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On the Lr Hodge theory in complete non compact

riemannian manifolds.

Eric Amar

Abstract

We study solutions for the Hodge laplace equation ∆u = ω on p forms with Lr estimates

for r > 1. Our main hypothesis is that ∆ has a spectral gap in L2. We use this to get Lr Hodge

decomposition theorems. An interesting feature is that our decompositions are completely

independent of the boundedness of the Riesz transforms in Ls.

These results are based on a generalisation of the Raising Steps Method to complete non

compact riemannian manifolds.
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1 Introduction.

Suppose you are interested by solving an equation Du = ω, in a k :: Sk(r
′) ≥ 2, manifold M

with estimates of type Lebesgue Lr or Sobolev W d,r ; you know to solve it globally with estimates
Ls → Ls and locally with estimates Lr → Lt with a strict increase of the regularity, for instance
1

t
=

1

r
− δ, δ > 0 for any r ≤ s, then the Raising Steps Method (RSM for short) gives a global

solution v of Dv = ω which is essentially in Lt(M) for ω ∈ Lr(M).
I introduced this method in [1] to get solutions for the ∂̄ equation with good estimates in relatively

compact domains in Stein manifold. I extend it to linear partial differential operator D of any finite
order m in [2] and I apply it to study the Poisson equation for the Hodge laplacian on forms in
spaces Lr(M) where (M, g) is a compact riemannian manifold. This gave Lr Hodge decomposition
theorems as was done by C. Scott [17], but by an entirely different approach.

The aim of this work is to extend it to the case of complete non compact riemannian manifold.

1.1 Solutions of the Poisson equation for the Hodge laplacian.

Let (M, g) be a C∞ smooth complete riemannian manifold with metric tensor g and n = dimM ≥
3 ; let d be the exterior derivative, d∗ its formal adjoint with respect to the Riemannian volume
measure dvg =

√

detgdx, where dx is the Lebesgue measure in the chart x, and ∆ = ∆p := dd∗+d∗d
the Hodge laplacian acting on p forms. Let Lr

p(M) be the space of p forms on M in the Lebesgue
space Lr(M).

We get the local solution of the Hodge Laplacian ∆u = ω in a ball B(x,R) in (M, g) with a
radius R(x) small enough to make this ball "conformal" to a ball in the euclidean space R

n ; this
conformal radius is a special case of the "harmonic radius" of Hebey and Herzlich [12]. If ω is a p
form in Lr(B(x,R)) then we get a p form solution u in the Sobolev space W 2,r(B(x, r)) of the ball,

hence in Lt(B(x,R)) with
1

t
=

1

r
−

2

n
. This is done classically by use of the Newtonian potential.

So the first assumption for the RSM is true, we have a strict increase of the regularity.
In order to get global solutions we need to cover the manifold M with our conformal balls and

for this we use a classical "Vitali type covering" with a uniformly finite overlap. We shall denote it
by C.

When comparing non compact M to the compact case treated in [2], we have two important
issues :

(i) the conformal radius may go to 0 at infinity, which is the case, for instance, if the canonical
volume measure dvg of (M, g) is finite ;

(ii) if dvg is not finite, which is the case, for instance, if the conformal radius is bounded below,
then p forms in Lt

p(M) are generally not in Lr
p(M) for r < t.

We address these problems by use of adapted weights on (M, g). These weights are relative to
the covering C : they are positive functions which vary slowly on the balls of the covering C.

To deal with the problem (i) we use a weight w0(x) = R(x)−k for an adapted integer k, where
R(x) is the conformal radius at the point x ∈M.

To deal with the problem (ii) we use a weight w(x) with the property that, with a t < 2,
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γ(w, t) :=

∫

M

w
2t
2−tdvg <∞.

In this case we get L2
p(M) ⊂ Lt

p(M,w).

We define the Sobolev spaces W d,r
p (M) of (M, g) following E. Hebey [11], and we set Sk(r) ::

1

Sk(r)
=

1

r
−
k

n
. Then our first result is Calderon Zygmund inequalities (CZI) with weight, gener-

alizing results in [10].

Theorem 1.1 Let w be a weight relative to the covering C and u ∈ Lr
p(M,w) such that ∆u ∈

Lr
p(M,w) then there are constants c1, c2 depending only on n = dimRM, and r such that if u, ∆u ∈

Lr
p(M,w) then u ∈ W 2,r

p (M,w) and :
‖u‖W 2,r(M,w) ≤ c1‖u‖Lr(M,w) + c2‖∆u‖Lr(M,w).

Moreover we have for t = S2(r), r <
n

2
, that u ∈ Lt

p(M,w) with ‖u‖Lt(M,w) ≤ c‖u‖W 2,r(M,w).

We set Hr
p(M) := Lr

p(M) ∩ ker∆p, the space of harmonic p forms in Lr(M).
We set our main hypothesis :

(HL2,p) ∆ = ∆p has a spectral gap in L2
p(M), i.e. there is no spectrum of ∆p in an interval (0, η)

with η > 0.
The (HL2,p) assumption is known to be true in the case of the hyperbolic manifold H

2n of
dimension 2n for any value of p ∈ {0, 2n}. For p 6= n the space H2

p is reduced to 0. For H
2n+1 the

(HL2,p) is valid for p 6= n and p 6= n + 1 and, out of these two cases, the space H2
p is reduced to 0

as was proved by Donnelly [6].
When Ric(M) ≥ −c2 and M is open at infinity then 0 /∈ Sp∆0 by a result of Buser, see Lott [16],

proposition 6, p. 353, hence (HL2,0) is true. If M is a normal covering of a compact manifold X
with covering group Γ, then 0 /∈ Sp∆0 iff Γ is not amenable by a result of Brooks, see Lott [16],
corollary 3, p. 354, for precise references. Hence (HL2,0) is true if Γ is not amenable.

For r = 2, there is the orthogonal projection H from L2
p(M) on H2

p(M) ; we shall prove that
this projection extends to Lr(M,wr

0), i.e. H : Lr(M,wr
0) → H2

p(M) boundedly and we get the
following results on solutions of the Poisson equation.

Theorem 1.2 Suppose that (M, g) is a complete riemannian manifold ; choose a weight w ∈
L∞(M) verifying for t = S2(r), r < 2, γ(w, t) <∞, and suppose we have the condition (HL2,p).

Then with k :: Sk(r) ≥ 2, and w0(x) := R(x)−k, for any ω ∈ Lr(M,wr
0) verifying Hω = 0, there is

a u ∈ Lr
p(M,w)∩Lt

p(M,w), t = S2(r), such that ∆u = ω. Moreover the solution u is given linearly
with respect to ω.

Setting r′ for the conjugate exponent for r,
1

r′
+

1

r
= 1, by duality from theorem 1.2, we get

Theorem 1.3 Suppose that (M, g) is a complete riemannian manifold ; suppose we have r < 2 and
(HL2,p), then with k :: Sk(r) ≥ 2, and w0(x) := R(x)−k, for any ϕ ∈ L2

p(M) ∩ Lr′

p (M), Hϕ = 0,

there is a u ∈ Lr′(M,wr
0) such that ∆u = ϕ. This solution is linear with respect to ϕ.

Moreover we have u ∈ W 2,r′

p (M) with control of the norm.
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1.2 Hodge decomposition in Lr spaces. Known results.

In 1949, Kodaira [13] proved that the L2 -space of p -forms on (M, g) has the orthogonal decom-
position :

L2
p(M) = H2

p ⊕ dDp−1(M)⊕ d∗Dp+1(M),

and in 1991 Gromov [9] proved a strong L2 Hodge decomposition, under the hypothesis (HL2,p) :
L2
p(M) = H2

p ⊕ dW 1,2
p−1(M)⊕ d∗W 1,2

p+1(M).
In 1995 Scott [17] proved a strong Lr Hodge decomposition but on compact riemannian manifold

Lr
p(M) = Hr

p ⊕ dW 1,r
p−1(M)⊕ d∗W 1,r

p+1(M).

Let d∗ϕ be the formal adjoint of d relatively to the measure dµ(x) = e−ϕ(x)dvg(x), where ϕ ∈ C2(M),
and let ∆ϕ,p := dd∗ϕ + d∗ϕd acting on p forms. Setting ∆ = Tr∇2 the covariant Laplace Beltrami
operator acting on p forms and L = ∆ − ∇ϕ · ∇, then, in 2009 X-D. Li [14] proved, among other
nice results, a strong Lr Hodge decomposition on complete non compact riemannian manifold :

Theorem 1.4 (X-D. Li) Let r > 1, r′ =
r

r − 1
. Let (M, g) be a complete riemannian manifold,

ϕ ∈ C2(M), and dµ(x) = e−ϕ(x)dvg(x). Suppose that the Riesz transforms d∆−1/2
ϕ,p and d∗∆−1/2

ϕ,p are

bounded in Lr and Lr′, and the Riesz potential is bounded in Lr. Suppose also that (M, g) is L
stochastically complete, then the strong Lr Hodge direct sum decomposition holds on p forms :

Lr
p(M,µ) = Hr

p(M,µ)⊕ dW 1,r
p−1(M,µ)⊕ d∗ϕW

1,r
p+1(M,µ).

These results are valid for the family of weights ϕ ∈ C2(M) and for the Hodge laplacian associated
to them, in the Witten sense [20].

1.3 Hodge decomposition in Lr spaces. Main results.

The results of X-D. Li are based on the boundedness of the Riesz transforms in Lr and Lr′ and
the results we get use only the spectral gap hypothesis (HL2,p). In this way they may appear to
be the natural generalisation of Gromov results from L2 to Lr. On the other hand our results are
proved only in the case ϕ = 0.

To get these decomposition theorems we shall apply our results on solutions of the Poisson
equation. Recall that H : Lr(M,wr

0) → H2
p(M) boundedly, where H is the orthogonal projection

from L2
p(M) on H2

p(M), and this explain the appearance of H2
p(M) in the following theorem.

Theorem 1.5 Let r < 2 and choose a weight w ∈ L∞(M) such that γ(w, r) <∞ ; with k :: Sk(r) ≥
2, set w0 = R(x)−k, and suppose we have hypothesis (HL2,p). We have the decompositions given by
linear operators

Lr
p(M,wr

0) = H2
p ⊕∆(W 2,r

p (M,w)).
With r′ > 2 the conjugate exponent of r,

Lr′

p (M) ∩ L2
p(M) = H2

p ∩ Hr′

p ⊕∆(W 2,r′

p (M)).
The ⊕ means that we have uniqueness in these decompositions, i.e. they are direct decompositions.

As a corollary we get
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Corollary 1.6 Let r < 2 and choose a weight w ∈ L∞(M) such that γ(w, r) <∞ ; with k :: Sk(r) ≥
2, set w0 = R(x)−k, and suppose we have hypothesis (HL2,p). We have the direct decompositions
given by linear operators

Lr
p(M,wr

0) = H2
p ⊕ d(W 1,r

p (M,w))⊕ d∗(W 1,r
p (M,w)).

With r′ > 2 the conjugate exponent of r,
Lr′

p (M) ∩ L2
p(M) = H2

p ∩ Hr′

p ⊕ d(W 1,r′

p (M))⊕ d∗(W 1,r′

p (M)).

We also have a weak Lr Hodge decomposition.

Theorem 1.7 Suppose that (M, g) is a complete riemannian manifold and suppose we have (HL2,p).
Take a weight w verifying γ(w, r) <∞ for r < 2.

Then we have
Lr
p(M) = Hr

p ⊕ d(Dp(M))⊕ d∗(Dp(M)),
the closure being taken in Lr(M,w).

Remark 1.8 In the case s > 2 we get the decomposition
Ls
p(M) ∩ L2

p(M) = H2
p ∩Hs

p ⊕ d(W 1,s
p (M))⊕ d∗(W 1,s

p (M)),

which applies for Ls
p(M)∩L2

p(M) and the intersection with L2
p(M) may seem strange but in fact it is

necessary by a result of N. Lohoué [15] : in the hyperbolic space H
4, which fulfils all our assumptions

i.e. for any p = 0, ..., 4, ∆p has a spectral gap, he proved that, for s big enough, there is not even a
weak decomposition of Ls

p(M). He also proved that the Riesz transforms are not bounded on Ls(M)
for s big enough and, because our decomposition is still valid, this proves that there is a priori no
link between our results and the boundedness of the Riesz transforms.

So a striking point in this work is the independence of our Lr Hodge decompositions with respect
to the boundedness of the Riesz transforms.

This work will be presented in the following way.
In the section 2 we define the conformal balls and the conformal radius and the basic facts relative

to them.
In section 3 we use a Vitali type covering lemma with our conformal balls and we prove that its

overlap is finite.
In section 4 we define the Sobolev spaces, following E. Hebey [11].
In section 5 we prove the local estimates for the Hodge Laplacian. This is essentially standard

by use of classical results from Gilbarg and Trudinger [8].
In section 6 we develop the Raising Steps Method in the non compact case. The useful weights

are defined here.
We prove Calderon Zygmund inequalities with weights and we use them to get the RSM theorem

which is at the basis of our results.
In section 7 we deduce the applications to the Poisson equation associated to the Hodge Laplacian.

We use these solutions to get strong Lr Hodge decomposition theorems. We also get a weak Lr

Hodge decomposition theorem.
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2 Basic facts.

Definition 2.1 Let (M, g) be a riemannian manifold and x ∈ M. We shall say that the geodesic
ball B(x,R) is ǫ conformal if there is a chart ϕ : (x1, ..., xn) defined on it with

1) (1− ǫ)δij ≤ gij ≤ (1 + ǫ)δij in B(x,R) as bilinear forms,

2)
∑

|β|=1

sup i,j=1,...,n, y∈Bx(R)

∣

∣∂βgij(y)
∣

∣ ≤ ǫ.

Definition 2.2 Let x ∈ M, we set R′(x) = sup {R > 0 :: B(x,R) is ǫ conformal}. We shall say
that Rǫ(x) := min (1, R′(x)) is the ǫ conformal radius at x.

This is a special case of the harmonic radius of Hebey and Herzlich [12].
Of course for any ǫ > 0, x ∈M, taking gij(x) = δij in a chart on B(x,R) and the radius R small

enough, the ball B(x,R) is ǫ conformal.
We shall use the following lemma.

Lemma 2.3 Let (M, g) be a riemannian manifold then with R(x) = Rǫ(x) and d(x, y) the rie-
mannian distance on (M, g) :

d(x, y) ≤
1

4
(R(x) +R(y)) ⇒ R(x) ≤ 4R(y).

Proof.

Let x, y ∈ M :: d(x, y) ≤
1

4
(R(x) + R(y)) and suppose for instance that R(x) ≥ R(y). Then

y ∈ B(x,R(x)/2) hence the ball B(y, R(x)/4) ⊂ B(x,
3

4
R(x)). But by definition of R(x), the ball

B(x,
3

4
R(x)) is conformal and this implies that the ball B(y, R(x)/4) is also conformal for exactly

the same constants and the same chart ; this implies that R(y) ≥ R(x)/4. �

3 Vitali covering.

Lemma 3.1 Let F be a collection of balls {B(x, r(x))} in a metric space, with ∀B(x, r(x)) ∈
F , 0 < r(x) ≤ R. There exists a disjoint subcollection G of F with the following property :

every ball B in F intersects a ball C in G and B ⊂ 5C.

This is a well known lemma, see for instance [7], section 1.5.1.

So fix ǫ > 0 and let ∀x ∈ M, r(x) := Rǫ(x)/120, where Rǫ(x) is the conformal radius at x,
we built a Vitali covering with the collection F := {B(x, r(x))}x∈M . So lemma 3.1 gives a disjoint
subcollection G such that every ball B in F intersects a ball C in G and we have B ⊂ 5C. We
set G ′ := {xj ∈ M :: B(xj , r(xj)) ∈ G} and Cǫ := {B(x, 5r(x)), x ∈ G ′} : we shall call Cǫ the ǫ
conformal covering of (M, g).
Then we have :
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Proposition 3.2 Let (M, g) be a riemannian manifold, then the overlap of the ǫ conformal cov-

ering Cǫ is less than T =
(1 + ǫ)n/2

(1− ǫ)n/2
(120)n, i.e.

∀x ∈M, x ∈ B(y, 5r(y)) where B(y, r(y)) ∈ G for at most T such balls.

Proof.

Let Bj := B(xj , r(xj)) ∈ G and suppose that x ∈

k
⋂

j=1

B(xj , 5r(xj)). Then we have

∀j = 1, ..., k, d(x, xj) ≤ 5r(xj)
hence

d(xj , xl) ≤ d(xj, x) + d(x, xl) ≤ 5(r(xj) + r(xl)) ≤
1

4
(R(xj) +R(xl)) ⇒ R(xj) ≤ 4R(xl).

So we get
∀j, l = 1, ..., k, r(xj) ≤ 4r(xl).

Now the ball B(xj , 5r(xj) + 5r(xl)) contains xl hence the ball B(xj , 5r(xj) + 6r(xl)) contains the
ball B(xl, r(xl)). But, because r(xl) ≤ 4r(xj), we get

B(xj , 5r(xj) + 6×4r(xj)) = B(xj , r(xj)(5 + 6×4)) ⊃ B(xl, r(xl)).
The balls in G being disjoint, we get

k
∑

j=1

Vol(Bl) ≤ Vol(B(xj , (5 + 6×4)r(xj))).

The Lebesgue measure read in the chart ϕ and the canonical measure dvg on B(x,Rǫ(x)) are
equivalent ; precisely because of condition 1) in the conformal radius definition, we get that :

(1− ǫ)n ≤ |detg| ≤ (1 + ǫ)n,
and the measure dvg read in the chart ϕ is dvg =

√

|detgij|dξ, where dξ is the Lebesgue measure in
R

n. In particular :
∀x ∈M, Vol(B(x, Rǫ(x))) ≤ (1 + ǫ)n/2νnR

n,
where νn is the euclidean volume of the unit ball in R

n.
Now because R(xj) is the conformal radius and 4(5 + 6×4)r(xj) < R(xj), we have

Vol(B(xj, (5 + 6×4)r(xj))) ≤ (1 + ǫ)n/2vn(5 + 6×4)nr(xj)
n.

On the other hand we have also
Vol(Bl) ≥ vn(1− ǫ)n/2r(xl)

n ≥ vn(1− ǫ)n/24−nr(xj)
n,

hence
k
∑

j=1

(1− ǫ)n/24−nr(xj)
n ≤ (1 + ǫ)n/2(5 + 6×4)nr(xj)

n,

so finally

k ≤
(1 + ǫ)n/2

(1− ǫ)n/2
((5 + 6×4)4)n,

which means that T ≤
(1 + ǫ)n/2

(1− ǫ)n/2
(120)n. �

4 Sobolev spaces.

We have to define the Sobolev spaces in our setting, following E. Hebey [11], p. 10.
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First define the covariant derivatives by (∇u)j := ∂ju in local coordinates, while the components
of ∇2u are given by

(∇2u)ij = ∂iju− Γk
ij∂ku,

with the convention that we sum over repeated index. The Christoffel Γk
ij verify [3] :

Γk
ij =

1

2
gil(

∂gkl
∂xj

+
∂glj
∂xk

−
∂gjk
∂xl

).

If k ∈ N and r ≥ 1 are given, we denote by Cr
k(M) the space of smooth functions u ∈ C∞(M) such

that
∣

∣∇ju
∣

∣ ∈ Lr(M) for j = 0, ..., k. Hence

Cr
k(M) := {u ∈ C∞(M), ∀j = 0, ..., k,

∫

M

∣

∣∇ju
∣

∣

r
dvg <∞}

Now we have [11]

Definition 4.1 The Sobolev space W k,r(M) is the completion of Cr
k(M) with respect to the norm :

‖u‖W k,r(M) =
k
∑

j=0

(
∫

M

∣

∣∇ju
∣

∣

r
dvg

)1/r

.

We shall be interested only by k ≤ 2 and we extend in a natural way this definition to the case
of p forms.

Definition 4.2 We shall define the Sobolev exponents Sk(r) by
1

Sk(r)
:=

1

r
−
k

n
.

The k th Sobolev embedding is true if we have
∀u ∈ W k,r(M), u ∈ LSk(r)(M).

This is the case in R
n, or if M is compact, or if M has a Ricci curvature bounded from below and

inf x∈Mvg(Bx(1)) ≥ δ > 0, due to Varopoulos [19], see [11] theorem 3.14, p. 31.

5 Local estimates for the laplacian.

Lemma 5.1 Let U be a domain in R
n and suppose that D = ∆ + A, where ∆ is the standard

laplacian in U acting on p forms and A is a second order partial differential (system) operator such
that :

∀c > 0, ∃V ⊂ U, ∀u ∈ W 2,r
p (V ), ‖Au‖Lr(V ) ≤ c(‖∆u‖Lr(V ) + ‖∇u‖Lr(V )).

Then there is a V ⊂ U and a C > 0 depending only on n and r such that :
∀γ a p form in Lr

p(V ), ∃v ∈ W 2,r
p (V ) :: Dv = γ and ‖v‖W 2,r ≤ C‖γ‖Lr(V ),

and the constant C depending only on n and r.
Moreover there is a bounded linear operator T : Lr

p(V ) →W 2,r
p (V ) such that v = Tγ.

Proof.
We know that ∆ operates component-wise on the p form γ ∈ Lr

p(U), so we have
∀γ ∈ Lr

p(U), ∃v0 ∈ W 2,r(U) :: ∆v0 = γ, ‖v0‖W 2,r(U) ≤ C‖γ‖Lr(U),
simply setting the component of v0 to be the Newtonian potential of the corresponding component
of γ in U, these non trivial estimates coming from Gilbarg and Trudinger [8], Th 9.9, p. 230 and
the constant C = C(n, r) depends only on n and r.
Clearly v0 is linear in γ.
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We start with γ ∈ Lr
p(U) and we solve ∆ :

∃v0 ∈ W 2,r(U) :: ∆v0 = γ, ‖v0‖W 2,r(U) ≤ C‖γ‖Lr(U) ;
so we get ∆v0 + Av0 = γ + γ1, with

γ1 = Av0 ⇒ ‖γ1‖Lr(U) ≤ c(‖∆Rv0‖Lr(U) + ‖∇v0‖Lr(U)).
Because ‖v0‖W 2,r(U) ≤ C‖γ‖Lr(U), we have ‖v0‖W 1,r(U) ≤ C‖γ‖Lr(U), with the same constant C
hence ‖∇v0‖Lr(U) ≤ C‖γ‖Lr(U). So :

‖γ1‖Lr(U) ≤ c(‖∆v0‖Lr(U) + ‖∇v0‖Lr(U)) ≤ c(1 + C)‖γ‖Lr(U).
Set η := c(1 + C), then we get ‖γ1‖Lr(U) ≤ η‖γ‖Lr(U).
We solve ∆ again, still linearly in γ1,

∃v1 ∈ W 2,r
p (U) :: ∆v1 = γ1, ‖v1‖W 2,r(U) ≤ C‖γ1‖Lr(U) = Cη‖γ‖Lr(U),

and we set
γ2 := Av1 ⇒ ‖γ2‖Lr(U) ≤ c(‖∆v1‖Lr(U) + ‖∇v1‖Lr(U)) = η‖γ1‖Lr(U) ≤ η2‖γ‖Lr(U).

And by induction :
∀k ∈ N, γk := Avk−1 ⇒ ‖γk‖Lr(U) ≤ η‖γk−1‖Lr(U) ≤ ηk‖γ‖Lr(U).

and
∃vk ∈ W 2,r

p (U) :: ∆Rvk = γk, ‖vk‖W 2,r(U) ≤ C‖γk‖Lr(B) ≤ Cηk‖γ‖Lr(B).
Now we take c such that η = c(1 + C) = 1/2 and the associated open set V ⊂ U and we set

v :=
∑

j∈N

(−1)jvj,

this series converges in norm W 2,r
p (V ) and we have

Dv = ∆v + Av =
∑

j∈N (−1)j(∆vj + Avj) = γ,
the last series converging in Lr

p(V ).
All the steps are linear, hence we proved the lemma. �

Lemma 5.2 For x ∈M, ǫ > 0, we suppose that we have a ǫ conformal ball Bx(R).
Then there is a ǫ0 > 0, hence a R > 0, and a constant C depending only on n = dimRM, r and ǫ0
such that :

∀ω ∈ Lr(Bx(R)), ∃u ∈ W 2,r(Bx(R)) :: ∆u = ω, ‖u‖W 2,r(Bx(R)) ≤ C‖ω‖Lr(Bx(R)).
Moreover u is linear in ω.
We also have a Calderon Zygmund inequality : there are constants c1, c2 depending only on n =
dimRM, r and ǫ0 such that

R′ = R/2, ∀u ∈ W 2,r(Bx(R)), ‖u‖W 2,r(Bx(R′)) ≤ c1‖u‖Lr(Bx(R)) + c2‖∆u‖Lr(Bx(R)).

Proof.
For x ∈ M we take ǫ > 0, the ǫ conformal ball Bx(R) and we take the chart ϕ : (x1, ..., xn) such
that

1) (1− ǫ)δij ≤ gij ≤ (1 + ǫ)δij in Bx(R) as bilinear forms,

2)
∑

|β|=1

sup i,j=1,...,n, y∈Bx(R)

∣

∣∂βgij(y)
∣

∣ ≤ ǫ.

Of course the operator d on p forms is local and so is d∗ as a first order differential operator.
So the Hodge laplacian ∆ϕ read by ϕ in U := ϕ(Bx(R)) is still a second order partial differential

system of operators and with ∆R the usual laplacian in R
n acting on forms in U, we set :

Aωϕ := ∆ϕωϕ −∆Rωϕ,

9



where ωϕ is the p form ω read in the chart (Bx(R), ϕ) and A is a matrix valued second order
operator with C∞ smooth coefficients such that A := ∆ϕ −∆R : W 2,r(U) → Lr(U).

This difference A is controlled by the derivatives of the metric tensor up to order 1 :
for instance for function f we have in the chart ϕ :

∆ϕf =
1

√

det(gij)
∂i(g

ij
√

det(gij)∂jf) = gij∂2ijf + Y0f,

where Y0 is a first order differential operator depending on g and its first derivatives ;
more generally for a k form u, still in the chart ϕ, [18] formula 21.23, p. 169, gives

∆ϕu = gij(x)∂2iju+ Yku,
where Yk is a first order differential operator.
So ∆ϕ depends on first order derivatives of g hence the difference A := ∆ −∆R, where ∆Ru(y) =
δij∂2iju(y), is controlled by the first order derivatives of g.
So we have

|A(u)(y)| ≤
∣

∣(gij(y)− δij)∂2iju(y)
∣

∣+ |E(u)(y)| , (5.1)

where E is a first order partial differential operator whose coefficients depend on the first order
derivatives of g, and are 0 for y = x. So

∀y ∈ Bx(R), |E(u)(y)| ≤ η |∇u(y)|
where η is a function of the metric g and ∇g only, hence, because

∣

∣gij(x)− δij
∣

∣ ≤ 2ǫ, η may be
chosen to depend on ǫ > 0 only and η(0) = 0.
Hence, integrating (5.1), we get

‖Au‖Lr(Bx(R)) ≤ ‖∇g‖L∞(Bx(R))‖∆Ru‖Lr(Bx(R)) + η(ǫ)‖∇u‖Lr(Bx(R)).
So there is a 0 ≤ c(ǫ), c(0) = 0 and c continuous at 0, such that ‖A‖ ≤ c(ǫ)(‖∆R‖+ ‖∇‖), the

norms being the norms as operator W 2,r
p (Bx(R)) → Lr

p(Bx(R)).
We can apply lemma 5.1 with U := ϕ(Bx(R)), D := ∆ϕ, ∆ = ∆R to get that there is a positive

ǫ0 such that :
∀ωϕ ∈ Lr

p(U), ∃uϕ ∈ W 2,r
p (U) :: ∆ϕuϕ = ωϕ, ‖uϕ‖W 2,r(U) ≤ C‖ωϕ‖Lr(U),

the constant C depending only on n and r. Moreover uϕ is linear in ωϕ by lemma 5.1.
Now we fix ǫ = ǫ0.
The Lebesgue measure on U and the canonical measure dvg on Bx(R) are equivalent ; precisely
because of condition 1) we get that :

(1− ǫ)n ≤ |detg| ≤ (1 + ǫ)n,
and the measure dvg read in the chart ϕ is dvg =

√

|detgij|dξ, where dξ is the Lebesgue measure in
R

n. So the Lebesgue estimates and the Sobolev estimates on U are valid in Bx(R) up to a constant
depending only on n and ǫ. In particular :

∀x ∈M, Vol(Bx(R)) ≤ (1 + ǫ)n/2νnR
n, (5.2)

where νn is the euclidean volume of the unit ball in R
n.

So going back to the manifold M we get the right estimates :
∃u ∈ W 2,r

p (Bx(R)) :: ∆Mu = ω in Bx(R), ‖u‖W 2,r(Bx(R)) ≤ C‖ω‖Lr(Bx(R)),
where C depends only on n, r and ǫ0 and u is linear in ω.
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For the Calderon Zygmund inequality (CZI) we proceed the same way.
By the condition 2) in the lemma, we have that the Christoffel Γk

ij can be made as small as we wish,
so the second covariant derivatives are uniformly near to the usual second derivatives in the chart
(U, ϕ).

By the classical CZI for the usual laplacian ∆R in R
n, [8], Th. 9.11, p. 235, we have, with a

R′ = R/2, U ′ = ϕ(Bx(R
′)) ⋐ U,

∀u ∈ W 2,r
p (U), ‖u‖W 2,r(U ′) ≤ c1‖u‖Lr(U) + c′2‖∆Ru‖Lr(U)

because the laplacian on forms in R
n is diagonal. Because ∆ϕ = ∆R + A we get

∀u ∈ W 2,r
p (U), ‖∆Ru‖Lr(U) ≤ ‖∆ϕu−Au‖Lr(U) ≤ ‖∆ϕ‖Lr(U) + ‖Au‖Lr(U) ≤

‖∆ϕu‖Lr(U) + c‖∆Ru‖Lr(U).
So

∀u ∈ W 2,r
p (U), (1− c)‖∆Ru‖Lr(U) ≤ ‖∆ϕu‖Lr(U)

and finally

∀u ∈ W 2,r
p (U), ‖u‖W 2,r(U ′) ≤ c1‖u‖Lr(U) +

c′2
1− c

‖∆ϕu‖Lr(U).

It remains to set c2 :=
c′2

1− c
to get the CZI for ∆ϕ. So passing back to M, we get the CZ interior

local inequality on Bx(R
′) ⊂ Bx(R) ⊂ M because the Sobolev are the same up to a constant

depending only on n, r and ǫ. �

6 The raising steps method.

From now on we take ǫ = ǫ0 with ǫ0 given by lemma 5.2 and we take the ǫ0 conformal radius and
the Vitali covering {B(xj, 5r(xj))}j∈N associated to it.

Definition 6.1 A weight relative to the covering {B(xj , 5r(xj))}j∈N is a function w(x) > 0 on M
such that :

there are two constants 0 < ciw ≤ 1 ≤ csw such that, setting

∀j ∈ N, Bj := B(xj , 5r(xj)), wj :=
1

vg(Bj)

∫

Bj

w(x)dvg(x),

we have ∀j ∈ N, ∀x ∈ Bj , ciwwj ≤ w(x) ≤ cswwj. By smoothing w if necessary, we shall also
suppose that w ∈ C∞(M).

This means that w varies slowly on Bj .
So let w(x) > 0 be a weight we say that ω ∈ Lr

p(M,w), if :

‖ω‖rLr(M,w) :=

∫

M

|ω(x)|r w(x)dvg(x) <∞.

6.1 Weighted Calderon Zygmund inequalities.

The aim is to generalise the Calderon Zygmund inequalities done in [10] by adding weights.

Theorem 6.2 Let w be a weight relative to the covering {B(xj , 5r(xj))}j∈N and u ∈ Lr
p(M,wr)

such that ∆u ∈ Lr
p(M,w) then there are constants c1, c2 depending only on n = dimRM, r and ǫ0

such that if u, ∆u ∈ Lr
p(M,w) then u ∈ W 2,r

p (M,w) and :
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‖u‖W 2,r(M,w) ≤ c1‖u‖Lr(M,w) + c2‖∆u‖Lr(M,w).

Moreover we have for t = S2(r) that u ∈ Lt
p(M,w) with ‖u‖Lt(M,w) ≤ c‖u‖W 2,r(M,w).

Proof.
Let u ∈ Lr(M,w), ∆u ∈ Lr(M,w). Set Rj := 5r(xj), Bj := B(xj , Rj), B

′
j = B(xj , 2Rj) and apply

lemma 5.2 to get :
there are constants c1, c2 depending only on n = dimRM, r and ǫ0 such that

‖u‖W 2,r(Bj)
≤ c1‖u‖Lr(B′

j )
+ c2‖∆u‖Lr(B′

j)
.

We have
‖u‖rW 2,r(M,w) ≤ cws

∑

j∈N

wj‖u‖
r
W 2,r(Bj)

;

to see this we just take the Lr norm of covariant derivatives of u :
∫

M

∣

∣∇ku(x)
∣

∣

r
w(x)dvg(x) ≤ cws

∑

j∈N

∫

Bj

wj

∣

∣∇ku(x)
∣

∣

r
dvg(x).

But on Bj we have
∣

∣∇ku(x)
∣

∣ ≤ C
∣

∣∂ku(x)
∣

∣ where the constant depends only on n, r and ǫ0 and
∂ku are the k th usual derivatives in the local coordinates, k ≤ 2.

With the CZ part of lemma 5.2 we get :
∫

Bj

∣

∣∂ku(x)
∣

∣

r
dvg(x))

1/r ≤ c1‖u‖Lr(B′

j)
+ c2‖∆u‖Lr(B′

j)
,

hence
∥

∥∇ku
∥

∥

r

Lr(M,w)
≤ Ccwsc1

∑

j∈N

wj‖u‖
r
Lr(B′

j)
+ Ccwsc2

∑

j∈N

wj‖∆u‖
r
Lr(B′

j)
.

Because the overlap is less that T we get
∑

j∈N

wj‖u‖
r
Lr(B′

j)
≤ c−1

wi T‖u‖
r
Lr(M,w)

and
∑

j∈N

wj‖∆u‖
r
Lr(B′

j)
≤ c−1

wiT‖∆u‖
r
Lr(M,w).

So finally, with Cj = cjc
−1
wi , j = 1, 2,

∥

∥∇ku
∥

∥

Lr(M,w)
≤ C1T

1/r‖u‖Lr(M,w) + C2T
1/r‖∆u‖Lr(M,w).

Taking successively k = 0, 1, 2 we prove the first part of the theorem.
To prove the "moreover" we follow the same line : because ∀j ∈ N, u ∈ W 2,r

p (Bj) and using the
Sobolev embeddings, true in Bj , we have, with t = S2(r),

u ∈ Lt
p(Bj), ‖u‖Lt(Bj)

≤ c‖u‖W 2,r(Bj)
.

Now
‖u‖tLt(M,w) ≤ cws

∑

j∈N

wj‖u‖
t
Lt(Bj)

;

hence, because the overlap is smaller than T
∑

j∈N

wj‖u‖
t
Lt(Bj)

≤ c−1
wiT‖u‖

t
Lt(M,w),

so ‖u‖tLt(M,w) ≤ cwsc
−1
wi T‖u‖

t
Lt(M,w) which proves the theorem. �

Corollary 6.3 Let h ∈ Hr
p(M,w) then ∀s ≥ r, h ∈ Hs

p(M,w).

Proof.
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Let h ∈ Hr
p(M,w) then ∆h = 0 ∈ Lr

p(M,w) then theorem 6.2 gives h ∈ W 2,r
p (M,w) and h ∈

Lt1
p (M,w) with t1 = S2(r). By interpolation between Lr

p(M,w) and Lt1
p (M,w) we get that h ∈

Lt′

p (M,w) for any t′ ∈ [r, t1]. If t1 ≥ s we are done, if not we have that h ∈ Ht1
p (M,w) and we play

the same game with t1 in place of r and this proves the corollary by induction. �

6.2 The raising steps method.

With R(x) the ǫ0 conformal radius, we shall prove now :

Theorem 6.4 (Raising Steps Method) Let (M, g) be a complete riemannian manifold and take w
a weight relative to the Vitali covering {B(xj , 5r(xj))}j∈N.
For any r ≤ 2, ∀s ≥ r, there is a k ∈ N such that, with w0(x) := w(x)R(x)−k,

∀ω ∈ Lr(M,wr
0), ∃v ∈ Lr(M,wr) ∩ Ls1(M,ws1) :: ∆v = ω + ω̃

with s1 = S2(r), tk = Sk−1(r) ≥ s, ω̃ ∈ Ls(M,ws) and control of the norms.
Moreover v and ω̃ are linear in ω.
If ω is of compact support, so are v and ω̃.

Proof.
Set Rj := 5r(xj), Bj := B(xj , Rj) and apply lemma 5.2 to get :

∃uj ∈ W 2,r(Bj) :: ∆uj = ω, ‖uj‖W 2,r(Bj )
≤ cl‖ω‖Lr(Bj)

,

with uj linear in ω|Bj
.

So by Sobolev embeddings, true in Bj , we get, with s = S2(r),
uj ∈ Ls(Bj), ‖uj‖Ls(Bj)

≤ cl‖ω‖Lr(Bj )
.

Hence, because uj ∈ Lr(Bj), we have by interpolation [4], that ∀s′ ∈ [r, s], uj ∈ Ls′(Bj) with control
of the norms.

Let {χj}j∈N be a partition of unity associated to {B(xj , Rj)}j∈N then we set

v0 :=
∑

j∈N

χjuj.

Because the uj are linear in ω|Bj
, v0 is linear in ω.

We have
‖χjuj‖Ls(Bj)

≤ cl‖ω‖Lr(Bj)
,

and multiplying by wj

wj‖χjuj‖Ls(Bj )
≤ wjcl‖ω‖Lr(Bj)

.

So
‖v0‖

s
Ls(M,ws) ≤ cssw

∑

j∈N

ws
j‖χjuj‖

s
Ls(Bj)

≤ cssw
∑

j∈N

ws
j‖uj‖

s
Ls(Bj )

≤ csswc
s
l

∑

j∈N

ws
j‖ω‖

s
Lr(Bj)

≤ csswc
s
l

(

∑

j∈N

wr
j‖ω‖

r
Lr(Bj)

)s/r

because s ≥ r.
Because the overlap is less that T we get

‖v0‖
s
Ls(M,ws) ≤ csswc

s
l

(

∑

j∈N

wr
j‖ω‖

r
Lr(Bj)

)s/r

≤ c−1
iw c

s
swc

s
l (T‖ω‖

r
Lr(M,wr))

s/r,

so
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‖v0‖Ls(M,ws) ≤ c−1
iw cswclT

1/r‖ω‖Lr(M,wr).

We also have v0 ∈ Lr(M,wr) because uj ∈ W 2,r(Bj) ⇒ uj ∈ Lr(Bj) as well, this means that
v0w ∈ Lr(M) ∩ Ls(M) hence by interpolation we have that

v0w ∈ Lt′(M) ⇒ v0 ∈ Lt′(M,wt′) for any t′ ∈ [r, s] with the same control of the norms.
If ω is of compact support, then we can cover Supp ω by a finite set {Bj}j=1,...,N and then add

a layer {Bj}j=N+1,...,N0
to cover

N
⋃

j=1

Bj. Then by linearity we get ∀j = N + 1, ..., N0, uj = 0 and

setting now v0 :=
N0
∑

j=1

χjuj we can extend v0 as 0 outside
N0
⋃

j=1

Bj hence we get that v0 is compactly

supported.

Now, for χ ∈ D(M) and u ∈ W 2,r
p (M), set B(χ, u) := ∆(χu)−χ∆(u). Exactly as for Proposition

G.III.6 in [3] we have in an exponential chart at a point x ∈M,

u =
∑

J,|J |=p

uJdx
J , gij(x) = δij and the basis {

∂

∂xj
}j=1,...,n is orthogonal.

In this chart and at the point x we have that the laplacian is diagonal so

∆u(x) =
∑

J,|J |=p

∂2uJ
∂x2j

(x)dxJ

hence, for any x ∈M,

B(χ, u)(x) = ∆χ(x)u(x)− 2
∑

J, |J |=p

(

n
∑

j=1

∂uJ
∂xj

∂χ

∂xj
)dxJ .

So we get
|B(χ, u)| ≤ |∆χ| |u|+ 2 |∇χ| |∇u| .

Now consider ∆v0, we get

∆v0 =
∑

j∈N

∆(χjuj) =
∑

j∈N

χj∆uj +
∑

j∈N

B(χj , uj) = ω + ω1,

with ω1 :=
∑

j∈N

B(χj , uj).

Clearly ∆v0 is linear in ω so is ω1.

We have |∇χj | .
1

Rj
and |∆χj | .

1

R2
j

. We also have

‖∇uj‖Lt(Bj)
≤ cl‖ω‖Lr(Bj)

and ‖uj‖Ls(Bj)
≤ cl‖ω‖Lr(Bj )

,

with t = S1(r), s = S2(r). Let q ∈ [r, t].
By Young’s inequality we get

‖uj‖Lt(Bj)
=
∥

∥1Bj
uj
∥

∥

Lt(Bj )
≤ ‖uj‖Ls(Bj)

∥

∥1Bj

∥

∥

Ln(Bj)
= ‖uj‖Lt(Bj )

Rj ,

because Vol(Bx(R)) ≤ (1 + ǫ)n/2νnR
n by equation (5.2), we get, with cv = cl

n

√

νn(1 + ǫ)n/2,

‖uj‖Lt(Bj)
≤ |Bj |

1/n ‖uj‖Ls(Bj)
≤ cvRj‖ω‖Lr(Bj)

.

Hence a fortiori ‖uj‖Lq(Bj )
≤ cvRj‖ω‖Lr(Bj)

.

So we get
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‖B(χj , uj)‖Lq(Bj )
≤ ‖∇χj‖∞‖∇uj‖Lq(Bj)

+ ‖∆χj‖∞‖uj‖Lq(Bj )
≤ cvR

−1
j ‖ω‖Lr(Bj)

.

Multiplying by wj we get
wj‖B(χj, uj)‖Lq(Bj)

≤ R−1
j wjcv‖ω‖Lr(Bj)

.

We take the power q and we add
∑

j∈N

wq
j‖B(χj , uj)‖

q
Lq(Bj )

≤ cqv
∑

j∈N

R−q
j wq

j‖ω‖
q
Lr(Bj)

.

But
∑

j∈N

aqj ≤ (
∑

j∈N

arj)
q/r because q ≥ r, hence

∑

j∈N

R−q
j wq

j‖ω‖
q
Lr(Bj)

≤ cqv(
∑

j∈N

R−r
j wr

j‖ω‖
r
Lr(Bj )

)q/r.

By lemma 2.3 we have

∀x ∈ Bj , d(x, xj) < Rj = 5r(xj) ≤
1

4
R(xj) ≤

1

4
(R(xj) +R(x)) ⇒ R(x) ≤ 4R(xj),

hence
∀x ∈ Bj , R(x) ≤ 4Rj ⇒ R−r

j ≤ 96rR(x)−r,

so, because r(xj) =
R(xj)

120
and Rj = 5r(xj),

R−r
j wr

j‖ω‖
r
Lr(Bj )

≤ 96rcrsw

∫

Bj

|ω(x)|r R(x)−rwr(x)dvg(x).

Because the overlap is smaller than T by proposition 3.2 we get
∑

j∈N

R−r
j wr

j‖ω‖
r
Lr(Bj )

≤ 96rcrswT

∫

M

R(x)−rw(x)r |ω(x)|r dvg(x).

Now, with

ω1 :=
∑

j∈N

B(χj, uj),

we have
∫

M

w(x)q |ω1(x)|
q dvg(x) ≤ c−r

iw c
q
v

∑

j∈N

R−q
j wq

j‖B(χj , uj)‖
q
Lq(Bj)

hence
(
∫

M

w(x)q |ω1(x)|
q dvg(x)

)1/q

≤ c−1
iw cswcv

(

T

∫

M

R(x)−rw(x)r |ω(x)|r dvg(x)

)1/r

.

Set t1 = t = S1(r), we have, with w1(x) = w(x), w0(x) = w(x)R(x)−1, ∀q ∈ [r, t1]
‖ω1‖Lq(M,wq

1
) . ‖ω‖Lr(M,wr

0
).

If ω is of compact support, we have seen that v0 is also of compact support hence so is ∆v0 = ω+ω1.
Which means that ω1 is also of compact support.

Now we do the same game starting with ω1 in place of ω and we get, with
s2 = S2(t1), t2 = S1(t1) = S2(r), w2(x) = w(x), w1(x) = w(x)R(x)−1, w0(x) =

w(x)R(x)−2,
that

∃v1 ∈ Lq(M,wq
2) :: ∆v1 = ω1 + ω2 for any q ∈ [r, s1],

and
ω2 ∈ Lq(M,wq

2), q ∈ [r, t2], ‖ω2‖Lq(M,wq
2
) . ‖ω1‖Lt1(M,w

t1
1
)
. ‖ω‖Lr(M,wr

0
).

We keep the linearity of v1 w.r.t. to ω1 hence to ω. So ω2 is still linear w.r.t. ω.
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So by induction we have, with
tk = Sk(r), wk(x) := w(x), wk−1(x) = w(x)R(x)−1, ..., w0(x) = w(x)R(x)−k,

and
j = 0, ..., k − 1, vj ∈ Lq(M,wq

j+1), sj+1 = S2(tj), for any q ∈ [r, sj+1],
and

ωk ∈ Lq(M,wq
k), q ∈ [r, tk], ‖ωk‖Lq(M,wq

k
) . · · · . ‖ω1‖Lt1(M,w

t1
1
)
. ‖ω‖Lr(M,wr

0
). (6.3)

Setting now v :=
k−1
∑

j=0

(−1)jvj and ω̃ := (−1)kωk, we have that ∆v = ω + ω̃ and

∀q ∈ [r, s1], vj ∈ Lq(M,wq
j+1), s1 = S2(t1), wj+1 = w(x)R(x)(j+1−k),

this implies, because wk = w ≤ wj+1,
∀q ∈ [r, s1], vj ∈ Lq(M,wq), ‖vj‖Lq(M,wq) ≤ clT

1/r‖ω‖Lr(M,wr
0
).

So we have also for v :=

k−1
∑

j=0

(−1)jvj :

∀q ∈ [r, s1], v ∈ Lq(M,wq), ‖v‖Lq(M,wq) ≤ kclT
1/r‖ω‖Lr(M,wr

0
). (6.4)

We cannot go beyond s1 because of v0.
And

∀q ∈ [r, tk], ω̃ ∈ Lq(M,wq
k), ‖ωk‖Lq(M,wq

k
) . ‖ω‖Lr(M,wr

0
). (6.5)

Clearly the linearity is kept along the induction.
If ω is of compact support, we have seen that v0 and ω1 also and by induction all the vj and ωj

are also of compact support. �

We shall refer to this theorem as RSM for short.

Remark 6.5 We have, by inequalities (6.3), that ∀q ∈ [r, tk], ωk ∈ Lq(M,wq
k). With the choice

of w ≡ 1 we get that wq
k = R(x)−qk ≥ 1 hence ∀q ∈ [r, tk], ωk ∈ Lq(M). This implies, with the

notations of the RSM, that ∀q ∈ [r, s], ω̃ ∈ Lq(M).

Corollary 6.6 Let (M, g) be a complete riemannian manifold and choose as a weight w = 1. For
any r ≤ 2, ω ∈ Lr(M,wr

0), k ∈ N, w0(x) := R(x)−k and any sequence ωl ∈ Dp(M), ωl → ω in
Lr
p(M,wr

0), we have two sequences :

vl ∈ Dp(M), vl → v in Ls1(M) and ω̃l ∈ Dp(M), ω̃l → ω̃ in Ltk(M)
such that ∆vl = ωl + ω̃l ; ∆v = ω + ω̃.
Moreover if tk ≥ 2 > tk−1 then with H : L2

p(M) → H2
p(M) the orthogonal projection, H extends

boundedly from Lr
p(M,wr

0) to H2
p(M).

Proof.
By theorem 6.4 we have that vl, ω̃l have compact support and by linearity with (6.4)

(v − vl) ∈ Lr(M) ∩ Ls1(M),
∥

∥v − vl
∥

∥

Ls1 (M)
≤ kclT

1/r
∥

∥ω − ωl
∥

∥

Lr(M,wr
0
)
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so
∥

∥v − vl
∥

∥

Ls1 (M,ws1)
→ 0 and the same way with (6.5) we get

(ω̃ − ω̃l) ∈ Ltk(M),
∥

∥ω̃ − ω̃l
∥

∥

Ltk (M)
.
∥

∥ω − ωl
∥

∥

Lr(M,wr
0
)

hence
∥

∥ω̃ − ω̃l
∥

∥

Ltk (M)
→ 0.

It remains the "moreover" to prove. So let ω ∈ Lr(M,wr
0) and take a sequence ωl ∈ Dp(M), ωl →

ω in Lr
p(M,wr

0), then H is well defined on vl, ∆vl, ωl and ω̃l and we have
∆vl = ωl + ω̃l ⇒ H∆vl = Hωl +Hω̃l.

Take tk ≥ 2, h ∈ H2
p(M) then

〈

H∆vl, h
〉

L2(M)
=
〈

∆vl, h
〉

L2(M)
because Hh = h and H is self

adjoint. But because ∆ is essentially self adjoint in L2(M) and vl has compact support, we have
〈

∆vl, h
〉

L2(M)
=
〈

vl,∆h
〉

L2(M)
= 0.

So we have ∀l ∈ N, H∆vl = 0 and this implies
∀l ∈ N, Hωl +Hω̃l = 0.

Now tk ≥ 2 > tk−1 implies that we can choose, by (6.5), ω̃ ∈ L2
p(M) and the convergence

∥

∥ω̃ − ω̃l
∥

∥

L2(M)
→ 0. So, because H is bounded on L2

p(M), we get Hω̃l → Hω̃ in L2
p(M), and

this means Hωl → −Hω̃ also in L2
p(M). So we define, for any sequence ωl ∈ Dp(M), ωl → ω in

Lr
p(M,w0),

Hω := lim l→∞Hω
l,

and we just proved that Hωl converges in L2
p(M) to −Hω̃, with ω̃ given by the the Raising Steps

Theorem. �

7 Applications.

Lemma 7.1 Let t < 2, if the weight w is such that : γ(w, t) :=

∫

M

w
2t
2−tdvg <∞, we have :

ω ∈ L2
p(M) ⇒ ω ∈ Lt

p(M,w).

Proof.

Young’s inequality gives ‖fg‖Lt ≤ ‖f‖L2‖g‖Lq with
1

t
=

1

2
+

1

q
, so let ω ∈ L2

p(M), then, with

t < 2, we get
(
∫

M

|ω|twdvg

)1/t

≤

(
∫

M

|ω|2 dvg.

)1/2(∫

M

w
2t
2−tdvg

)
2−t
2t

.

So if the weight w is such that γ(w, t) :=

∫

M

w
2t
2−t dvg <∞, we are done. �

For instance take any origin 0 ∈M, M a complete riemannian manifold, and set ρ(x) := dg(0, x).
We can choose a weight w, function of ρ, w(x) := f(ρ(x)), such that γ(w, t) < ∞, provided that
w(x) goes to 0 quickly enough at infinity.

Recall that R(x) is the ǫ0 conformal radius at x ∈M.

Corollary 7.2 Suppose that (M, g) is a complete riemannian manifold ; choose a weight w ∈
L∞(M) verifying lemma 7.1 for r < 2, t = S2(r), i.e. γ(w, t) < ∞, and suppose we have the
condition (HL2,p).

With k :: Sk(r) ≥ 2, setting w0(x) := R(x)−k, then for any ω ∈ Lr(M,wr
0) verifying Hω = 0, for

the orthogonal projection H defined in corollary 6.6, there is a u ∈ Lr
p(M,w)∩Lt

p(M,w), such that
∆u = ω.
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Moreover the solution u is given linearly with respect to ω.

Proof.
We have tk := Sk(r) ≥ 2 and we use the assumption (HL2,p) :
it gives the existence of a bounded linear operator L : L2

p(M) → L2
p(M) such that

∆Lg = g, provided that Hg = 0,
by the spectral theorem, see, for instance, the proof of theorem 5.10, p. 698 in Bueler [5].
Take ω ∈ Lr(M,wr

0), the theorem 6.4 gives linear operators
T : Lr(M,wr

0) → Lr(M) ; A : Lr(M,wr
0) → L2(M),

such that
v := Tω ∈ Lr(M) ∩ Lt(M) verifies ∆v = ω + ω̃,

with t = S2(r) and ω̃ := Aω.
But

v ∈ Lt(M) ⇒ v ∈ Lt(M,w) because w(x) ∈ L∞(M) is bounded :

‖v‖tLt(M,w) =

∫

M

|v(x)|tw(x)dv(x) ≤ ‖w‖∞

∫

M

|v(x)|t dv(x) = ‖w‖∞‖v‖tLt(M).

And the same v ∈ Lr(M) ⇒ v ∈ Lr(M,w).
By corollary 6.6 if Hω = 0 then Hω̃ = 0. So setting f := Lω̃ ∈ L2

p(M) we have ∆f = ω̃ ∈ L2
p(M).

Then lemma 7.1 gives f ∈ Lt(M,w). But then w verifies also lemma 7.1 for τ = r, because
2t

2− t
≥

2r

2− r
so we have also f ∈ Lr(M,w).

Now we set u = v− f = Tω−LAω, and we get u ∈ Lr(M,w)∩Lt(M,w) and ∆u = ω+ ω̃− ω̃ = ω.
�

Now we shall use the linearity of our solution to get, by duality, results for exponents bigger than
2. Take r < 2 and r′ > 2 its conjugate.
Let T : Lr(M,wr

0) → Lr(M), A : Lr(M,wr
0) → L2(M) be the linear operators, given by the

RSM, such that
∆Tω = ω + Aω.

The hypothesis (HL2,p) gives the existence of a bounded linear operator L : L2
p(M) → L2

p(M)
such that

∆Lω̃ = ω̃, provided that Hω̃ = 0 ⇐⇒ Hω = 0.
Hence, setting C = LA : Lr(M,wr

0) → L2(M) we get
∀ω ∈ Lr(M,wr

0), ∆(T − C)ω = ω.
We notice that

∆(T − C)∆ψ = ∆ψ,
just setting ω = ∆ψ. This is possible because

∀ψ ∈ Dp(M), ∀ϕ ∈ L2
p(M), 〈H∆ψ, ϕ〉 = 〈∆ψ,Hϕ〉 = 〈ψ,∆(Hϕ)〉 = 0,

and we use that ∆ is essentially self adjoint and ∆(Hϕ) = 0 because Hϕ is harmonic. So H∆ψ = 0
and we can set ω = ∆ψ. Hence

(T − C)∆ψ = ψ + h, (7.6)

with h ∈ H.
Now let ϕ ∈ L2

p(M) ∩ Lr′

p (M) and consider u := (T − C)∗ϕ.
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This is meaningful because T ∗ : Lr′(M) → Lr′(M,wr
0) and C∗ : L2(M) → Lr′(M,wr

0) hence
u ∈ Lr′(M,wr

0). We get
∀ψ ∈ D(M) ∩ Lr(M,wr

0), 〈∆u, ψ〉L2(M,wr
0
) = 〈∆(T − C)∗ϕ, ψ〉L2(M,wr

0
) =

=

∫

M

∆((T − C)∗ϕ)ψwr
0dvg =

∫

M

(T − C)∗ϕ∆(ψwr
0)dvg = 〈(T − C)∗ϕ,∆(ψwr

0)〉L2(M),

because ∆ is essentially self adjoint and ψwr
0 has compact support.

Hence by (7.6)
〈∆u, ψ〉L2(M,wr

0
) = 〈ϕ, (T − C)∆(ψwr

0)〉L2(M) = 〈ϕ, ψwr
0 + h〉L2(M) = 〈ϕ, ψwr

0〉L2(M),
provided that ϕ ⊥ H. Putting back the weight in the integral, we get

〈∆u, ψ〉L2(M,wr
0
) = 〈ϕ, ψ〉L2(M,wr

0
).

This being true for any ψ ∈ D(M) we get
∆u = ϕ in distributions sense, so we proved

Corollary 7.3 Suppose that (M, g) is a complete riemannian manifold ; suppose we have r < 2 and
(HL2,p), with k :: Sk(r) ≥ 2, setting w0(x) := R(x)−k, then for any ϕ ∈ L2

p(M) ∩Lr′

p (M), Hϕ = 0,

u := (T − C)∗ϕ, u ∈ Lr′(M,wr
0) and u verifies ∆u = ϕ.

Moreover we have u ∈ W 2,r′

p (M) with control of the norm.

It remains to prove the "moreover" and for it we notice that, because R(x) ≤ 1 ⇒ w0 ≥ 1, we
have

u ∈ Lr′(M,wr
0) ⇒

∫

M

|u|r
′

dvg ≤

∫

M

|u|r
′

wr
0dvg <∞,

hence u ∈ Lr′(M) ; but ∆u = ϕ ∈ Lr′

p (M), so, by the CZI, theorem 6.2, we get u ∈ W 2,r′

p (M). �

7.1 Strong Lr Hodge decomposition.

We shall need :

Lemma 7.4 Let r ≤ 2 and α ∈ W 1,r
p+1(M) ; β ∈ W 1,r

p−1(M), h ∈ H2
p(M) then

〈dα, h〉 = 〈d∗β, h〉 = 0.

Proof.
Because h ∈ H2

p, we have that dh = d∗h = 0 by theorem 5.5, p. 697 in Bueler [5]. By the density of

Dk(M) in W 1,r
k (M) which is always true in a complete riemannian manifold by theorem 2.7, p. 13

in [11], there is a sequence αk ∈ Dp+1(M) such that ‖α− αk‖W 1,r(M) → 0 and there is a sequence
βk ∈ Dp−1(M) such that ‖β − βk‖W 1,r(M) → 0.

By use of corollary 6.3, we have that h ∈ H2
p ⇒ h ∈ Hr′

p hence, because dα ∈ Lr
p(M),

〈dα, h〉 = lim k→∞〈dαk, h〉 = lim k→∞〈αk, d
∗h〉 = 0,

because d∗ is the formal adjoint of d, αk ∈ Dp+1(M) and d∗h = 0.
The same way we get 〈d∗β, h〉 = 0. �

Theorem 7.5 Let the weight w ∈ L∞(M) be such that γ(w, r) <∞ with r < 2 with k :: Sk(r) ≥ 2,
set w0 = R(x)−k, and suppose we have hypothesis (HL2,p). We have the direct decomposition given
by linear operators :

∀s, 1 ≤ s ≤ 2, Ls
p(M,ws

0) = H2
p ⊕∆(W 2,s

p (M,w)).
∀s, s > 2, Ls

p(M) ∩ L2
p(M) = H2

p ∩ Hs
p ⊕∆(W 2,s

p (M)).
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Proof.
If s < 2 we set r = s. Let ω ∈ Lr

p(M,wr
0) the RSM with w = 1, w0 = R(x)−k, gives u := Tω ∈

Lr
p(M), ω̃ := Aω ∈ L2

p(M) such that ∆u = ω + ω̃. So we get
ω = ∆u− ω̃ = ∆u− (ω̃ −Hω̃)−Hω̃.

This is well defined because ω̃ ∈ L2
p(M) and H is the orthogonal projection from L2

p(M) on H2
p.

Now H(ω̃ −Hω̃) = 0 hence f := L(ω̃ −Hω̃) solves ∆f = (ω̃ −Hω̃), f ∈ L2
p(M). So we get

ω = ∆u− ω̃ = −Hω̃ +∆u−∆f, (7.7)

with Hω̃ ∈ H2
p. We have ω̃ ∈ Lr

p(M) ∩ L2
p(M) by remark 6.5 and ω ∈ Lr(M,wr

0) ⊂ Lr(M) because

wr
0 ≥ 1, so u ∈ Lr

p(M), ∆u = ω + ω̃ ∈ Lr
p(M) hence, by CZI, u ∈ W 2,r

p (M). The same way we have

that f ∈ W 2,2
p (M).

This gives a first decomposition :

ω = −Hω̃ +∆u−∆f, (7.8)

with Hω̃ ∈ H2
p(M), u ∈ W 2,r

p (M) and f ∈ W 2,2
p (M).

With the weight w ∈ L∞(M) such that γ(w, r) <∞ we have that
f ∈ L2

p(M) ⊂ Lr
p(M,w), and u ∈ Lr

p(M) ⊂ Lr
p(M,w).

Moreover ∆u = ω ∈ Lr
p(M,wr

0). But ω ∈ Lr
p(M,wr

0) ⇒ ω ∈ Lr
p(M,w) hence we can apply the

weighted CZI 6.2 :
u ∈ W 2,r

p (M,w), ‖u‖W 2,r(M,w) ≤ c1‖u‖Lr(M,w) + c2‖∆u‖Lr(M,w).
This gives the case s < 2.

If s > 2 we set s = r′, the conjugate exponent of r. So let ω ∈ Lr′

p (M) ∩ L2
p(M), then we have

ω = Hω + (ω −Hω) with H(ω −Hω) = 0.
We have that Hω ∈ H2

p(M) hence by corollary 6.3 we get that Hω ∈ Hr′

p (M) so ω̃ := ω − Hω ∈

Lr′

p (M) ∩ L2
p(M) and Hω̃ = 0. Now we have by corollary 7.3 a u ∈ Lr′

p (M,wr
0) such that ∆u = ω̃.

Again this implies that u ∈ Lr′

p (M) hence, by CZI 6.2 :

u ∈ W 2,r′

p (M), ‖u‖W 2,r′(M) ≤ c1‖u‖Lr′(M) + c2‖∆u‖Lr′(M).
Hence we have the decomposition

∀ω ∈ Lr′

p (M) ∩ L2
p(M), ω = Hω +∆u = h +∆u, (7.9)

with h ∈ H2
p(M) ∩ Hr′

p (M) and u ∈ W 2,r′

p (M).
Because at each step we keep the linearity w.r.t. ω, we get that that the decomposition is also linear
w.r.t. ω.

To get the uniqueness in the case s < 2, we consider the first decomposition (7.7) :
ω = h+∆(u− f) with h ∈ H2

p and u ∈ W 2,r
p (M), f ∈ W 2,2

p (M).
If there is another one ω = h′ +∆(u′ − f ′) then 0 = h− h′ +∆(u− u′ − (f − f ′)) ; so we have to
show that

0 = h+∆(u− f) with h ∈ H2
p and u ∈ W 2,r

p (M), f ∈ W 2,2
p (M),
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implies h = 0 and ∆(u− f) = 0.
Now ∆u = d(d∗u) + d∗(du) = dα + d∗β, with α = d∗u ∈ W 1,r

p+1(M) and β = du ∈ W 1,r
p−1(M). By

lemma 7.4 we get 〈dα, h〉+ 〈d∗β, h〉 = 0, so 〈∆u, h〉 = 0. Exactly the same proof with r = 2 gives
〈∆f, h〉 = 0, so, from h+∆u−∆f = 0, we get

0 = 〈h, h〉+ 〈∆u, h〉+ 〈∆f, h〉 = ‖h‖L2(M),
which implies ∆(u− f) = 0 and proves the uniqueness of the decomposition for s < 2.

For s > 2 we have the decomposition (7.9)
∀ω ∈ Lr′

p (M) ∩ L2
p(M), ω = h+∆u,

with h ∈ H2
p(M) ∩ Hr′

p (M) and u ∈ W 2,r′

p (M).
By (HL2,p) we have

∃v ∈ L2
p(M) :: ∆v = ω̃ := ω − h because ω̃ ∈ L2

p(M), hence, by CZI, v ∈ W 2,2
p (M).

But ∆v = ∆u = ω̃, so if there is another such decomposition
ω = h′ +∆u′ = h′ +∆v′

then
0 = h− h′ +∆(u− u′) = h− h′ +∆(v − v′),

Still with v − v′ ∈ W 2,2
p (M). So changing names we have

0 = h+∆u = h+∆v (7.10)

with h ∈ H2
p(M) and v ∈ W 2,2

p (M).

Again ∆v = dα+ d∗β with α = d∗v ∈ W 1,2
p−1(M) and β = d∗v ∈ W 1,2

p+1(M) and by lemma 7.4 we get
〈dα, h〉+ 〈d∗β, h〉 = 0, so 〈∆v, h〉 = 0.
Hence 〈∆u, h〉 = 〈∆v, h〉 = 0. But by (7.10) we have

0 = 〈h, h〉+ 〈∆u, h〉 so ‖h‖L2(M) = 0 ⇒ h = 0
which ends the proof of uniqueness of the Hodge decomposition. �

There are two extreme cases done in the next corollaries.

Corollary 7.6 Let the weight w ∈ L∞(M) be such that γ(w, r) < ∞ with r < 2. Suppose the
conformal radius verifies ∀x ∈ M, R(x) ≥ δ > 0, and suppose also hypothesis (HL2,p). Then we
have the direct decomposition given by linear operators

∀s, 1 ≤ s ≤ 2, Ls
p(M) = H2

p ⊕∆(W 2,s
p (M,w)).

Proof.
We have just to set w0 ≡ 1. �

The conformal radius verifies ∀x ∈ M, R(x) ≥ δ > 0, if, for instance, the Ricci curvature of M is
bounded and the injectivity radius is strictly positive [12].

We also have

Corollary 7.7 Let r < 2, with k :: Sk(r) ≥ 2 set w0 = R(x)−k and suppose the riemannian volume
is finite and hypothesis (HL2,p). We have the direct decomposition given by linear operators :

Lr
p(M,wr

0) = H2
p ⊕∆(W 2,r

p (M)).

Here the weight w is no longer necessary because the volume being finite, if a form is in L2(M)
then it is already in Ls(M).
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Corollary 7.8 Let the weight w ∈ L∞(M) be such that γ(w, r) <∞ with r < 2, with k :: Sk(r) ≥ 2
set w0 = R(x)−k and suppose we have hypothesis (HL2,p). We have the direct decomposition given
by linear operators :

Lr
p(M,wr

0) = H2
p ⊕ d(W 1,r

p (M,w))⊕ d∗(W 1,r
p (M,w)).

With r′ > 2 the conjugate exponent for r,
Lr′

p (M) ∩ L2
p(M) = H2

p ∩ Hr′

p ⊕ d(W 1,r′

p (M))⊕ d∗(W 1,r′

p (M)).

Proof.
The case r′ follows exactly the same line. We already have ω = Hω+∆u and ∆u = d(d∗u)+d∗(du) =

dα + d∗β, with α = d∗u ∈ W 1,r′

p+1(M) and β = du ∈ W 1,r′

p−1(M). This gives the decomposition.

For the uniqueness, suppose that
0 = h+ dα + d∗β, with α ∈ W 1,2

p−1(M) and β ∈ W 1,2
p+1(M),

then, by use of lemma 7.4, we get 〈dα, h〉+ 〈d∗β, h〉 = 0, hence h = 0. So it remains
0 = dα+ d∗β.

Take ϕ ∈ Dp+1(M) and consider 〈dα, d∗ϕ〉 =
〈

α, d∗2ϕ
〉

= 0 because d∗2 = 0. By the density of

Dk(M) in W 1,2
k (M) there is a sequence βk ∈ Dp−1(M) such that ‖β − βk‖W 1,2(M) → 0 hence

∀k ∈ N, 〈dα, d∗βk〉 =
〈

α, d∗2βk
〉

= 0 ⇒ 〈dα, d∗β〉 = 0,
hence ‖d∗β‖L2(M) = 0 so d∗β = 0 and also dα = 0.

For r, we have, by (7.8) : ∀ω ∈ Lr
p(M,wr

0),
ω = −Hω̃ +∆u−∆f,

with Hω̃ ∈ H2
p(M), u ∈ W 2,r

p (M) and f ∈ W 2,2
p (M). Again

∆u = dα+ d∗β, with α ∈ W 1,r
p−1(M) and β ∈ W 1,r

p+1(M),
and

∆f = dα′ + d∗β ′, with α′ ∈ W 1,2
p−1(M) and β ′ ∈ W 1,2

p+1(M),
Hence

ω = h+ d(α− α′) + d∗(β − β ′).
With the weight w we get α ∈ W 1,r

p−1(M) ⇒ α ∈ W 1,r
p−1(M,w) and the same for β. And also

α′ ∈ W 1,2
p−1(M) ⇒ α′ ∈ W 1,r

p−1(M,w) and the same for β ′. So, setting γ := α − α′, δ = β − β ′, we
have the decomposition

ω ∈ Lr
p(M,wr

0) ⇒ ω = h+ dγ + d∗δ,

with h ∈ H2
p(M) ∩ Hr

p(M,w), γ ∈ W 1,r
p−1(M,w), δ ∈ W 1,r

p+1(M,w).

For the uniqueness, suppose that
0 = h+ d(α− α′) + d∗(β − β ′),

by use of lemma 7.4, we get 〈dα, h〉 + 〈d∗β, h〉 = 0 and also 〈dα′, h〉 + 〈d∗β ′, h〉 = 0, so h = 0. So
we have

0 = d(α− α′) + d∗(β − β ′).
This implies that

dα + d∗β = dα′ + d∗β ′, (7.11)

hence
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dα + d∗β ∈ Lr
p(M) ∩ L2

p(M) ; dα′ + d∗β ′ ∈ Lr
p(M) ∩ L2

p(M),
because

dα+ d∗β ∈ Lr
p(M) and dα′ + d∗β ′ ∈ L2

p(M).

Now take ϕ ∈ Dp(M), because (HL2,p) is true we have the L2 decomposition :
ϕ = Hϕ+ dγ + d∗δ with γ, δ ∈ W 1,2(M).

We have
〈d(α− α′), ϕ〉 = 〈d(α− α′), Hϕ+ dγ + d∗δ〉 ;

by use of lemma 7.4, we get 〈d(α− α′), Hϕ〉 = 0. By density we have γ = lim k→∞γk, γk ∈ Dp−1

and δ = lim k→∞δk, δk ∈ Dp+1, the convergence being in W 1,2(M), so dγ = lim k→∞dγk and
d∗δ = lim k→∞d

∗δk in L2
p(M). So we get

〈d(α− α′), dγ + d∗δ〉 = lim k→∞〈d(α− α′), dγk + d∗δk〉.
But

∀k ∈ N, 〈d(α− α′), d∗δk〉 =
〈

(α− α′), d∗2δk
〉

= 0
because d∗ is the formal adjoint of d, d∗δk has compact support and d∗2 = 0. So

〈d(α− α′), ϕ〉 = lim k→∞〈d(α− α′), dγk〉.
With (7.11) we get

∀k ∈ N, 〈d(α− α′), dγk〉 − 〈d∗(β − β ′), dγk〉 = 0,
and

∀k ∈ N, 〈d∗(β − β ′), dγk〉 = 0,
because d∗ is the formal adjoint of d, dγk has compact support and d2 = 0. So

∀k ∈ N, 〈d(α− α′), dγk〉 = 0,
which gives

〈d(α− α′), ϕ〉 = lim k→∞〈d(α− α′), dγk〉 = 0,
and this being true for any ϕ ∈ Dp(M), we get d(α− α′) = 0 ; this gives with (7.11) d∗(β − β ′). �

Let us set the Sobolev embeddings hypothesis :
(SE,p) provided that ∀r > 1, u ∈ W 2,r

p (M) ⇒ u ∈ Lt
p(M), t = S2(r).

This property is true for instance ifM has a Ricci curvature bounded from below and inf x∈Mvg(Bx(1)) ≥
δ > 0, due to Varopoulos [19], see [11] theorem 3.14, p. 31.
Then we have a direct proof of the Lr Hodge decomposition for r > 2 with this extra hypothesis.

Theorem 7.9 We have, with the hypotheses (HL2,p) and (SE,p), the decomposition
∀r, r > 2, Lr

p(M) ∩ L2
p(M) = Hr

p ⊕∆(W 2,r
p (M)).

Proof.
Take ω ∈ Lr

p(M) ∩ L2
p(M), Hω = 0 ; by interpolation we have ∀t ∈ [2, r], ω ∈ Lt

p(M). By (HL2,p)
we can solve ∆ :

∃u ∈ L2
p(M) :: ∆u = ω.

By CZI we have then u ∈ W 2,2
p (M). By (SE,p) u ∈ Lt1

p (M), t1 = S2(2) > 2. If t1 < r then ∆u = ω ∈

Lt1
p (M) hence by CZI we get u ∈ W 2,t1

p (M), and again with (SE,p) we get u ∈ Lt2
p (M), t2 = S2(t1) =

S4(2) > t1. And by induction up to the fact that tk = S2k(2) ≥ r. Then we have u ∈ Ltk
p (M)∩L2

p(M)

hence still by interpolation, u ∈ Lr
p(M). But ∆u = ω ∈ Lr

p(M) so by CZI we get u ∈ W 2,r
p (M). �

Remark 7.10 The Sobolev embeddings property is not true if M has a Ricci curvature bounded
from below and inf x∈Mvg(Bx(1)) = 0, see [11] theorem 3.18, p. 37. Nevertheless theorem 7.5 is
still valid.

23



The corollary 7.3 which gives the theorem 7.5 in fact is stronger : if r > 2, hence r′ < 2, ω ∈
Lr
p(M) ∩ L2

p(M), Hω = 0, set k :: Sk(r
′) ≥ 2, then there is a u ∈ Lr

p(M,wr′

0 ) with w0 := R(x)−k ;

because w0 ≤ 1, the space Lr
p(M,wr′

0 ) is in general much smaller than Lr
p(M) which we use in

theorem 7.5.

7.2 Weak Lr Hodge decomposition.

Now we shall need another hypothesis :
(HWr) the space Dp(M) is dense in W 2,r

p (M).
We already know that (HWr) is true if :
• either : the injectivity radius is strictly positive and the Ricci curvature is bounded ( [11]

theorem 2.8, p. 12).
• or : M is geodesically complete with a bounded curvature tensor( [10] theorem 1.1 p.3).
We have a weak Lr Hodge decomposition theorem :

Theorem 7.11 Suppose that (M, g) is a complete riemannian manifold, choose a weight w verifying
lemma 7.1 for r < 2, with k :: Sk(r) ≥ 2, take the weight w0 := R(x)−k. Suppose we have (HL2,p)
and (HWr) ; then

Lr
p(M,w) = Hr

p ⊕∆(Dp(M)),
the closure being taken in Lr(M,w).

Proof.
Take ω ∈ Lr

p(M,w), Hω = 0, by corollary 6.6. By density there is a ωǫ ∈ Dp(M) such that
‖ω − ωǫ‖Lr(M,w) < ǫ.
Then we have ωǫ ∈ Lr

p(M,wr
0) hence by RSM :

∃vǫ ∈ Lr
p(M) :: ∆vǫ = ωǫ + ω̃ǫ,

with ω̃ǫ ∈ L2
p(M) of compact support. Because ‖ω − ωǫ‖Lr(M,w) < ǫ we have, by the continuity of

H : Lr
p(M,wr

0) → L2
p(M) given by corollary 6.6, that ‖Hω −Hωǫ‖L2(M) < Cǫ. Hence, still by

corollary 6.6, we have ‖Hω̃ǫ‖ = ‖Hωǫ‖L2(M) = ‖Hω −Hωǫ‖L2(M) < Cǫ, because by assumption
Hω = 0.

Hence by (HL2,p) there is a fǫ ∈ W 2,2
p (M) :: ∆fǫ = ω̃ǫ −Hω̃ǫ.

By (HWr) there is a gǫ ∈ Dp(M) :: ‖fǫ − gǫ‖W 2,2(M) < ǫ and this implies
‖ω̃ǫ −Hω̃ǫ −∆gǫ‖L2(M) < ǫ ;

but by the choice of w we get
‖ω̃ǫ −∆gǫ‖Lr(M,w) ≤ ‖ω̃ǫ −Hω̃ǫ −∆gǫ‖L2(M) + ‖Hω̃ǫ‖L2(M) < (1 + C)ǫ.

On the other hand we have vǫ ∈ Lr
p(M) ⇒ vǫ ∈ Lr

p(M,w) hence setting uǫ := vǫ − gǫ we get
∆uǫ = ωǫ + ω̃ǫ −∆gǫ ⇒ ‖ω −∆uǫ‖Lr(M,w) ≤ ‖ω − ωǫ‖Lr(M,w) + ‖ω̃ǫ −∆gǫ‖Lr(M,w) < (2 + C)ǫ,
and the proof is complete. �

We also have a weaker Lr Hodge decomposition without hypothesis (HWr) :

Theorem 7.12 Suppose that (M, g) is a complete riemannian manifold and suppose we have
(HL2,p). Take a weight w verifying γ(w, r) <∞, for r < 2. Then we have

Lr
p(M) = Hr

p ⊕ d(Dp(M))⊕ d∗(Dp(M)),
the closure being taken in Lr(M,wr).
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Proof.
For any 2 ≥ r ≥ 1, ω ∈ Lr

p(M) ∩ H⊥
p , we proved that there is a u ∈ Lr

p(M,wr) such that
‖ω −∆u‖Lr(M,wr) < ǫ. The point here is that u /∈ Dp(M). Nevertheless we have :

‖ω − dd∗u− d∗du‖Lr(M,wr) < ǫ

and now we approximate d∗u by α ∈ D(M) in W 1,r(M), and du by β ∈ D(M) in W 1,r(M), and
this is always possible by theorem 2.7, p. 13 in [11].
So we get

‖ω − dα− d∗β‖Lr(M,wr) < 2ǫ
and we are done. �
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