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On the L" Hodge theory in complete non compact
riemannian manifolds.

Eric Amar

Abstract

We study solutions for the Hodge laplace equation Au = w on p forms with L" estimates for
7 > 1. Our main hypothesis is that A has a spectral gap in L?. We use this to get non classical
L" Hodge decomposition theorems. An interesting feature is that to prove these decompositions
we never use the boundedness of the Riesz transforms in L°.

These results are based on a generalisation of the Raising Steps Method to complete non
compact riemannian manifolds.
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1 Introduction.

In the sequel, a riemannian manifold (M, g) means a C*> smooth connected riemannian manifold
of dimension > 3.

In this work we study the problem of L" estimates of the Laplace equation Au = w for the Hodge
laplacian on p-forms and the Hodge decomposition theorems on complete non compact riemannian
manifolds.

This problem was studied by a several authors, in particular N. Lohoué in [19] (see also the
references therein). Also the problem of Hodge decompositions has a long history and for the recent
developments one can see the papers by X.D. Li [15], [18], [17] and also related to several complex
variables [16] (see also the references therein).

In all those works the boundedness of the Riesz transforms are explicitely used and in this work,
where the Hodge decompositions are not the classical ones, we shall see that it is not the case.

Let me describe the method we shall use.

Suppose you are interested by solving an equation Du = w, in a manifold M with estimates of
type Lebesgue L™ or Sobolev W®" : you know how to solve it globally with "threshold" estimates

L* — L* and locally with estimates L™ — L' with a strict increase of the regularity, for instance

1 1
L= 9, 0 > 0 for any r < s, then the Raising Steps Method (RSM for short) gives a global

solutign v of Dv = w which is essentially in L'(M) for w € L"(M).

I introduced this method in [I] to get solutions for the d equation with good estimates in relatively
compact domains in Stein manifold. I extend it to linear partial differential operator D of any finite
order m in [2] and I apply it to study the Poisson equation for the Hodge laplacian on forms in
spaces L"(M) where (M, g) is a compact riemannian manifold. This gave L" Hodge decomposition
theorems as was done by C. Scott [22], but by an entirely different approach.

The aim of this work is to extend it to the case of complete non compact riemannian manifold,
and, as we shall see, at no point we shall use the boundedness of the Riesz transforms.

1.1 Solutions of the Poisson equation for the Hodge laplacian.

Let (M, g) be a C*> smooth connected riemannian manifold with metric tensor g and n = dimM >
3 ; let d be the exterior derivative, d* its formal adjoint with respect to the Riemannian volume
measure dv, = v/detgdx, where dz is the Lebesgue measure in the chart z, and A = A, := dd* +d*d
the Hodge laplacian acting on p forms. Let L, (M) be the space of p forms on M in the Lebesgue
space L"(M).

We get the local solution of the Hodge Laplacian Au = w in a ball B(z, R) in (M, g) with a
radius R(z) small enough to make this ball "not too different" to a ball in the euclidean space R™ ;
this "admissible" radius is a special case of the "harmonic radius" of Hebey and Herzlich [13]. If w
is a p form in L"(B(z, R)) then we get a p form solution u in the Sobolev space W?"(B(x,r)) of

1 1 2
the ball, hence in L'(B(z, R)) with = by the Sobolev embeddings. This is done classically
roon

by use of the Newtonian potential. So the first assumption for the RSM is true : we have locally a
strict increase of the regularity.

In order to get global solutions we need to cover the manifold M with our "admissible balls" and
for this we use a classical "Vitali type covering" with a uniformly finite overlap. We shall denote it



by C.

When comparing non compact M to the compact case treated in [2|, we have two important
issues :

(i) the "admissible" radius may go to 0 at infinity, which is the case, for instance, if the canonical
volume measure dv, of (M, g) is finite and M is not compact ;

(ii) if dv, is not finite, which is the case, for instance, if the "admissible" radius is bounded below,
then p forms in L (M) are generally not in L7 (M) for r < t.

We address these problems by use of adapted weights on (M, g). These weights are relative to
the covering C : they are positive functions which vary slowly on the balls of the covering C.

To deal with the problem (i) we shall use a weight

wo(z) = R(x)~* (1.1)

for an adapted integer k, where R(x) is the admissible radius at the point = € M.

To deal with the problem (ii) we shall use a weight «(x) which is in L*(M) with p =
at <2 ie.

E, fOI'

Y(w,t) = / w%dvg < 0. (1.2)
M

This is done to get L2(M) C LL(M, ).
Our Hodge decompositions are not the classical ones because we do not use the laplacian adapted

to those weights, but we always use the standard laplacian.
We define the Sobolev spaces W;’T(M) of (M, g) following E. Hebey [12], and we set

1
Definition 1.1. We shall define the Sobolev exponents Si(r) by A =
k\T

Then our first result is a "twisted" Calderon Zygmund inequalities (CZI) with weight, different from
results in [I1] because we have weights and our forms are not asked to have compact support.

1 k
r o n

Theorem 1.2. Let (M, g) be a complete riemannian manifold. Let w be a weight relative to the

C. associated covering {B(x;,5r(x;))}jen and set wo := R(x)™. Let u € LI (M, wwy) such that

Au € Ly(M,w) ; then there are constants Cy, Cy depending only on n = dimgM, r and € such that:
||u||W2vT(M,w) < Cl||u||Lr(M,wwg) + CQHAUHLT(M,UJ)'

Moreover we have for t = Sy(r) that w € Ly,(M,w") with |[ull pe(ar ) < cllullwar s wrwg)-

We set, for a weight o, H, (M, ) := L (M, a)NkerA,, the space of harmonic p forms in L"(M, a).
This is our main hypothesis :
(HL2,p) A = A, has a spectral gap in L;(M), i.e. there is no spectrum of A, in an open interval
(0,n) with n > 0.
This assumption allows us to use Lz(M ) as a threshold for the Raising Steps Method.
The (HL2,p) assumption is known to be true in the case of the hyperbolic manifold H*" of
dimension 2n for any value of p € {0, 2n}. For p # n the space #_ is reduced to 0. For H*"*! the



(HL2,p) is valid for p # n and p # n + 1 and, out of these two cases, the space 7—[12, is reduced to 0
as was proved by Donnelly [6].

When Ric(M) > —c* and M is open at infinity then 0 ¢ SpA, by a result of Buser, see Lott [20],
proposition 6, p. 353, hence (HL2,0) is true. If M is a normal covering of a compact manifold X
with covering group I', then 0 ¢ SpA, iff " is not amenable by a result of Brooks, see Lott [20],
corollary 3, p. 354, for precise references. Hence (HL2,0) is true if I" is not amenable.

For r = 2, there is the orthogonal projection H from L2(M) on H2(M) ; we shall prove that this
projection extends to L”(M,w}), with wy := R(z)™** and R(z) the admissible radius at x € M, as

in (1), i.e.

Vr <2, H : L'(M,wj) = H:(M) (1.3)

boundedly and we get the following results on solutions of the Poisson equation.

Theorem 1.3. Suppose that (M, g) is a complete riemannian manifold ; let r < 2 and choose
a weight o € L>®(M) wverifying v(a,r) < oo. Set t := min(2,5(r)). If t < 2, take the weight
a € L>®(M) verifying also y(a,t) < co. Suppose we have conditions (HL2,p).

Take k big enough so that the threshold Si(r) > 2, and set wo(z) = R(x)™?", then for any
w € Ly(M,wp) verifying Hw = 0, for the orthogonal projection H defined in corollary[G.8, there is
aue WP (M,o)NLY(M, a), such that Au = w.

Moreover the solution u s given linearly with respect to w.

Here k was chosen such that Si(r) > 2 in order to use L (M) as a threshold for the Raising Steps
Method.

1 1
Setting ' for the conjugate exponent for r, — 4+ — =1, by duality from theorem [[3, we get
oo

Theorem 1.4. Suppose that (M, g) is a complete riemannian manifold ; suppose we have r < 2
and (HL2,p), then with k :: Sp(r) > 2, and wo(z) := R(x)™", for any ¢ € L2(M)NLY (M), Hp =0,
there is a w € L™ (M,w}) such that Au = . This solution is linear with respect to .

If we add the hypothesis that the €y admissible radius is bounded below, we get
u:=(T—-0C)yp, ue WS’T/(M) and u verifies Au = .

By theorem 1.3 in Hebey [12], we have that the harmonic radius 75 (1+€, 2,0) is bounded below
if the Ricci curvature Re verifies ||V Re||, < oo and the injectivity radius is bounded below. This
implies that the ¢ admissible radius is also bounded below.

1.2 Hodge decomposition in L" spaces. Known results.

In 1949, Kodaira [14] proved that the L*-space of p-forms on (M, g) has the orthogonal decom-
position :
L2(M) = %2 & 4D, 1 (M) & &D, (M),
and in 1991 Gromov [10] proved a strong L? Hodge decomposition, under the hypothesis (HL2,p) :
LA(M) =H: & dW, 2 (M) & d*W, 72 (M).
In 1995 Scott [22] proved a strong L" Hodge decomposition but on compact riemannian manifold
Vr>1, L'(M) =H, & dW," (M) & d"W,. (M).




Let d7, be the formal adjoint of d relatively to the measure dy(r) = e~ ?@du,(z), where p € C*(M),
and let A, ), := dd, + d,d acting on p forms. Setting A = TrV? the covariant Laplace Beltrami
operator acting on p forms and L = A — Vg - V| then, in 2009 X-D. Li [15] proved, among other
nice results, a strong L" Hodge decomposition on complete non compact riemannian manifold :

Theorem 1.5. (X-D. Li) Letr > 1, r' = Ll Let (M, g) be a complete riemannian manifold,
r —

@ € C3(M), and du(zx) = e ?@dv,(x). Suppose that the Riesz transforms dA;;,/Q and d*A;yQ are
bounded in L" and L", and the Riesz potential is bounded in L. Suppose also that (M,q) is L

stochastically complete, then the strong L" Hodge direct sum decomposition holds on p forms :
Ly(M, ) = Hy(M, 1) @ dW, " (M, 1) @ d W, 1 (M, o).

)

These results are valid for the family of weights ¢ € C*(M) and for the Hodge laplacian associated
to them, in the Witten sense [25]. Nevertheless it is worthwhile to notice that, even in the classical
case ¢ = 0, this result was new at the time it was proved, 2007, by X-D. Li.

1.3 Non classical Hodge decomposition in L" spaces. Main results.

The results of X-D. Li are based on the boundedness of the Riesz transforms in L and L and
the results we get use mainly the spectral gap hypothesis (HL2,p). X-D. Li was already concerned
by the fact that the bottom of the spectrum of A should be strictly positive ; the difference here is
that we allow an eigenvalue 0 but a gap without spectrum after it, which gives the possible existence
of non trivial harmonic functions in L?. This is the meaning of (HL2,p).

In this way our results may appear to be the natural generalisation of Gromov results from L?
to L". On the other hand our results are proved only in the case ¢ = 0.

Our decompositions are non classical because we use weights to get estimates, but we use the
usual laplacian, not the Witten laplacian adapted to these weights.

We shall need the following definition.

Definition 1.6. Let o be a weight on M, we define the space WE’T(M, a) to be
12,7 o T .. r
W (M, a) :=={u € L(M,a) :: Au € L (M,a)}
with the norm
HUHW,?W(M@) = HUHL;;(M,Q) + ||AU||L;(M,a)-

To get these decomposition theorems we shall apply our results on solutions of the Poisson
equation.

Theorem 1.7. Let (M,g) be a complete riemannian manifold. Let r < 2 and take a weight
a € L®(M) be such that (o, r) < 0o ; with k :: Si(r) > 2, set wy = R(x)™2*, and suppose we have
hypothesis (HL2,p). We have the direct decomposition given by linear operators :

Ly (M, wg) = M2 @ AW (M, a)).
With v' > 2, the conjugate exponent to v, we have the weaker decomposition, still given by linear
operators :

Ly (M) N LA(M) = H2NH, + A(W2T(M)).
Because H : L'(M,wj) — H2(M) boundedly by (L3), where H is the orthogonal projection

from L2(M) on H2(M), this explain the appearance of L2(M) and H.(M) in the second part of
the previous theorem.



To replace Wi’TI(M )) by Wi’TI(M ,«)) the price is the hypothesis that the ¢, admissible radius is
bounded below. So we get

Corollary 1.8. Suppose the admissible radius is bounded below and suppose also hypothesis (HL2,p).

Take v’ > 2, then we have the direct decomposition given by linear operators
LU(MYNL2(M) = H2NH, & AW (M)).

As a corollary we get

Corollary 1.9. Letr < 2 and choose a weight o € L (M) such thaty(a,r) < oo ; with k :: Sg(r) >
2, set wyg = R(x)™**, and suppose we have hypothesis (HL2,p). We have the direct decompositions
giwen by linear operators

LI (M, wp) =H2 ® d(W," (M, ) @ d* (W, " (M, a)).
With r' > 2 the conjugate exponent of r, and adding the hypothesis that the ey admissible radius is
bounded below, we get

L (M)NL2(M) = HENH) &dW, ™ (M) @& d* (W)™ (M)).

We also have weak L" Hodge decompositions, where d* is the adjoint of d with respect to the
usual volume measure, not the weighted one, despite the weight appearing here.

We shall need another hypothesis :
(HWr) if the space D, (M) is dense in W2 (M).
We already know that (HWr) is true if :

e cither : the injectivity radius is strictly positive and the Ricci curvature is bounded [[12] theorem
2.8, p. 12].

e or : M is geodesically complete with a bounded curvature tensor [[I1] theorem 1.1 p.3|.

Theorem 1.10. Suppose that (M, g) is a complete riemannian manifold, fiz r < 2 and choose a
bounded weight a with v(a,r) < oo.

Take k with Sy(r) > 2, and set the weight wy = R(x)™?*. Suppose we have (HL2,p) and (HW2).
Then Ly (M, a) = Hy (M, o) ® A(Dy(M)), the closure being taken in L™ (M, o).

We also have a weak L" Hodge decomposition without hypothesis (HWr):

Theorem 1.11. Suppose that (M,q) is a complete riemannian manifold and suppose we have
(HL2,p). Fizr <2 and take a weight o verifying v(c,r) < oo. Then we have:

L3(M, 0) = H}(M, 0) & (D, (M) & d*(Dys (M),
the closures being taken in L™ (M, «).

For the case r > 2 we need a stronger hypothesis, namely that the ¢y admissible radius is bounded
below. Then we get a classical weak Hodge decompositions.

Theorem 1.12. Suppose that (M, g) is a complete riemannian manifold and suppose the ey admis-
sible radius is bounded below and (HWr) and suppose also hypothesis (HL2,p). Fix r > 2, then we
have

L(M) =H, (M) ® A(D,(M)).
Without (HWr) we still get

LE(M) = Hy(M) & d(D, () & & (D (0T)).
All the closures being taken in L™(M).




Remark 1.13. By theorem 1.3 in Hebey [12], we have that the harmonic radius ry(1+ €, 2,0) is
bounded below if the Ricci curvature Re verifies ||V Re|, < oo and the injectivity radius is bounded
below. This implies that the € admissible radius is also bounded below.

Moreover if we add the hypothesis that the Ricci curvature Re is bounded below then by Proposition
2.10 in Hebey [12], we have hypothesis (HWr).

These results are based on the raising steps method :

Theorem 1.14. (Raising Steps Method) Let (M, g) be a riemannian manifold and take w a weight
relative to the Vitali covering {B(z;,5r(x;))};en-
For any r < 2, any threshold s > r, take k € N such that t; := Sk(r) > s then, with wy(z) :=
w(z)R(z)~,

Vw € Ly (M, wg), Jv € L (M, w")NL (M, w )NW?"(M,w"), Io € L (M, w®) :: Av = w+w
with sy = Sa(r) and we have the control of the norms :

Vg € [r,s1], ([0l garwey < Callwllparag) 5 10wz arwry < Crlloll iy anug) 5

||C:)| L5 (Mw®) < CSHWHL;(M,UJS)‘

Moreover v and @ are linear in w.
If M 1is complete and w is of compact support, so are v and &.

I thank the referee for his pertinent questions and remarks making precise the meaning of these
non classical Hodge decompositions.

This work will be presented in the following way.

In section 2 we define the admissible balls, the admissible radius and the basic facts relative to
them.

In section 3 we use a Vitali type covering lemma with our admissible balls and we prove that its
overlap is finite.

In section 4 we define the Sobolev spaces, following E. Hebey [12].

In section 5 we prove the local estimates for the Hodge Laplacian. This is essentially standard
by use of classical results from Gilbarg and Trudinger [9].

In section 6 we develop the Raising Steps Method in the non compact case. The useful weights
are defined here.
This is the basis of our results.

In section 7 we prove Calderon Zygmund inequalities with weights.

In section 8 we deduce the applications to the Poisson equation associated to the Hodge Laplacian.

In section 9 we use these solutions to get non classical strong L" Hodge decomposition theorems.
We also get non classical weak L" Hodge decomposition theorems.

2 Basic facts.

Definition 2.1. Let (M, g) be a riemannian manifold and x € M. We shall say that the geodesic
ball B(z, R) is € admissible if there is a chart ¢ : (z1,...,x,) defined on it with
1) (1 —€)d;; < gij < (14 €)d;; in B(z, R) as bilinear forms,
2) Z SUpP i j=1,..n, y€Ba(R) ‘569@'(?/)‘ <e
18]=1



Definition 2.2. Let x € M, we set R'(x) =sup {R > 0:: B(z, R) is € admissible}. We shall say
that R.(x) := min (1, R'(z)) is the ¢ admissible radius at x.

Our admissible radius is smaller than the harmonic radius 75 (1 +¢, 1, 0) defined in Hebey [[12],
p. 4].

By theorem 1.3 in Hebey [12], we have that the harmonic radius 75 (1+¢, 2,0) is bounded below
if the Ricci curvature Re verifies ||V Re||, < oo and the injectivity radius is bounded below. This
implies easily that the ¢ admissible radius is also bounded below.

Remark 2.3. By its very definition, we always have R.(z) < 1.

Of course, without any extra hypotheses on the riemannian manifold M, we have Ve > 0, Vo € M,
taking g¢;;(z) = d;; in a chart on B(z, R) and the radius R small enough, the ball B(z, R) is €
admissible.

We shall use the following lemma.

Lemma 2.4. Let (M,g) be a riemannian manifold then with R(z) = R.(xz) = the € admissible
radius at x € M and d(z,y) the riemannian distance on (M, g) we get :

d(r.y) < {(R() + R(y) = R(z) < 4R(y).

Proof.

1
Let z,y € M :: d(x,y) < Z(R(x) + R(y)) and suppose for instance that R(x) > R(y). Then

y € B(z, R(z)/2) hence we have B(y, R(z)/4) C B(x, zR(x)) But by the definition of R(z), the

ball B(z, ZR(SL’)) is admissible and this implies that the ball B(y, R(z)/4) is also admissible for
exactly the same constants and the same chart ; this implies that R(y) > R(z)/4. R

3 Vitali covering.

Lemma 3.1. Let F be a collection of balls {B(x,r(x))} in a metric space, with YB(z,r(z)) €
F, 0 <r(x) < R. There exists a disjoint subcollection G of F with the following property :
every ball B in F intersects a ball C' in G and B C 5C.

This is a well known lemma, see for instance [7], section 1.5.1].

So fix € > 0 and let Yo € M, r(z) := R.(x)/120, where R.(z) is the admissible radius at z,
we built a Vitali covering with the collection F := {B(x,7(2))}sen. So lemma B.1] gives a disjoint
subcollection G such that every ball B in F intersects a ball C' in G and we have B C 5C. We
set G’ .= {z; € M :: B(zj,r(z;)) € G} and C. := {B(x,5r(z)), v € G'} : we shall call C, the €
admissible covering of (M, g).

Then we have :



Proposition 3.2. Let (M,g) be a riemannian manifold, then the overlap of the € admissible
. . (L4 em? .
covering Ce is less than T = m(l%) , l.e.
Ve e M, z € B(y,5r(y)) where B(y,r(y)) € G for at most T' such balls.
So we have

Vf e LY(M), ZjeN fBj |f(z)] dvg(x) < T”fHLl(M)‘

Proof. .
Let B; := B(z;,7(z;)) € G and suppose that = € ﬂ B(z;,57(x;)). Then we have
j=1
VJ = 1, eeey ]{?, d(l‘,l’j) < 57’(ij)
hence )
d(z;,x) < d(zj,x) +d(x, ) <5(r(z;) +r(z)) < Z(R(:L’J) + R(z;)) = R(x;) < 4R(x;)
and by exchanging z; and z;, R(x;) < 4R(z;).

So we get
Vi l=1,.k, r(z;) <Ar(x), r(x) < 4r(z;).
Now the ball B(x;,5r(x;) + 5r(x;)) contains x; hence the ball B(x;, 5r(x;) + 6r(x;)) contains the
ball B(x;,r(z;)). But, because r(x;) < 4r(z;), we get
B(z;,5r(x;) + 6x4r(z;)) = B(xj,r(z;)(5+24)) D B(xy, r(x)).
The balls in G being disjoint, we get, setting B, := B(x;, r(z;)),

k
> “Vol(By) < Vol(B(x;,29r(x))).
j=1
The Lebesgue measure read in the chart ¢ and the canonical measure dv, on B(z, R.(x)) are
equivalent ; precisely because of condition 1) in the admissible ball definition, we get that :
(1—€)" <|detg] < (1+¢)",
and the measure dv, read in the chart ¢ is dv, = /|detg;;|d§, where d¢ is the Lebesgue measure in
R™. In particular :
Vo € M, Vol(B(z, R (z))) < (1+ €)"*v,R",
where v, is the euclidean volume of the unit ball in R".
Now because R(x;) is the admissible radius and 4x29r(z;) < R(x;), we have
Vol(B(x,29r(x;))) < 29™(1 + €)™ 2v,r(x;)".
On the other hand we have also
Vol(By) > v, (1 — €)"2r(2)" > v, (1 — €)"247 " (z;)",
hence

k
D (L= (ay)" < 29" (1 + €)™ (xy)",
j=1
so finally
(14 ¢)/2
k< (29x4)"——F—F
_( X ) (1_6)n/27
(14 ¢)/?
(1—e)n/2
Saying that any x € M belongs to at most 1" balls of the covering { B;} means that . 15, (2) <
T, and this implies easily that :

which means that 7' < (120)™.



vier(m), Y / (@) dug(2) < TUF s

jJEN

Lemma 3.3. Let (M,g) be a non compact connected complete riemannian manifold and C :=
{B;}jen a Vitali covering of M with balls of radius less than 6 > 0. For any compact set K in M
covered by O := Jpcp, Br, with Fi finite, we can find a compact set K' O K such that K" can be

covered by elements of C not intersecting O.

Proof.

If this was not the case then there is a compact K covered by O U By, and such that for any
keFk _

compact K’ D K and any covering of 0K’ by elements By, of C, then B, N O # (). Because the balls
have radius less than d, this means that 9K’ is at most at a distance 2§ of O hence M is bounded,
hence the completeness of M implies that M is compact. Il

Clearly the assumption that the radii are uniformly bounded is necessary as the example of R"
shows.

4 Sobolev spaces.

We have to define the Sobolev spaces in our setting, following E. Hebey [[12], p. 10].
First define the covariant derivatives by (Vu); := 0;u in local coordinates, while the components
of V2u are given by

(V2U)ij = &-ju - FZ&ku, (44)

with the convention that we sum over repeated index. The Christoffel I'¥; " verify [3] :

1 ., 09 Ogij 9gjk
ko~ il J J
lij = 29 (8xj * oxk  Ox! )

(4.5)

If k € Nand r > 1 are given, we denote by C; (M) the space of smooth functions u € C**(M) such
that |V/u| € L"(M) for j =0, ..., k. Hence

Ch(M):={ueC>®(M), Vj=0,..k, / V7| dvy < oo}
M
Now we have [12]

Definition 4.1. The Sobolev space W (M) is the completion of CL(M) with respect to the norm :

1/r
llysear) = (/ Vo[ dvg) |

We shall be interested only by £ < 2 and we extend in a natural way this definition to the case
of p forms.
Let the Sobolev exponents Si(r) as in the definition [ILT], then the k& th Sobolev embedding is true
if we have

Yu € WE (M), u e L% (M).

10



This is the case in R”, or if M is compact, or if M has a Ricci curvature bounded from below and
inf ,ervy(By(1)) > 0 > 0, due to Varopoulos [24], see [12] theorem 3.14, p. 31].

Lemma 4.2. We have the Sobolev comparison estimates where B(x, R) is a € admissible ball in
M and ¢ : B(z,R) — R™ is the admissible chart relative to B(x, R),

Vu € W2’T(B(:L', R))a ||u||W2»7"(B(x,R)) < (1 + EC)HU o 90_1HW2,7~(¢(B(1,7R)))a
and, with B.(0,t) the euclidean ball in R™ centered at 0 and of radius t,

||UHW2vT(Be(O,(1—e)R)) <1+ 2CE)||u||wzw(13(gc,fpz))-

Proof.
We have to compare the norms of u, Vu, Vu with the corresponding ones for v := uo ¢! in R”.
First we have because (1 —€)d;; < g;; < (1 +¢€)d;; in B(z, R) :

B.(0,(1—¢€)R) C ¢(B(z,R)) C B.(0,(1+4¢)R).

Because Z SUDP j=1,....n, yeBa(R) ‘85gij(y)‘ < € in B(z, R), we have the estimates, with Vy €

18]=1
B(ZL’,R), z = (p(y),

Vy € Bz, R), |u(y)| = |v(z)], [Vu(y)] < (14 Ce)|duv(z)].

Because of (43]) and Gﬂl) we get
Vy € B(z, R), |Vu(y)| < [0%v(2)| + €C |0v(2)].

Integrating this we get
192 < [[|0%0] + € 16u]|

< [|o%]l,

L™ (B(x,R)) L7 (Be(0,(14+¢)R (+eR ))+C€”av||LT(Be(07(1+e)R))’

and

||V“||LT(B(90,R)) (L+Ce)l|lov] - (Be(0,(14€)R))*
We also have the reverse estimates

16%] ) < V7l

+ Cel|Vull 1 (5, r))

L™(B(0 L™(B(z,R))

and

||av||Lr(Be(o,(1—E)R)) <1+ CE)HVUHLT(B(:&R))'
So, using that

||UHW2,T-(B(m,R)) - HV%‘}
we get

[l sm < [|0%0]

L7(B(x,R)) + ||VUHLT'(B(9£,R)) + HUHLT(B(gc,R))u

Lrs.00+0r) T CElO L. 0,040m) T 1+ CONOVI .0, 40m) T

+||U||LT(BG(O,(1+6)R)) =
< (1 +2e0)|[vllyzr s, 0,010 R)-
Of course all these estimates can be reversed so we also have

[0llw2r (s, 0,0-0r) < (L4 2C6)||ullyrzr g, ry)-
This ends the proof of the lemma. W

Lemma 4.3. Let B := B(z, R) be a € admissible ball in M, we have the punctual estimates in B
(i) 3C >0, ¥x € C*(B), Yu € C,(B), [V(xu)| < (1+ Ce)(|x|[Vul + [Vx] |u]).
(it) 3C > 0, ¥x € C*(B), Yu € C3(B), [V*(xu)| < (1 + Co)(IxI [V2ul + Vx| [ul + Vx| [Vul).

Proof.
We have to compare the modulus of v, Vu, V?u with the corresponding ones for v := v o ¢! in
R™.
First we have because (1 —€)d;; < g;; < (1 +€)d;; in B(z, R) :
B.(0,(1—¢€)R) C ¢(B(z,R)) C B.(0,(1+4¢)R).
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Because Z SUDP i j—1,...n, yeBu(R) }0Bgij(y)} < € in B(z, R), we have the estimates, with Yy €
|B]=1
B(z, R), z:=p(y),
Yy € B(x, R), lu(y)l = |v(2)], [Vu(y)| < (1+ Ce)|0v(2)].
Now replacing u by yu, clearly we have for x o go_lv o go_l what we want, just using Leibnitz rule.
Then the computations above gives the existence of a new constant C' such that
IVxu)| < (1+ Ce)(|x|[Vul + [Vx] [u])
at all point of B which gives ().

Because of (A1) and (A4]) we get
Yy € B(z, R), }VZ } )| < ‘8221(2)} + eC'|0v(2)].
Now replacing u by Xu clearly we have for y o o 'v o ™! what we want, again just using Leibnitz
rule. Then the computations above gives the existence of a new constant C' such that
IV2(xu)| < (14 Ceo)(|xV?ul| + | Vxu| + Vx| [Vul)
at all point of B which gives (7i) and ends the proof of this lemma. B

We have to study the behavior of the Sobolev embeddings w.r.t. the radius. Set Bg := B.(0, R).

Lemma 4.4. We have, with s = S1(r), t = Sa(r),

() VR, 0< R<1, Yu € W2 (By), ullysyy < CR [ullyar
and

(i) VR, 0 < R <1, Yu € W*(Bg), |0ull o5,y < CR™ |ullyor sy
the constant C' depending only on n, r.

Br)

Proof.
We start with R = 1, then we have by Sobolev embeddings with ¢ = Ss(7),

Vo e W(BL), [0l < Cllolwar s, (4.6)

where C' depends only on n. For u € W?"(Bg) we set
Va € By, y:= Rx € Bg, v(z) = u(y).
Then we have

9u(x) = Duly)x 0L = Rou(y): Pu(z) = Puly)<(22)? = R%Puly).
So we get, because the jacobian for this change of variables is R™",
0015y = [ v dim(o) = [ 0t i) = B 0ull s,
1 R
So

10wl 5,y = B 100l - (4.7)

(Br)

The same way we get

|10%]

_ R—2+n/r H82’U‘

(4.8)

L™ (BR) L™(By)

12



and of course

ull oy = B 0] 1y )-
So with we get

Full ey = B/ N0l ) < CRY N0l (4.9)
But
o 2

||UHW27T(BR) = ||u||LT(BR) + ||auHLT(BR) + H8 u} L™(BR)’
and

1ollwersyy = 1011z + 1001 gy + 1070 s,
SO

[vlly2rs,y = Bl e _'_Rl_n/TH&uHLT'(BR + R0l Lr(Bp)

Because we have R <1, we get
[llwar s,y < R_n/T(HuHLT ) T 100l Loy + [|0%0]
Putting it in (IH) we get
ull gy < CRY V]l s,y < CR™™
1
r

Lr(Br) = R_H/T”“”W“(BR)'

l l
rot ||u||W2rBR)

2
) = — and
n

But, because t = Sy(r), we get (
||u||Lt(BR) < CR_2||U||W2’T'(B

R)’
To have the (i) we proceed exactly the same way.
We start with R = 1, then we have by Sobolev embeddings with s = S(r),
Yo € W2’T(Bl) ||8’U Ls(B < CH'UHWz (By)
and this leads as above to
J0ul1 5,y < CR—IHuHWz,T(BR)- .
The constant C' depends only on n, 7.

Lemma 4.5. Let x € M and B(x, R) be a € admissible ball ; we have, with s = S1(r), t = Sa(r),
(i) Yu € W*"(B(x, R)), l|ull i(pry < CR™ [ullwer (s m):

and

(it) Yu € W2 (B(, R)), |Vull pese,my < CR™ Ilulliver so,my

the constant C' depending only on n, r and e.

Proof.
This is true in R™ by lemma [4.4] so we can apply the comparison lemma 4.2 W

Lemma 4.6. Let B := B(0, R) be the ball in R™ of center 0 and radius R < 1 and B’ = B(0, R/2).
Let uw € L"(B) such that Au € L"(B) then we have

u€ W (B), |ullyer gy < R2[ull gy + 2l Aull gy
where the constants ¢y, co depend only on n,r.

Proof.
We start with R = 1, then we have by the classical CZI for the usual laplacian Ag in R", [ [9], Th.
9.1, p. 235]:

13



voe L'(B), Av e L'(B), [[vllyzrpy < cillollprm) + c2ll A0l s (4.10)

the constants ¢, ¢ depending only on n, 7.
To go to any R we take u with the hypotheses of the lemma and we make the change of variables
y = Rz, dm(y) = R"dm(z), v(z) := u(Rz).
We set Br := B.(0, R) then we get

T T y r —-n T —_-n —n T
[CHS ::/ lv(z)] dm(:z:):/ ’U(E) R dm(y):/ lu(y)" R dm(y) = R™"||ul|}- g,
B1 BR BR
And
O (x) = u(Rx)R, Oyv(r) = Ojju(Rr)R?,
hence

00155y = [ @ () =
/ |0;v] ( )’" dm(y) = / R 0u(y)|" R dm(y) = R™"(|0ull ;e p,)-
Br Bpr

H&Z'J'UHLT(Bl) ::/B 10:0(2)|” dm(z) =

y r —n r T —-n T—n
= [ 100l (y rdmy) = [ B 10t R i) = B0l
Br Br

So we get by (£I0)

(R/2)" 105l 1oy < 1 (r) Rl gy + c2(R)RE™7|| A

(Bry2) = (Br)

hence

105l 1o ) < 27 (1 (M) R [l gy + ca(r) RIAU o)
And the same way

10ull iy < 277 (ea () R ull ) + c2(M AUl 1 5,)-
So we get finally

[ullyzr sy, < 1l ) Rl g + c2(n m)ll Al L gs,),
where the constants c¢;, ¢, depend only on n,r. l

5 Local estimates for the laplacian.

All these local estimates are quite well known. I reprove them here to precise the notations and
the dependences of the constants.

Lemma 5.1. Let (M, g) be a riemannian manifold. For x € M, € > 0, we take a € admissible ball
B.(R). Then there is a 0 < ¢y < €, hence a R = R,(x) > 0, and a constant C' depending only on
n = dimg M, r and €y such that :

Vw € L (B:(R)), Ju € W;’T(Bx(R)) tAu = w, HUHWZ”"(BZ(R)) < CHWHL?"(BZ(R))'

Moreover u s linear in w.

Proof.
For x € M and € > 0, we take a ¢ admissible ball B,(R) and a chart ¢ : (yi, ..., y,), which means:
1) (1 —€)d;; < gij < (14 €)d;; in B,(R) as bilinear forms,
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2) Z|5|:1 SUp i j=1,...n, yeBz(R) ‘aﬁgij(y)‘ <e
Of course the operator d on p forms is local and so is d* as a first order differential operator.

So the Hodge laplacian A, read by ¢ in U := ¢(B,(R)) is still a second order partial differential
system of operators and with Ag the usual laplacian in R™ acting on forms in U, we set: Aw,, :=
Agw, — Apw,,, where w,, is the p form w read in the chart (B,(R),¢) and A is a matrix valued
second order operator with C* smooth coefficients such that A = A, — Ag : W2"(U) — L"(U).

This difference A is controlled by the derivatives of the metric tensor up to order 1; for instance

for a function f we have in the chart ¢
AT = —— (g% [det(g,)0, ) = ¢, + Vo,
det(gi;)
where Yj is a first order differential operator depending on g and its first derivatives;
more generally for a p form w, still in the chart ¢, the formula 21.23, p. 169 in [23] gives A,u =
gY 82 u + Yyu, where Y, is a first order differential operator.

So A depends on the first order derivatives of g, hence the difference A := A, — Ag, where
Agu = 6% 82 u, is controlled by the first order derivatives of g, which, by condition 2) can be made

as small as we wish. So we have

vy € U, [A(u)(y)] < [(g"(y) — 0")05uy)| + [E(u)(y)] (5.11)

where FE is a first order partial differential operator whose coefficients depend on the first order
derivatives of g, and are 0 for y = x. So |E(u)(y)| < n|Vu(y)| for y € U, where n is a continuous
function of the metric ¢ and Vg only; since |Vg| < e, n may be chosen to depend on € > 0 only
and 7(0) = 0.
Hence, integrating (5.11]), we get:
||Au||LT(U) < ||Vg||L°°(U)||u||W2vT(U) + 77(6)||VU||LT(U)
So, because [|Vu ;. is controlled by [[ullyyzr ), there is a 0 < ¢(e), ¢(0) =0 and ¢ continuous
at 0, such that [[Aul|. ¢y < c(e)|[ullyr @)
Let v be a p form in U C R™. We know that Ag operates component-wise on the p form -, so we
have:
Vv € Li(U), Jvg € W2 (U) :: Agvg = 7, lvollwzr @y < ClVIlLr )
simply setting the component of vy to be the Newtonian potential of the corresponding component
of 7 in U. These non trivial estimates are coming from Gilbarg and Trudinger [[9], Th 9.9, p. 230]
and the constant C' = C(n,r) depends only on n and r.
So we get Arvy + Avg = v + 71, with
= Avo = [l w) < cllvollwerwy < Cllvllrw)-
We solve again
dvy € WpQ’T(U) it Agvr = 71, ||'U1||W2»T(U) < CH%HLT(U) = CQCHVHLT(U)
and we set
V2 = Avy = H%HU(U) < CHUIHWW(U) < CH%HU(U) < C2Cz’|7||Lr(U)-
And by induction:
vk € N, = Avet = il < lveallpero) < Clitlloe < C¢ )
and
Jup € WP (U) = Apvg = iy Nkllyzr@y < Clvell ey < CFE I -
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Now we set v := ) JeN (—1)v;. This series converges in norm W?2"(U), provided that we choose
€0 < € small enough to have c(ey)C? < 1, and we get:

Ay = Agv + Av = Z (=1)7(Arvj + Avj) = 7,

jEN
the last series converging in Ly (U).
Going back to the manifold M with v := w, and setting u, := v, we get the right estimates:

Ju € W' (B,(R)) :: A'U =w in By(R), ||u||W2,r(Bx(R)) < C”WHU(Bx(R))a
because, by use of the comparison lemma already seen, the Sobolev spaces for U go to the analogous
Sobolev spaces for B,(R) in M. Moreover C' depends only on n, r, € and u is linear in w. B

Lemma 5.2. Let Bg := B(0,R) be the ball in R™ of center 0 and radius R < 1 and B}y =
B(0,3R/4). Suppose we have, with a constant C' depending only on n,r and the C' bound of the
coefficients of A,

Yo € W*(B1), [vllwersy < CUvllLr s, + 1860l s,)-
Let uw € L"(Bpg) such that Ayu € L"(Bg) and then we have:

u € W (Bg), llullyer s, < iR ull gy + call Apull .
where the constants ¢y, co depend only on n,r and the C* bound of the coefficients of A,.

Proof.
We start with R =1, B := B(0, 1), then we have by assumption:
Vo € W2 (B), Nollywarqsry < CUlego + 150 s,
the constants C' depending only on n,r and the C' bound of the coefficients of A,. It remains to
make the simple change of variables y = Rz, dm(y) = R"dm(x), v(z) := u(Rz) and to notice
that d;v(z) = RO;(u)(Rx), Jjv(x) = R*07;(u)(Rx) in the integrals defining the L™ norm to get the
result.

Lemma 5.3. Let A, be a second order elliptic matriz operator with C* coefficients operating
on p forms v defined in U C R". Let B := B(0,R) a ball in R™, B" := B(0,3R/4) and suppose
that B € U. Then we have an interior estimate: there are constants cy,co depending only on
n = dimgM, r and the C'norm of the coefficients of A, in B such that

Vo € W2'(B), [[vllwar iy < Bl + el gl s (5.12)

Proof.

For a 0 form, this lemma is exactly theorem 9.11, in [9] plus lemma [5.2] to get the dependence in R.
For p forms we cannot avoid the use of deep results on elliptic systems of equations.

Let v be a p form in B C R™ We use the interior estimates in [[21], §6.2, Thm 6.2.6]. In our
context, second order elliptic system, and with our notations, with r > 1, we get:

3C >0, Vv € W;?’T(B)v ||U||W2’T(B’) < ClR_zHUHLr(B) + C2||Aeov||U(B)7
already including the dependence in R.

The constants ¢y, ¢y depend only on 7, n := dimM and the bounds and moduli of continuity of
all the coefficients of the matrix A,. (In Morrey’s book, p. 213: the constant depends only on E
and on E'.)

In particular, if A, has its coefficients near those of Ag in the C' norm, then the constants ¢;, s
are near the ones obtained for Ag. Il
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Lemma 5.4. Let (M, g) be a riemannian manifold. For x € M, € > 0, we take a € admissible ball
B.(R). We have a local Calderon Zygmund inequality on the manifold M. There are constants cy, ¢z
depending only on n = dimgM, r and € such that:

Vu € W*"(B,(R)), ||u||W27T(Bx(R/2)) < ClR_zHuHLr(Bx(R)) + 02||Au||LT(Bx(R)).

Proof.
We transcribe the problem in R™ by use of a coordinates path (V,¢). The Hodge laplacian is the
second order elliptic matrix operator A, with C* coefficients operating in ¢ (V') C R". By the choice
of a € admissible ball B,(R), and with R’ := 3R/4, we have:
U':=o(B,(R)) C B(0,(1+€)R"), U:=p(B.(R)) C B.(0,(1+¢)R) C (V).
We apply lemma [5.3] to the euclidean balls B" := B.(0, (1+¢€)R’), B := B.(0, (1+¢)R) and we get,
with u, the p form u read in the chart (V, ¢)
||ugo||w2,r(]3/) < C1R_2HU¢HLT(B) + C2||Ae0ug0“Lr(B)
The fact that the coefficients of A, are € near, in the C' norm, of those of Ag, by condition 2) in
the definition of the e admissible ball, implies that the constants ¢y, ¢y depend only on n,r and e.
The Lebesgue measure on U and the canonical measure dv, on B,(R) are equivalent; precisely
because of condition 1) we get that (1 —¢)" < |detg| < (1 + €)", and the measure dv, read in the
chart ¢ is dv, = \/|detg;;|d{, where d€ is the Lebesgue measure in R”. So the Lebesgue estimates
and the Sobolev estimates up to order 2 on U are valid in B,(R) up to a constant depending only
on n,r and € by lemma In particular:

Vo € M, Vol(B,(R)) < (1+ ¢)"?v, R, (5.13)

where v, is the euclidean volume of the unit ball in R".
So passing back to M, we get, with A := B,((1+2¢)R) D ¢ }(B), A’ := ¢ 1(B)
[ullwzerarny < AR ull pray + call Aull o ay)-
Now we notice that A" O B,(R') so a fortiori:

—2
||u||W2vT(Bx(R’)) <aR ||u||LT(Bx((1+25)R) + C2||AU||Lr(B,C((HzE)R)-
Finally, choosing € < 1/4 we get

[ullyer g, (my < aR” ||u||L7“(B ars2) T 2llAull s, 3r/2):
i.e. the CZI local interior inequalities on B,(3R/4) C B, (BR/ ) C M. So changing R for 3R/2 we
proved the lemma. W

6 The raising steps method.

Let (M, g) be a riemannian manifold. From now on we take ¢ = ¢y with ¢, given by lemma [5.1]
and we take the €y admissible radius and the Vitali covering {B(z;, 5r(z;))};en associated to it.

Definition 6.1. Let (M, g) be a riemannian manifold. A weight relative to the covering { B(x;,5r(x;))}jen
is a function w(x) >0 on M such that :
there are two constants 0 < ¢;,, < 1 < cg, Such that, setting

\V/] € N> Bj = B($j>5r(zj))a wj = v (B) 5 w(z)dvg(z),
g J j

we have Vj € N, Vo € B;, ci,w; < w(zr) < cow;. By smoothing w if necessary, we shall also
suppose that w € C*(M).
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As an example we have the constant weight, Vo € M, w(x) = 1.

This means that w varies slowly on B;.
So let w(z) > 0 be any Weight we say that w € L (M, w), if :

9y / w(@)]" w(x)dvy(x) < oo.

6.1 The raising steps method.

We shall use the following lemma.

Lemma 6.2. For x € D(M) and u € WPQ’T’(M), set B(x,u) = A(xu) — xA(u). We have :
[BOG )| < [Ax] ful +2[Vx[ [Vl

Proof.
Exactly as for Proposition G.IIL.6 in [3] we have in an exponential chart at a point = € M,

u= Z uydr’, g (x) = &;; and the basis { 0 }ie
J7|J|:p J
In this chart and at the point x we have that the laplacian is diagonal so
2
Au(zx) = Z 0852"] (z)dx’
J,‘J‘:p J
hence, for any = € M,
Ouy 0
B(x,u)(x) = Ax(x)u(z) =2 ) Z L EX ) g

0x; 0x;
g [J=p =1 37

n» is orthogonal.

-----

So we get
B0 u)l < [Ax|ul +2|Vx[|[Vul . B

Lemma 6.3. Let w be a weight relative to the covering C. and set w; as in definition [6.1. If
V=) ien Xju; then we have

() 10112y < T Y willusll;

Ls(Bj)
JjeN
(i) Vol agry < 277 (L4 COT?, Y wi(R ) T IVl 5):
jEN
2 s/s S 8 —28 s 2 s —s S
(iii) HV v‘ L (M) < 3%/ (1+Ce)T swzw g LBy T HV uj‘ L*(B;) + I ||vuj||L5(Bj))‘
JjeN
Proof.

We have for (i)

|lv ZS(MMS) = [y v widvy <37, ka ‘EjeN Xju_j} widv,.

But the support of x; is in B; and the overlap of the covering is less that 7" so let
I(k):={B; :: BN B, # 0}

then Card/(k) < T and we have

Lo(Muws) = Z/ Z Xjuj| wdvg.

keN jel(k

o]l
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We have, comparing the ['and [* norms by Holder inequalities,

Z xjui| <T°7 Z X550

jel(k) jel(k)
SO

HUHLS(MW <7 12 Z / xju|” wdvg.

keN jel(k

We still have, because x; is supported by Bj,

Z / Ixju;il” widv, = Z/ Ixju;|” wdv,

jel(k) " Br jeN v B
hence, exchanging the order of summation, all terms being positive,
by ST [l wdn,

jeN keN
The overlap being less than 7" we get

Z/ IXju;]" wdvg < T/M [xjus]” wdvg

keN v Bk

Ls(M,we) <7 1TZ/ Ix;ju;l® sdvg—TSZ/ Ixju;|” wdv,.

JjeN

vl

vl

With the constants cgy, deﬁned in definition G.1],

ZS(M,U)é TS zw Zw ||Xju]| LS(B Tsczw Zw]sHuJ’ 25(3
jeN jeN

0]

hence we get the (7) :
zS(M,wS <7 iwzw |u]|

JjeN

[v] L*(B;)
For (ii).
vi= 2 ien Xaty = Vol < (14+C€) 320 (] V] + [V | us])
by lemma [£.3]
Because {x;};jen is a partition of unity relative to the covering { B,};en, we have

(6.14)

1
Vil < = [V € =.
Vil <5 XJ}_R?
Hence for the first term, A := Z Ix;| | Vu;| we get, again exactly as above
JjeN
| Al SLS(M,ws 1" iwzw V|7 Ls(B;)
jEN
1
For the second one, B := Z Vx| |u;| we get also as above, using the estimate |Vy;| < R
jeN J
IBIIze arawry < TP Y By w5l 3,
jEN

Because (a + b)® < 2%/ (a® + b°) we get

Vol SLS(M,ws) < 2 (1+Ce)T°cy, Zw '_sHujHSLs(Bj) + [V SLs(Bj))-
JjeN
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Finally for (i77). By lemma (1), we get
IV2()] < (14 Ce) 3 jen (I V5] + V2] | + V] V)
So we get, for the two first terms, as above
Co=1+Ce) Y (Il VPus]) = 1PN arey < (14 COT 3, ) ws][ V2

JjeN jeN

LS

1
R?
D:u+&Q]W%W]¢w|

And using the estimate }szj}

SLS(MMS) <(1+CT” inR #w SHUJHLS B;)"

jEN JEN
1
For the third one, we get using the estimate |[Vy;| < ﬁ
E:=(1+C) Y IVl IVus]) = 1Dl arey < (14 COT G, Y wiR Vsl s
JEN jeN

Adding this, we get
HVZU‘ <31+ CeT® inw -_28||uj|

JjeN

SLS(Bj) + HVQUJ" SLS(Bj)

‘I’Rj_SHVUjHSLs(Bj))- u

Ls(M,w*)

Lemma 6.4. Let w be a weight relative to the covering C. and set w; as in definition[6.1l Suppose
that
= > willujllzes,
jEN

and, with s > r,

willxiusll s g,y < wilky " cllwll e s,),
Then we have, with Vx € M, w(x) := R(z) "w(x),

1< T ol

M)
Proof.

By

Zaj < (Z a;)s/’" because s >,

jeN jeN
we get

s/r
P (S el )
jeN
By lemma [2.4] we have
1 1

Vi€ By, d(x,x;) < Ry = 5r(;) < {R(x;) < 1(Rx;) + R(x)) = Blx) < 4R(z;)

hence, because r(z;) = Rl(;;) and R; = 5r(x;) = %,
Vo € By, R(z) <4R; = R < 96" R(x)™"". (6.15)

But, by definition [6.1] we have

B2l <gmf/wmmy

J
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So

SRl S B [l

JEN JEN

and, by (6.10), we get

SR Wl s, < 967 S / wl” R(x)~""w" dv,

jeN jeN
Set Vo € M, w(z) := R(x) Tw(z).
Now, because the overlap is less that T', by proposition B.2] we get

Z/ lw|" @"dv, <96WT/ jw(@)|" @ ()" dvg(z) = Tl prarar):

jeN
Putting this in v, we get

s/r
I < <Z Rj_ww;HwHZT(Bj)) < 967t O (Tl ag )"
jeN

s0, setting ¢, := 967¢;,'C we get
I'<c TS/THWHLT' Moy B

With R(z) the ¢y admissible radius at the point z € M, and C,, the ¢y admissible covering of M,
defined in section [, we shall prove now :

Theorem 6.5. (Raising Steps Method) Let (M, g) be a riemannian manifold and take w a weight
relative to the Vitali covering {B(z;,5r(x;))};jen-
For any r < 2, any threshold s > r, take k € N such that t; := Si(r) > s then, with wo(z) :=
w(z)R(z) ™,
Vw € Ly (M,wf), Jv e Li(M,w") N LM, w) "W (M,w"), 3o € L) (M,w®) : Av =w +
with s; = Sa(r) and we have the control of the norms :
Vg € [r,s1]s vl sgarwey < Callwllnr gy 5 10lwzr ey < Cellollny )
@]

L5 (M,w®) S Cs ||W||L;(M,wg)'
Moreover v and @ are linear in w.
If M 1s complete and w is of compact support, so are v and &.

Proof.
To simplify notations we do not put the p referring to the degree of the forms, i.e. we shall write
L" instead of L, W2 instead of Wﬁ’r, etc...

Set R; := br(z;), Bj:= B(z;, R;) and apply lemma 5.1 to get, with ¢ = ¢(n, r, ¢),

Suy € W2(By) = Ay = w, [ljllans,) < ellllgs, (6.16)

with wu; linear in wip, .
So by lemma .5 we get, with ¢t = .54 (r), s = Sa(r),

u; € L*(B;), ||u]||Ls < CR ||u||w2’r(B(x,R)) < CCR}2||W||LT(BJ.>
and

Vu; € L(B;), IVl g,y < OB ullwarsry < OBy Wl s
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Hence, because u; € L'(B;), we have by interpolation [, that Vs' € [r,s], u; € L*(B;) with
luill o g,y < cOR?||wll v (g,
The same way, because Vu; € L™(B;), by interpolation we get V' € [r,t], Vu; € L' (B;) with

1901,y < O ol s, (6.17)

Let {x;}jen be a partition of unity associated to the covering {B(x;, R;)},en then we set
Vo 1= Z X U;-
jeN
Because the u; are linear in wip;, v is linear in w.
We have, because ||x;||, = 1,
-2
||Xjuj||Ls(Bj) < cCR; ||w||Lr(Bj)>
and multiplying by the w;, given in definition [6.1]

<w;R

w;l [ x;u;] L*(B;) j CHWHU B;)* (6.18)

By lemma [6.3 (i), we have
ool e arry < Tk D w5l

jEN
Now, because of (6.18), we can apply lemma with I = [|vg[| ps(prs) and v = 2 ; we get, with
Co 1= Cp 1= 96%¢;, O, and Wy (2) := R(x)*w(z).
[[vol Lo (M) = T’ /THWHL?“(M,E;QT)'
We also have vy € L"(M,w") because u; € W"(B;) = u; € L"(B;) as well, this means that
vow € L"(M) N L*(M) hence by interpolation we have that
vow € L' (M) = vy € LY (M, w") for any t' € [r, s] with the same control of the norms.

Ls(By)

Because u; € W?"(B;) we shall apply the same procedure to Vug by use of lemma (i), with
s=r, v=1y, we get

1Yol gy < 277 (14 COT S (B gl ) + 1V ). (6:20)

jeN

But, by (6.10]),

14l s,y < cllwllrs :sHVujHU(B <0lelmB-

To the first term of ©19), A = Z w; R
JEN
and C' — Ty, v =1, wi(z) := R(z) " w(z), to get
||A||LT(M,wr) < CwT”WHLr(M,uv;)'
To the second term of (6.19), B := Zw;fHVujH’}f(Bj) we can apply lemma [6.4 with s = r, [ —
jeN
B, u; = Vuj and C — Ty, 7v=0, w(z) = w(x), to get

, we can apply lemma 6.4 with s =7, [ — A

101 2 gy < Tl rarm)-
Adding these terms, we get

22



IVl gy < 27 (1 + CE)l/TTcswaT(||w||L7"(M,1D§') + [l (vt my)-

Again because u; € W?>"(B;) we shall apply the same procedure to Vv, by use of lemma
(i4), with s = r, v = vy, Wa() := R ?(x)w(x), we get

N <3/ (1+ CeT"c, Zw '_2T||“j||2r(3j) + || V2] ZT(BJ-)
jeN

+ R;T||Vuj||2,.(3j)).

L™ (M,w")
But, by (6.16]),

sl s, < cllwllprs,) = IVl s,y < cllwllpe s,
and

2
HV u]} L™(B;)
So playing the same game for each term, we get
HV2 < 3t (1+ Ce)l/rTCswa (HWHL?“(M@W) + ||W||LT(M,@“U;') + ||w||LT'(M,wT'))'
Because we always have R(z) <1, we get that ||w||L7"(M,1Z;§) > ||w||L7"(M,1Z;{') > [|wll pr(prry SO finally

< cllwllyr s,

0ol 1 (agwry < Collwll Lr agry

||VU0HLT(MW" < CIHWHLT(M,E;I) 5

V200
Because

||U0||W2»7“(M,w") = HUOHLT'(M,wT') + va0||L7"(M,w7") + HV%O‘
we get

vty < Colloollrar ) -

LT (M,w")

||U0||W2’T(M,wr) < CHWHLT(M@g)a
where the constant C' depends only on n, ¢, T and the constants of the weight w relative to the
covering Ce.

If w is of compact support and if M is complete, by lemma we can cover Supp w by a finite
set {B;};=1...n and then add a layer {B;};—n,+1...n, Dot intersecting Supp w, to cover 9K’ where
K’ is a compact containing K. This means that we can cover K’ by a finite set {B;};-1._n,. By

Ny
linearity we get Vj = No+1,..., N1, w; = 0 = u; = 0 and setting now vy := Z X;u; we can extend
j=1
Ny
vy as 0 outside U Bj hence we get that vy is compactly supported.
j=1

We set, as in lemma [6.2, B(x;, u;) = A(xju;) — xjAu;. Now consider Avg, we get
A’UO = ZA(Xju]) = ZXJ'AU]‘ + ZB(XJ’ Uj) =w + wy,
jeN jeN jeN
with w; = Z B(x;,uj).
jeN
Clearly Auvy is linear in w so is wy.

1
The {Xj}jeN being a partition of unity relative to the covering {B;},en, we have |Vx;| < I and

|Ax;| < We also have, because ||uj||W2,r(Bj) < d|wllr(5,):

R2
||Vu]||Lt ) < R wll o,
by lemma [4.7] ( zz) and
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]

sy S R Lo, ) (6.20)

with ¢t = Si(r), s = Sa(r) still by lemma (L4 (i). Let g € [r,t].
) ) 1 1 1
By Young’s inequality we get, because n = -+ —,
s n

— _ 1/n

||uj||Lt(Bj) = HlBjujHLt(Bj) < ||uj||Ls(Bj)HlBjHLn(Bj) = |luy] L*(B;) 1B

Because |B(z, R)| = Vol(B(z,R)) < (1 + ¢)"?v,R" by equation (5.13), we get, with ¢, =
C\n/ Vn(l + E)n/2, ‘BJ|1/n < Rj.
Hence
the last inequality given by (6.20).
Hence a fortiori ||uj||Lq(Bj) < Cij_lanLr(Bj)-
By lemma we have |B(x;,u;)| < |Ax;| || +2|Vx;| [Vu,|, so we get, because Vu; € L(B;)
by (6.17), )

I1BOG wi)l pacs;y < NVXG oIV U o,y + 18X o5l Lo,y < o570l o
Multiplying by w; we get

Will BOG i)l oy < By wicollwll o,
Set wy = Z B(x;,u;), then

jEN

el Zaarwe) < 2jen IBOG w N a(s, w0
Notice that x; B(x;, u;) = B(x;j,u;), so again we apply lemmaG.4with s = ¢, I — ||w1||%q(M wayr Ui =
B(xj,u;) and v = 2, (x) := R(z)*w(x), to get

ol o aguny < Cqu/THWHLT(M,u?T)‘
Set t;, =t = Si(r), we have, with w(z) = w(z), wo(z) = w(z) ;= w(z)R(x)"?, Vq € [r,t1]

Jorll sty < T ol ap

If w is of compact support and if M is complete, by lemma we have seen that vy is also of
compact support hence so is Avg = w + w;. Which means that w; is also of compact support.

Now we play the same game starting with w; in place of w and we get, with
SS9 = Sg(tl), t2 = Sl(tl) = SQ(T), U)Q(LU) = ’UJ(.ZL’), wl(:c) = W(I)R(I)_z, U)O(LU) = w(:c)R(x)_4,
that
Vg € [r,t1], Vs € [r,s1], Fu; € L¥(M,w3) N WU M, w;) :: Avy = wy + wy
and
vt € rital, wo € LML), Noellgeqargy S 1l ity < 10l arpy
We keep the linearity of v; w.r.t. to w; hence to w. So ws is still linear w.r.t. w.
So by induction we have, with
te = Sk(r), wp(z) == w(x), wp_i(r) = w(x)R(x)72, ..., wo(z) = w(x)R(z)"*,
and, with s;11 = Sa(t;),
Vs € [r,sj11], Vg€ [r, 5] Vji=0,..., k=1, v; € LY(M,wj,,) NW24(M,w,),
and
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Vq € [r,tx], wp € LI(M, wz)u ||wkHLq(M,wZ) S0 S HMIHLH(MM?) < HWHLT(M,wS)' (6.21)

k-1
Setting now v := Z (=1)v; and & := (—1)*wy, we have that Av = w + @ and
=0
Vq € [r,s1], v; € LY (M, wi, )N W2 (M, w), s1 = Sa(t1), wjz, = w(x)R(x)?UH=k),
this implies, because wy = w < w;41,
vq S [Tu 81]7 v € Lq(M7 wq)7 ||UjHLq(M7wq) < ClTl/THwHL”"(M,wS)’

k—1
So we have also for v := Z (=1)v; :
=0
Vg € [r,s1], v € LM, w), [Vl gaqarany < kT 190l Lrianug): (6.22)

We cannot go beyond s; := Sy(r) for v because of vg. For the same reason, we cannot go beyond
W2 (M, w).
k

For the remaining term @, we get a better regularity, still because we set wy = w, © = (—1)"wy,

vq S [Tv tk]? NS Lq(M7 wq)v H(’DHLCI(M,wq) SJ ||WHL7"(M,w6)’ (623)

Clearly the linearity is kept along the induction.
Now we choose k such that the threshold 5 := Si(r) > s.

If w is of compact support and if M is complete, by lemma [3.3] we have seen that vy and w; also
and by induction all the v; and w; are also of compact support. l

We shall refer to this theorem as RSM for short. We notice that we have no completeness
assumption on M to get the first part of the result.

Lemma 6.6. Set, for k € N, w} = R(x)~%, we have L{(M,w}) C LL(M) and
Vg > 1, Vf € LI(M,wy), ||fHLg(M) < ||f||Lg(M,wg)-

Proof.
We have, because Vo € M, R(z) < 1= wi(x)>1,

||f||%g(M) = fM ‘f|q dvy < fM \f|qudUg = HfH%g(Mva)’ L

Remark 6.7. We have, by inequalities (6221), that Vq € [r,tx], @ € LI(M,w?). With the choice of
w =1 for the weight relative to the covering, with the notations of the RSM, we get Vq € [r,tx], © €
LI(M).

We also have that w =1 = Vq € [r,s1], v € LI(M), with s := Sa(r).

Corollary 6.8. Let (M,g) be a complete riemannian manifold. For r < 2, take w € L" (M, wy)
with k € N, wo(z) := R(x)™* and s, := Sy(r).

Chosing k big enough for the threshold ty, := Sy (r) > 2 then the orthogonal projection H : L2(M) —
HZ(M) extends boundedly from LI (M, wg) to Ha(M). This implies Hw =0 <= Ho = 0.
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Proof.
For w € L (M,wg) and Vs € [r,s1], Yq € [r, 1], the RSM, theorem 6.5 gives us two forms v €
Ly(M,w®), &€ LI(M,w?), such that

v=Tw, = Aw, Av=w+ . (6.24)

where T and A are bounded linear operators :

T : Ly(M,wy) = Ly(M,w®) ; A : Ly(M,wy) — LI(M,w?).
Now choose w = 1 = wy = R(z)?*. Then we have & € LI(M), and if k is such that the threshold
ty = Sk(r) > 2, we have @ € L3(M).

Hence the projection H is well defined on @. Suppose that HAv = 0 then we were done because,
by (6:24)), we would have 0 = HAv = Hw+ Hv = Hw = —H®.

We start by approximating w by a sequence w; € Dy(M), w; — w in L, (M, wg). Then apply the
RSM to w; ; we get v; = Twy, @& = Aw;, Avy = w; + @;. We have that v;, @; have compact support
and by linearity with (6.22)

Vs € [r,s1], (v—u) € L (M), [[v—ullpsnn < ke T ||w — leL”"(M,wg)
50 [|v = vi| zs(pry — O and the same way with (6.23) we get

Vg € [r te], (@—w) € LIM), |0 =@l oy S llw = will e
hence (|0 — @l a(pr) = 0.
Then H is well defined on v;, Av;, w; and @;, because they are C> and compactly supported hence
in Lz(M ), and we have

Avy=w+@; = HAv, = Hw, + H,.
Take t, > 2, h € L2(M) then (HAv, h) oy = (Avy, HR) oy because H is self adjoint. But
because M is complete, A is essentially self adjoint on Lf)(M ) by [8] and v; has compact support,
we have

<Avl> Hh)LQ(M) = <'Ula A}Ih>L2(M) = O>
because Hh € H2(M).
So we have VI € N, HAwv; = 0 and this implies

RS N, Hw, + Ho = 0.
Now we have @ € L2(M) and the convergence ||& — d}l||L%(M) — 0 by lemma [6.6l So, because H is

bounded on L2(M), we get Hay — H@ in L2(M), and this means Hw, — —H® also in L2(M). So
we define, for any sequence w; € Dy(M), w; — w in Ly (M, wy), by :

Hw :=lim l—>ooHWl = —lim l—>ooHajl = —H(:),
so we proved that Hw; converges in Lg(M ) to —Ho, with @ given by the Raising Steps Method.
This limit is independent of the sequence of approximations w;, and it is clearly a extension of the
projection H to L" (M, wy).
This implies that Hw =0 <— Hw=0. 1

Corollary 6.9. Let (M,g) be a complete riemannian manifold. We get : ¥s > 2, H2(M) —
Ho (M) with
vh € Hy(M), h € Hy(M) and ||kl . ap) < Csllhll aar)-

Proof.
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Let w € Dy(M) and ¢ € Li(M), then we have (Hw, ¢) = (w, H*p) by duality ; on the other
hand, because w € L2(M), we get
<Hw> 90> = <w> H(p> )
so, against D,(M), we have H = H™.
Now take r < 2, and w € L"(M,w}) with k € N, wy(z) := R(x)™" and s, := Sy(r). Chosing k big
enough for the threshold ¢ := Si(r) > 2, then the orthogonal projection H : L2(M) — L2(M)
extends boundedly from LI (M, wg) to L2(M) by corollary hence by duality H* : L2(M) —
L7(M,wp).
By density of D,(M) in L"(M,w}) we get that H = H* : L2(M) — L;/(M, wp)-
We also have by lemma L;/(M ,wp) C L;/(M ) with norm less than one, hence H : L2(M) —
L"(M) boundedly and
heHM2(M)=h=HheL)(M)=heH, (M)
Now we choose 7 = s’ the conjugate exponent of s to end the proof of the corollary. H
We already know that harmonic forms are smooth, see for instance [[5] corollary 5.4], so corol-
lary gives another kind of smoothness.

7 Weighted Calderon Zygmund inequalities.

In the same spirit of theorem 1.2 by Guneysu and Pigola [11], we get the following "twisted"
Calderon Zygmund inequality with weights and being valid directly for forms not a priori in D, (M).
These CZI are twisted because there are 2 different weights in the inequality.

Theorem 7.1. Let (M,g) be a complete riemannian manifold. Let w be a weight relative to the

C. associated covering {B(x;,5r(x;))}jen and set wo := R(x)™. Let u € LI (M, wwy) such that

Au € Ly(M,w) ; then there are constants Cy, Cy depending only on n = dimgM, 1 and € such that:
||u||W27T(M,w) < Cl”“”y(M,wwg) + C2||AU||LT(M,w)'

Moreover we have for t = Sy(r) that w € Ly,(M,w") with |[u]l yo sy < cllullwar arwrw)-

Proof.
Let u € L'(M,wwy), Au € L"(M,w). Set R; := 5r(x;), B; := B(xj, R;), Bj = B(x;,2R;) and
apply lemma [5.4] to get :
there are constants ¢y, co depending only on n = dimg M, r, € such that

[ully2r s,y < Cle_2||u||Lr(Bg) +eof|Aul gy (7.25)

Recall that
||UHW2,T-(M,w) = HV2U L7 (M,w) + HVUHLT'(M,w) + ||u||LT'(M,w)7
so we have to compute those three terms.
||V2u||2T(M,w) = Ju V2l wdv, < ZjeN ||V2u||ZT(ij).
By (7.28) we get
HVzu

LBy ) = (Cle_zCswijUHLr(B;) + 2G| Al )" <
<2 ng(CIRj_%ijUHZT(B;) + C2ijAu||ZT(Bg))’

Hence
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Iv2ull;

L™ (Mw < 27‘/7" ngczw G Z R]'_2THUHET'(B;,1U) + C2w]||Au||2T(B;,w)) (726)
jeN

Exactly as in the proof of the RSM we get

R [ @) wedue) <967 [ uG@)l Bw) u(@)do (@
hence, becausejthe overlap of the Vitali covejring is bounded by T, even for the double balls B;», we
get

Yjen B [, (@) w(@)dvy(x) < 967 T [y u(x)[" R(x) "> w(x)dvy(z).

Easier we get

Z/, |Au(z)]" w(z)dvy(z) < /M|Au(:c)|7”w(x)dvg(x).

jeN

So, putting in (7.26), we get
V2l gy < o1 96° T 1 l[ull o arwagy + 21 T ol At o a0
Exactly the same way we get
IVl gy < 2796 TV enl|ull gy + 247 TH 2 At 11 41,0
Hence

lallyzr gy < Colell pras gy + Coll AUl 1o ar.)
with
Cy = 1+42Y7962T "¢y Cy := 27" TH7e,

To get the "moreover" we proceed the same way. By lemma (i), we get for the e admissible
ball Bj,
t=S(r), Yu € W*(By), |lull o,y < CR;? ullypers,).
So, because w is relative to the covering,
t ¢ t
||u||Lf(M,w) < Csuw ZjeN Wy fBj |ul” dvg = o ZjeN ijUHLt(B
But, as above,

|u| dv, < C'R 2t ||u||w2r(BJ <C'R 2t HV2 }

+ ||Vu||tLr(Bj) + ||U||ET(BJ-))'

5, L7(B;)
Hence .
t _ t t
el 2 arty < C'evw D wiB (V20| ) + IV L) + Nl s
jEN
But
Za§ < (Z a;f)t/T because t > r,
jEN jEN

hence we get

A= 3wl Bl

—2r || 2
L™ (B;) = (ngRj THV u‘
jEN jEN
hence, putting the radius and the weight into the integral, which gives the w},

R <o / V2w,

A< c‘t Z/ ‘V2u} "wydvg) t/r

JEN

r t/r
Lr ’

So
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The overlap of the Vitali covering is bounded by T, so
A < ci_uf(T/ \VQu}"wngdvg)t/’“ = c;uth/’“Hv%}
M
Exactly the same way, we get

Ag =Y wiR IVl < T IV L ag ray

—= Yiw
JjeN

_ t — r t
Az = ZUJ;R;' 2tH“HLT-(Bj) < Ciuth/ HUHLT'(M,wng)v
jEN
Adding we get
[ull e rrwty < Creoucin(Ar+ Az + Ag) <
—trpot /1 t
S thswciuth/ (Hvzu‘ LT'(M,wT'wg) + ||vu||tL7"(M,w7"w6') + ||u||tL7"(M,wT'w6)) S
< thswci_uth/r(Hv2u‘ LT (M,wrwy) + ||vu||L7"(M,uﬂ"w6') + ||u||L7“(M,w"w6))t <
t —trt/r t
' < Clegyeiy, T (HUHWT'(M,wTwS)) .
Taking the t root we get
||u||Lt(M7wt) < Ccswci_wlTl/r||u||WT(M7wTw3)'
Which ends the proof of the theorem. l

t
LT (Mw™w§)"

and

Corollary 7.2. Let (M,g) be a complete riemannian manifold. Set wy := R(z)™2. Let u €
L (M, wg) such that Au € L7 (M) ; then there are constants Cy, Cy depending only onn = dimg M, r
and € such that :

lullzeary < Cullullzgasugy + Call Al oy
Moreover we have for t = Sy(r) that u € L) (M) with HUHL;,(M) < C”“”W}T(M,wg)'

Proof.
We choose the weight w=1. R

Corollary 7.3. If the complete riemannian manifold (M, g) is such that the ey admissible radius
15 positive, then we get the classical Calderon Zygmund inequalities :

Vr, 1 <r < oo, HUHWW(M) < Cl.HuHU(M) + Cof|Aul| e ppy-
Moreover we have the classical Sobolev inequality :

for t = Sy(r) we get that u € Ly (M) with lull peary < elluller -

Proof.
If Ve e M, R(x) > > 0, then wo(z)" ~ 1 hence the weights disappear. B

Recall that, by theorem 1.3 in Hebey [12], we have that the harmonic radius ry(1 + €, 2,0) is
bounded below if the Ricci curvature Re verifies ||V Re|| < oo and the injectivity radius is bounded

below. This implies that the € admissible radius is also bounded below. Hence we get the conclusion
of corollary in that case.

8 Applications.

. : , 2t
Lemma 8.1. Lett < 2, if the weight « € L* with p := 53 e Y(a,t) = ||a]|‘£u(M) =

2t
/ a2-tdv, < 0o, we have :
M
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we Ly(M)=we Li(M,a).

Proof.
1 1 1
Young’s inequality gives || fg||,« < [|f]|;2]|g]l;« With =3 +—,s0let w e Lﬁ(M), then, with ¢ < 2,
q
we get

1/t 1/2 o 2=t
</ \w|tozdvg> < (/ |w\2dvg.) (/ aztdvg> |
M M M

So if the weight « is such that ~y(a,t) = a%dvg < 00, we are done. l

For instance take any origin 0 € M, M aﬂéomplete riemannian manifold, and set p(x) := dy(0, x).
We can choose a weight «, function of p, a(z) := f(p(x)), such that ~(«,t) < oo, provided that
a(z) goes to 0 quickly enough at infinity.

Recall that R(z) is the ¢y admissible radius at z € M.

Corollary 8.2. Suppose that (M, g) is a complete riemannian manifold ; let r < 2 and choose
a weight o € L>®(M) wverifying y(a,r) < oo. Set t := min(2,5(r)). If t < 2, take the weight
a € L*®(M) verifying also y(a,t) < co. Suppose we have condition (HL2,p).

Take k big enough so that the threshold Si(r) > 2, and set wo(zx) = R(x)™?*, then for any
w € Ly(M,wp) verifying Hw = 0, for the orthogonal projection H defined in corollary[G.8, there is
aue WP (M,o)N LY (M, a), such that Au = w.

Moreover the solution u s given linearly with respect to w.

Proof.
Take w € L, (M, wy), with the choice of w = 1 and Si(r) > 2, the RSM theorem [6.5], gives linear
operators
T : Li(M,wp) = Ly(M) 5 A Ly (M, wg) — L2(M),
such that
vi=Twe L'(M)N L (M) NW?" (M) verifies Av = w + @,
with s = Sy(r) and @ := Aw.
But
v e L'(M) = v e L'(M,a) because a(x) € L>°(M) is bounded :
1012y = [y @)1 a(@)do(@) < llall fy lo(@)[* o) = ol vl
And the same v € L"(M) = v € L"(M, ).
By corollary if How =0 then Hw = 0.
Now we have t; := Si(r) > 2 and we use the assumption (HL2,p) :
it gives the existence of a bounded linear operator L : L2(M) — W2*(M) such that
ALg = g, provided that Hg = 0,
by the spectral theorem (see, for instance, the proof of theorem 5.10, p. 698 in Bueler [5]).
So setting f := L € L2(M) we have Af =& € L2(M).
We set u =v — f then Au =w + © — © = w. Let us see the estimates on wu.
Because y(a, ) < oo, we have by lemma B, f € L"(M,«a). If t < 2, we have also y(«,t) < o0
hence lemma Rl gives f € L'(M, «).
So in this case we have u € L' (M, a) N L' (M, ).
If s > 2, then we have t = 2, v € L*(M) by interpolation between L"(M) and L*(M), so now we
have u € L*(M) C L'(M, a).
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Because v € W™ (M), we get that Vo, V?v are also in L (M) so, the weight a being chosen
bounded, we get that Vv, Vv are in L"(M, a) so v € W*"(M, ) We also have that Vf, V?f
are in L2(M), hence because y(a,7) < 0o, we get that Vf, V?f are in L"(M, «). This gives that
feW?*" (M, a) hence u=v — f€ W™ (M, ).

Hence in any case we get u € W2"(M,a) N LY (M, o) and Au = w. B

Now we shall use the linearity of our solution to get, by duality, results for exponents bigger than
2. Take r < 2 and r’ > 2 its conjugate.
Let T' : Lj(M,wg) — W2"(M) C Ly(M), A : Lj(M,wy) — L2(M) be the linear operators, given
by the RSM, such that
ATw =w + Aw.
The hypothesis (HL2,p) gives the existence of a bounded linear operator L : Lg(M) — WS’Q(M)
such that
ALo = @, provided that Ho =0 <= Hw = 0 by corollary 6.8
Hence, setting C'= LA : Lj(M,w)) — W2*(M) we get
Vw € Ly(M,wp), A(T = Clw = w.
We notice that Vi € D, (M),
A(T — C)AY = Ay,
just setting w = At. This is possible because
Vip € Dp(M), Vo € Ly(M), (HAY, ) = (A, Hp) = (¢, A(Hyp)) = 0,
where we used that A is essentially self adjoint, M being complete, and A(Hp) = 0 because Hp is
harmonic. So HAwy = 0 and we can set w = A because then Hw = 0. Hence

(T — C)A =+ h, (8.27)

with h € H,.
Now let ¢ € Li(M) N L;/(M) and consider u := (T — C)*y, the * meaning the adjoint operator.
This is meaningful because
T - (W2 (M)) > L" (M) — L (M, w})
and
C* o (W (M)) D L*(M) — L™ (M, wy)
hence u € L™ (M, w}). We get
V¢ S D(M) N LT(M’ w())ﬁ <Aua ¢>L2(M w() = <A(T - C)*§0> w>L2(Mw6) =

— [ Az - ey, = [ (T CY ety = (T - 0o AR o,
because A is essentially self adjoint and 1w has compact support.

Hence by (8.27)
<AU7¢>L2(M,UJ5) =(p,(T'=C)A (¢w0)>L2(M (p, Ywg + h)L?(M (e, ¢wo>L2(M)
provided that ¢ L H, i.e. Hp = 0. Putting back the weight in the integral, we get

(Au, ¢>L2(M,w5) = (¢, ¢>L2(M,w5)- (8:28)

Now let ¢/ € D,(M) and set ¢ := ¢/wy” = ' R(x)*" with R(x) the e admissible radius at the
point = € M. We have seen that Vo € M, R(x) > 0 and we can smooth R(x) to make it C*(M)
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without changing the properties we used. For instance set R(z) := > jen Xj(2)R; where {x;}jen
is a partition of unity subordinated to our Vitali covering C. = {B(z;, R;)} ; then the Lipschitz
regularity of R(z) contained in lemma [5.1] gives the existence of a constant C' > 0 depending only

1 _
on n, € such that Vo € M, ER(x) < R(z) < CR(x).
So we have that ¢ € D,(M) and
<Au,w>Lz(M7w5) = <90a¢/>L2(M) ; <<Pa¢>L2(M,w5) = <80>?//>L2(M),

so (B28) gives us
<Au,¢'>L2(M> = <<Pa¢/>L2(M)-

This being true for any ¢’ € D, (M
Corollary 8.3. Suppose that (M, g) is a complete riemannian manifold with (HL2,p) ; suppose
we have r < 2 with k = Sp(r) > 2, setting wo(x) := R(x)™*, for any ¢ € LEM)NLY (M), Hp=0
we get

u:= (T —C)¢, ue L (Muwy) and u verifies Au = .

) we get Au = ¢ in distributions sense, so we proved

Adding the hypothesis that the ¢, admissible radius is bounded below, we get more.

Corollary 8.4. Suppose that (M, g) is a complete riemannian manifold and suppose the €y admis-

sible radius verifies Vo € M, R(x) > > 0, and suppose also hypothesis (HL2,p). Suppose we have

r <2 with k :: Sp(r) > 2, setting wo(z) := R(x)™*, for any ¢ € L2(M)N L;’(M), Hyp =0 we get
u:=(T—-C)y, uec WS’T/(M) and u verifies Au = .

Proof.
Because wg(z) > 1, we get that L;l(M, wg) C L;/(M) hence, applying this to u, we get
that
we LT (M, wy) = u € L (M).
Because the €y admissible radius verifies Vo € M, R(x) > § > 0, we have the classical Calderon
Zygmund inequalities, corollary :
Vr, 1 <r <oo, ||u||W2,f'(M) < ClHUHLr-(M) + C2||Au||Lr(M)-
The solution u given by corollary B3] w := (T'— C)*p is in u € L;'(M ) by (8). Because we have
Au=gp € L;/(M), we get by CZI that u EW;’TI(M), with control of the norms. W

9 Non classical strong " Hodge decomposition

We shall need :

Lemma 9.1. Letr <2 andy € W, (M) ; B € W,"\ (M), h € H2(M) then
{dy, h) = (d"B, h) = 0.

Proof.
Because h € 7-[12,, we have that dh = d*h = 0 by theorem 5.5, p. 697 in Bueler [5]. By the density

of Dy(M) in W,"" (M) which is always true in a complete riemannian manifold by theorem 2.7, p.
13 in [12], there is a sequence vy, € Dpy1(M) such that ||v — yillyy1-(pr) — 0 and there is a sequence
Br. € Dp—1(M) such that [|8 — Billyrrar) = 0.

By use of corollary [6.9] we have that h € ”Hf, = he€ 7—[;, because ' > 2, hence, because dy € Ly (M),
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(dy,h) = im g_yoo{dvyg, h) = lim ko0 (yk, d*h) =0,
because d* is the formal adjoint of d, vy € Dy1(M) and d*h = 0.
The same way we get (d*5,h) =0. R

Definition 9.2. Let a be a weight on M, we define the space VNVI?’T(M, a) to be
W2T(M, ) :={u € Ly(M,a) : Au € L (M, a)}
with the norm

el ary 2= 10l 5000 + 1800 .0
With just the hypothesis (HL2p) we get the Hodge decomposition.

Theorem 9.3. Let (M,g) be a complete riemannian manifold. Let r < 2 and take a weight
o € L®(M) such that v(a,r) < 0o ; with k = Sg(r) > 2, set wy = R(x)™**, and suppose we have
hypothesis (HL2,p). We have the direct decomposition given by linear operators :

Ly (M, wy) = ”Hg & A(sz”’(M, a)).
With r' > 2, the conjugate exponent to r, we have the weaker decomposition, still given by linear

operators : B
Ly (M) N LA(M) = H2NH, + A(W2T(M)).

Proof.
Let w € L (M, wp) the remark [6.7] following the RSM with w =1, wy = R(x)™%* gives u := Tw €
W2 (M), @ = Aw € L3(M) such that Au=w + @&. So we get
w=Au—w=Au—(0— Hv) — H®.
This is well defined because & € L2(M) and H is the orthogonal projection from Lz(M ) on H>.
Now H(w—H®) = 0 hence by (HL2p) we get f := L(0—H®) solves Af =w—Ho, fe W}r(M).
So we get

w=Au—w=—-Hu+ Au— Af, (9.29)

with HO € 7-[12,.
This gives a first decomposition :

w=—Ho+ Au— Af, (9.30)

with Ho € H2(M), uw € W2"(M) and f € W2*(M).
With the weight a € L>(M) such that (o, r) < oo we have, by lemma B}, L2(M) C L;(M, a),
hence the derivatives of f up to second order are in L2(M) this implies that f € W2"(M, ).
Because « is bounded, we also have u € W2 (M, ).
It remains to set v:=u— f € W;’T(M , ) to get the decomposition. Because each step is linear,
we get that this decomposition can be made linear with respect to w.
To get the uniqueness we consider the first decomposition (0.30) :
w=h+A(u— f) with h € H2 and uw € W' (M), f e W2*(M).
If there is another one w = A"+ A(u' — f') then 0 = h — '+ A(u — v’ — (f — f)) ; so we have to
show that
0=h+A(u— f) with h € H2 and w € W} (M), fe WZ>*(M),
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implies h = 0 and A(u — f) = 0.

Now Au = d(d*u) + d*(du) = da + d*B, with o = d*u € W, (M) and 8 = du € W, (M). By
lemma 0.1 we get (da, h) + (d*8,h) =0, so (Au, h) = 0. Exactly the same proof with r = 2 gives
(Af,h)y =0, so, from h+ Au— Af =0, we get

0= {1, B+ (A, ) + (A F ) = 1] 2
which implies A(u — f) = 0 and proves the uniqueness of this decomposition.

Now let w € L7 (M) N L2(M), then we have
w=Hw+ (w— Hw) with H(w — Hw) = 0.
We have that Hw € H;(M) hence, by corollary 6.9 because w € Lﬁ(M), we get that Hw € H;/(M)
sow:=w—Hwe L;/(M) N Ly(M) and Ho = 0. Now we have by corollary B3 a u € L;/(M, wp)
such that Au = @. Again this implies that u € LZI(M ) hence we have the decomposition

Vw e LI (M)NL2(M), w= Hw+ Au=h + Au, (9.31)

with 7 € H2(M) NH} (M) and u € W2 (M).
Because at each step we keep the linearity w.r.t. w, we get that the decomposition is also linear
w.r.t. w. i

There are two extreme cases done in the next corollaries.

Corollary 9.4. Suppose the ey admissible radius verifies Vo € M, R(x) > 6 > 0, and suppose also
hypothesis (HL2,p). Take r < 2 and let the weight o € L>(M) be such that y(c,r) < 0o. Then we
have the direct decomposition given by linear operators

L(M) = HZ @ A(W2"(M, ).

Proof.
1

In that case we have Vo € M, 0 < § < R(x) <1 hence 1 <wj < i hence Ly (M, wy) = L (M).
So we get this decomposition. ll
Corollary 9.5. Suppose the admissible radius verifies Vx € M, R(x) > § > 0, and suppose also

hypothesis (HL2,p). Take v’ > 2, then we have the direct decomposition given by linear operators
L(M) N LAM) = H2NH, & AW (M)).

Proof.
The classical CZI true in this case by corollary [[.3] gives
vr, 1<r <oo, |[ullyzrar < Cillullpr o + Coll Aull prar)-
Sou € WE’T,(M)) =u € W;’T/(M)) and we get the decomposition
L(M)NLA(M) = HENH) + A(W2T (M)).
Now let us prove the uniqueness.
We have the decomposition (9.31))
Yw € L;/(M) N L;(M), w=h+ Au,
with € H2(M) NH (M) and u € W™ (M).
By (HL2,p) we have
FveW2HM) :: Av=w :=w—h.
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But Av = Au = @, so if there is another such decomposition
w="h+Ad =h+ A

then
O=h—h+Au—-u)=h—-"+Aw-1"),

Still with v — o’ € W;’Q(M). So changing names we have

O=h+Au=h+Av (9.32)

with h € H2(M) and v € W2*(M).
Again Av = da+ d*f with a = d*v € Wpl’_21(M) and f = d'v € Wplfl(M) and by lemma [0.1] we get
(da, b)Y + (d*B,h) =0, so (Av, h) = 0.
Hence (Au, h) = (Av, h) = 0. But by ([©0.32)) we have
0= (h,h) + (Au, h) so [|hf| 2y = 0= h =0

which ends the proof of uniqueness.

The admissible radius verifies Vo € M, R(z) > § > 0, if, for instance, the Ricci curvature of M
is bounded and the injectivity radius is strictly positive [13].

We also have

Corollary 9.6. Let r < 2, and, with k :: Si(r) > 2, set wo = R(2)™* and suppose the riemannian
volume is finite and hypothesis (HL2,p). We have the direct decomposition given by linear operators

L0(M, wg) = H2 & A(W2(M)).

Here the weight o is no longer necessary because the volume being finite, if a form is in L?(M)
then it is already in L"(M). B

Corollary 9.7. Letr < 2 and choose a weight « € L>® (M) such that y(c,r) < oo ; with k = Sg(r) >
2, set wy = R(x)7%, and suppose we have hypothesis (HL2,p). We have the direct decompositions
giwen by linear operators

L (M, wg) = He & d(W, " (M, o)) & d* (W, " (M, ).
With r' > 2 the conjugate exponent of r, and adding the hypothesis that the ey admissible radius is
bounded below, we get

LU(M)NLAM) =H N Hy @ d(Wy" (M) & d* (W, (M)).

Proof.
For the first part, we have, by (0.30) : Yw € L (M, wy),
w=—Ho+ Au—Af,
with Ho € H2(M), uw e W2(M) and f € W2*(M). Again
Au = dy+d*B, with v € W,”",(M) and 8 € W, (M),
and
Af =dy +d*8, with v € W, (M) and 8’ € W, 2 (M),
Hence
w=htdly—)+d'(F - §)
With the weight o we get v € Wpl’_rl(M) =7 € Wpl’_rl(M, «) and the same for 5. And also
v € Wpl’_zl(M) = € Wpl’_rl(M, «) and the same for 5'. So, setting p:=~v—+/, § = f— ', we have
the decomposition
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w € LN(M,w) = w = h+ du+ d*3,
with i € H2(M) NHL(M, ), p€ W, (M, a), § € W,y (M, a).

For the uniqueness, suppose that
0=h+d(y—9)+d(B-8),
by use of lemma 0.1 we get (d~y, h) + (d*58,h) = 0 and also {(dv', h) + (d*B',h) =0, so h = 0. So we
have
0=d(y—7)+d(B—-F).
This implies that

dy+d*B = dy +d*B, (9.33)

hence
dy+d*B e L(M)n Li(M) ; dy +d*B e Ly(M)N L;(M),
because
dy+d'B e L (M) and dy +d*8 € L2(M).
Now take ¢ € D,(M), because (HL2,p) is true we have the L* decomposition :
o= Hp+dyu+ d*s with p, 6 € WhH2(M).
We have
(dy=7) ) = (dy =), Ho + du+ d"9) ;
by use of lemma [0.1] we get (d(y — '), Hp) = 0. By density we have p = lim ,_oopir, 7% € Dp_1
and 0 = lim 000k, Ox € Dpiq, the convergence being in WYA(M), so dpp = lim j_,edpyy, and
d*0 = lim 4_,ood™0, In Lf,(M). So we get
(d(y =), dp+d*0) =lm joo(d(y =), dps, + d*Oy).
But
Vk € N7 <d(fy - 7/>7 d*5k> = <(f7 - 7/>7 d*26k> =0
because d* is the formal adjoint of d and d*dj, has compact support and d** = 0. So
(diy =7"), ) =lim oo(d(y =), dpr).
With (0.33) we get
Wk € N, (d(y — ), dpw) — (d°(8 — &), dug) = 0,

Vk € N> <d*(ﬁ - 6/)’dlu“k> = 07
because d* is the formal adjoint of d, dv; has compact support and d*> = 0. So
Vk €N, (d(y —'),du) =0,
which gives
(d(y =", ¢) = im joo{d(y — "), dp) = 0,
and this being true for any ¢ € D,(M), we get d(y—~") = 0 ; this gives with (@.33)) d*(5— ') = 0.

and

For the second case we already have , by theorem [0.3]plus CZI given by corollary[7.3] w = Hw+Au
with u € W»"(M). Now Au = d(d*u) + d*(du) = dy + d*8, with v = d*u € Wplfll(M) and
f=due W;’_Tll(M ). This gives the decomposition.

For the uniqueness the proof is exactly the same as above, so we are done. B
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9.1 Non classical weak L" Hodge decomposition.

Now we shall need another hypothesis :
(HWr) if the space D, (M) is dense in WS’T(M).
We already know that (HWr) is true if :
e cither : the injectivity radius is strictly positive and the Ricci curvature is bounded [[12] theorem
2.8, p. 12].
e or : M is geodesically complete with a bounded curvature tensor [[I1] theorem 1.1 p.3|.
We have a non classical weak L" Hodge decomposition theorem :

Theorem 9.8. Suppose that (M, g) is a complete riemannian manifold, fir r < 2 and choose a
bounded weight a with v(a,r) < oo.
Take k with Si(r) > 2, and set the weight wo := R(x)™?*. Suppose we have (HL2,p) and (HW?2) ;
then

Ly (M, o) = H (M, o) © A(Dy(M)),
the closure being taken in L™ (M, «).

Proof.
Take w € Lj(M, a). By density there is a we € Dp(M) such that |Jw — well ;- (pr0) <€
Then, because w, € D,(M), we have w, € Ly (M, wg) hence by RSM :
Vs >, Jue € Ly(M) N LN (M) 0 Ave = we + @,
with s1 := Sy(r), @& € L;(M ). Moreover, because w, is of compact support, so are v, and @..
Taking s = 2, by (HL2,p) there is a f, € W2*(M) =: Afe = & — Ha..
By (HW2) there is a gc € Dp(M) :: || fe = gellyr22(ay < € and this implies
|Af — AQEHL?(M) <€
Now we set u, := v. — ¢, then u, is of compact support and we have
Aue = Ave — Age = Ave — Afe+ (Afe — Age) = we + 0 — & + HOe + B, = w. + HO. + E.,
where we set E, := Af. — Ag..
So we get
w=—-Ho.+ Au + (w — w,) + E..
Because y(a, ) < o0, we get [|Eell - a0y < CllAfe = Agell2(py < Ce. For the same reason we
have Ho. € H (M) C H) (M, ), so we get w € H (M, o) + A(D,(M)), the closure being taken in
L"(M, ).

For the uniqueness we proceed as before. We have to show that if 0 = klim (hi + Auy) with
—00
he € HL(M) C H)(M, ) and w, € D,y(M), the convergence in L'(M, ), then klim hi, = 0 and
— 00
lim Awug = 0.
k—00

We have Auy, = dyg, + d* By, with v, = d*uy, € Dy (M), and By, = duy, € Dp—1(M). So we can apply
lemma to get
Vk, (hi,dyr) = (b, d"Br) = 0,
hence
lim (hy, hy) = 0= lim hy = 0 and hence lim Au; =0. R
k—o0 k—o0 k—o0
We also have a weak L" Hodge decomposition without hypothesis (HWr) :

Theorem 9.9. Suppose that (M,g) is a complete riemannian manifold and suppose we have
(HL2,p). Fizr <2 and take a weight a verifying v(c,r) < oco. Then we have
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Ly(M, ) = Hy (M, @) © d(Dy-1(M)) ® d*(Dps1(M)),
the closures being taken in L™ (M, «).

Proof.
We start exactly the same way as for theorem to have
ve € L(M)N L} (M) : Ave = we + &,
and
fe € Wﬁ’z(M) D Af, =0 — Ha..
Now we set directly u. := v, — f. = Au, = w. + H@.. The point here is that u. is not of compact
support because f. is not.
Nevertheless we have :

w=—-Ho+ (Hoe + we) + (w — we) = —Ho + Aue + (w — we). (9.34)

But we can approximate d*u, by 7. € D(M) in W?(M), and du, by 8. € D(M) in W"?(M), and
this is always possible by theorem 2.7, p. 13 in [12]. So we have
Hd*ue - fYEHWlﬂ(M) <€, Hdue - 5&||W1»2(M) < €.
And this implies
||Aue - d7€ - d*BEHLg(M) < 2= ||Au€ - d7€ - d*BEHL;(M,a) < 206’
because y(a, ) < oo. As above we have Ho, € H, (M, ) so putting all this in ([0.34) we get
w € Hy(M, @) + d(Dp—1(M)) + d*(Dps1(M)),
the closure being taken in L (M, a).
The proof of the uniqueness is exactly as in the proof of theorem [0.8] so we are done. B

Remark 9.10. It seems not "geometrically natural” to take the closure of d*(Dy+1(M)) with respect
to L,(M, ) because here the adjoint of d, d*, is taken with respect to the volume measure without
any weight. Nevertheless this is "analytically” correct and we get nothing more here. This is why
we call the two previous results "non classical”.

For the case r > 2 we need a stronger hypothesis, namely that the ¢y admissible radius is bounded
below. Then we get a classical weak Hodge decompositions for r > 2.

Theorem 9.11. Suppose that (M, g) is a complete riemannian manifold and suppose the €y admis-
sible radius verifies Vx € M, R(x) > § > 0, suppose (HWr) and suppose also hypothesis (HL2,p).
Fix r > 2, then we have

L(M) =H, (M) ® A(D,(M)).
Without (HWr) we still get

Li(M) = H;(M) & d(D, () & & (Dys (W)
All the closures being taken in L™(M).

Proof.
Take w € Ly (M), then by density there is a w. € D,(M) such that |[w —we|[;rpy < € This
implies, because r > 2 and w, is compactly supported, that w, € L"(M) N L*(M). So we have
Hw, € L*(M) = Hw, € L"(M) by corollary 6.9
So let ¢, := w, — Hw, € L"(M) N L*(M), we have Hp. = 0 hence by corollary B4 we have
Jue € L'(M,wh) "W (M) = Aue = ¢
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So if we have (HWr) then Jv. € D,(M) such that |[ue — Ve[l (ny) < € and this implies
[Aue = Ave|l ) < €.
Now we can write
w=Hw+(w-—w)+(we—Hw.) = Hu.+ (w—w,) + Au. = Hw.+ (w—w,) + Ave+ (Aue — Av,).
The term E, := (w — we) + (Aue — Av,) is an error term small in L"(M) so we get
w= Hw, + Av. + E., with Hw, € L"(M) N L*(M), v. € D,(M), [ Eell - ary < 2€
So we have the decomposition :
L(M) =H, (M) ® A(D,(M)).
the closures being taken in L"(M).
Without (HWr) we approximate d*u. by 7. € D(M) in W' (M), and du, by 8. € D(M) in
W"(M), and this is always possible by theorem 2.7, p. 13 in [12]. So we have
||d*u6 — ’YEHWLT-(M) < €, ||du€ - /BEHWL""(M) < €.
And this implies
|Aue — dye — d*ﬂeHL;(M) < 2e.
So we have
w=Hw+ (w—w) + Au. = Hw, + (w — we) + dvy. + d* 5. + (Aue — dye — d*5e).
The term E. := (w — w,) + (Au, — dy. — d* ). is an error term small in L" (M) so we get
w = H(A)E + dr}/g -+ d*ﬁe + EE7
with
Hw. € L"(M) N L*(M), 7e € Dps1(M), Be € Dpr(M), |Eellprary < 2e.
So we have the decomposition :
LL(M) = (M) & d(D, (W) & & (D, (W),
the closures being taken in L"(M).
The proof of the uniqueness is a slight modification of the proof of corollary 0.5 so we are done.
|

Remark 9.12. By theorem 1.3 in Hebey [12], we have that the harmonic radius ry(1+ €, 2,0) is
bounded below if the Ricci curvature Re verifies |V Rcl||, < oo and the injectivity radius is bounded
below. This implies that the € admissible radius is also bounded below.

Moreover if we add the hypothesis that the Ricci curvature Rc verifies 30 € R :: Re > 0 then by
Proposition 2.10 in Hebey [12], we have hypothesis (HWr).
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