lr(M) so we get
ω = Hωǫ +∆vǫ + Eǫ, with Hωǫ ∈ Lr(M) ∩ L2(M), vǫ ∈ Dp(M), ‖Eǫ‖Lr(M) < 2ǫ.

So we have the decomposition :
Lr
p(M) = Hr

p(M)⊕∆(Dp(M)).
the closures being taken in Lr(M).

Without (HWr) we approximate d∗uǫ by γǫ ∈ D(M) in W 1,r(M), and duǫ by βǫ ∈ D(M) in
W 1,r(M), and this is always possible by theorem 2.7, p. 13 in [12]. So we have

‖d∗uǫ − γǫ‖W 1,r(M) < ǫ, ‖duǫ − βǫ‖W 1,r(M) < ǫ.
And this implies

‖∆uǫ − dγǫ − d∗βǫ‖Lr
p(M) ≤ 2ǫ.

So we have
ω = Hωǫ + (ω − ωǫ) + ∆uǫ = Hωǫ + (ω − ωǫ) + dγǫ + d∗βǫ + (∆uǫ − dγǫ − d∗βǫ).

The term Eǫ := (ω − ωǫ) + (∆uǫ − dγǫ − d∗βǫ). is an error term small in Lr(M) so we get
ω = Hωǫ + dγǫ + d∗βǫ + Eǫ,

with
Hωǫ ∈ Lr(M) ∩ L2(M), γǫ ∈ Dp+1(M), βǫ ∈ Dp−1(M), ‖Eǫ‖Lr(M) < 2ǫ.

So we have the decomposition :
Lr
p(M) = Hr

p(M)⊕ d(Dp−1(M))⊕ d∗(Dp+1(M)),
the closures being taken in Lr(M).

The proof of the uniqueness is a slight modification of the proof of corollary 9.5, so we are done.
�

Remark 9.12. By theorem 1.3 in Hebey [12], we have that the harmonic radius rH(1 + ǫ, 2, 0) is
bounded below if the Ricci curvature Rc verifies ‖∇Rc‖∞ <∞ and the injectivity radius is bounded
below. This implies that the ǫ admissible radius is also bounded below.
Moreover if we add the hypothesis that the Ricci curvature Rc verifies ∃δ ∈ R :: Rc ≥ δ then by
Proposition 2.10 in Hebey [12], we have hypothesis (HWr).
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