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On the L" Hodge theory in complete non compact
riemannian manifolds.

Eric Amar

Abstract

We study solutions for the Hodge laplace equation Au = w on p forms with L estimates
for > 1. Our main hypothesis is that A has a spectral gap in L?. We use this to get L" Hodge
decomposition theorems. An interesting feature is that our decompositions are completely
independent of the boundedness of the Riesz transforms in L°.

These results are based on a generalisation of the Raising Steps Method to complete non
compact riemannian manifolds.
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1 Introduction.

Suppose you are interested by solving an equation Du = w, in a k :: Si(r') > 2, manifold M
with estimates of type Lebesgue L" or Sobolev W™ : you know to solve it globally with estimates

L® — L* and locally with estimates L™ — L' with a strict increase of the regularity, for instance

1 1
L= d, § > 0 for any r < s, then the Raising Steps Method (RSM for short) gives a global
-

solution v of Dv = w which is essentially in L'(M) for w € L"(M).

I introduced this method in [1] to get solutions for the d equation with good estimates in relatively
compact domains in Stein manifold. I extend it to linear partial differential operator D of any finite
order m in [2| and I apply it to study the Poisson equation for the Hodge laplacian on forms in
spaces L"(M) where (M, g) is a compact riemannian manifold. This gave L" Hodge decomposition
theorems as was done by C. Scott [17], but by an entirely different approach.

The aim of this work is to extend it to the case of complete non compact riemannian manifold.

1.1 Solutions of the Poisson equation for the Hodge laplacian.

Let (M, g) be a C* smooth complete riemannian manifold with metric tensor ¢ and n = dimM >
3 ; let d be the exterior derivative, d* its formal adjoint with respect to the Riemannian volume
measure dv, = v/detgdx, where dz is the Lebesgue measure in the chart z, and A = A, := dd* +d*d
the Hodge laplacian acting on p forms. Let L, (M) be the space of p forms on M in the Lebesgue
space L"(M).

We get the local solution of the Hodge Laplacian Au = w in a ball B(z, R) in (M, g) with a
radius R(z) small enough to make this ball "conformal" to a ball in the euclidean space R™ ; this
conformal radius is a special case of the "harmonic radius" of Hebey and Herzlich [12]. If w is a p
form in L7 (B(x, R)) then we get a p form solution u in the Sobolev space W*"(B(x,r)) of the ball,

hence in L'(B(z, R)) with =T This is done classically by use of the Newtonian potential.

So the first assumption for the RSM is true, we have a strict increase of the regularity.
In order to get global solutions we need to cover the manifold M with our conformal balls and
for this we use a classical "Vitali type covering" with a uniformly finite overlap. We shall denote it

by C.

When comparing non compact M to the compact case treated in [2]|, we have two important
issues :

(i) the conformal radius may go to 0 at infinity, which is the case, for instance, if the canonical
volume measure dv, of (M, g) is finite ;

(ii) if dv, is not finite, which is the case, for instance, if the conformal radius is bounded below,
then p forms in L (M) are generally not in Lj (M) for r < t.

We address these problems by use of adapted weights on (M, g). These weights are relative to
the covering C : they are positive functions which vary slowly on the balls of the covering C.

To deal with the problem (i) we use a weight wo(z) = R(x)™" for an adapted integer k, where
R(z) is the conformal radius at the point = € M.

To deal with the problem (ii) we use a weight w(z) with the property that, with a ¢ < 2,



y(w, t) = / w%dvg < 0.
M
In this case we get L2(M) C L} (M, w).

We define the Sobolev spaces W (M) of (M, g) following E. Hebey [11], and we set Sy(r) ::

1 1k
5o = — — —. Then our first result is Calderon Zygmund inequalities (CZI) with weight, gener-
(T roon

alizing results in [10].

Theorem 1.1 Let w be a weight relative to the covering C and uw € Ly(M,w) such that Au €
L(M,w) then there are constants cy, ¢y depending only on n = dimg M, and r such that if u, Au €
r 2r .
L (M, w) then u € W (M, w) and :
ullwzr vy < crllull L + c2ll A a0
n ,
Moreover we have for t = Sy(r), r < 5 that uw € L;,(M,w) with lull e arwy < clluller ar -

We set H (M) := L, (M) NkerA,, the space of harmonic p forms in L"(M).

We set our main hypothesis :

(HL2,p) A = A, has a spectral gap in LIQ,(M), i.e. there is no spectrum of A, in an interval (0,n)
with n > 0.

The (HL2,p) assumption is known to be true in the case of the hyperbolic manifold H?*" of
dimension 2n for any value of p € {0, 2n}. For p # n the space ’Hg is reduced to 0. For H*"*! the
(HL2,p) is valid for p # n and p # n + 1 and, out of these two cases, the space 7—[12) is reduced to 0
as was proved by Donnelly [6].

When Ric(M) > —c* and M is open at infinity then 0 ¢ SpA, by a result of Buser, see Lott [16],
proposition 6, p. 353, hence (HL2,0) is true. If M is a normal covering of a compact manifold X
with covering group T', then 0 ¢ SpA, iff T is not amenable by a result of Brooks, see Lott [16],
corollary 3, p. 354, for precise references. Hence (HL2,0) is true if I" is not amenable.

For r = 2, there is the orthogonal projection H from L;(M ) on HIQ,(M ) ; we shall prove that
this projection extends to L"(M,wyg), ie. H : L"(M,wf) — H2(M) boundedly and we get the
following results on solutions of the Poisson equation.

Theorem 1.2 Suppose that (M, g) is a complete riemannian manifold ; choose a weight w €
L> (M) wverifying fort = Sa(r), r < 2, v(w,t) < 0o, and suppose we have the condition (HL2,p).

Then with k :: Sg(r) > 2, and wo(z) := R(x)™", for any w € L™ (M, w}) verifying Hw = 0, there is
auwe Ly (M, w)NL,(Mw), t=255(r), such that Au = w. Moreover the solution u is given linearly
with respect to w.

1 1
Setting r’ for the conjugate exponent for r, — 4+ — =1, by duality from theorem 1.2, we get
oo

Theorem 1.3 Suppose that (M, g) is a complete riemannian manifold ; suppose we have r < 2 and
(HL2,p), then with k :: Si(r) > 2, and wo(z) := R(z)™*, for any ¢ € L2(M)N L;/(M), Hyp =0,
there is a u € L (M, wg) such that Au = . This solution is linear with respect to .

Moreover we have u € W;’T'(M) with control of the norm.



1.2 Hodge decomposition in L" spaces. Known results.

In 1949, Kodaira [13] proved that the L* -space of p -forms on (M, g) has the orthogonal decom-
position :
L2(M) = #2 & 4D, 1(M) & &D, (M),
and in 1991 Gromov [9] proved a strong L? Hodge decomposition, under the hypothesis (HL2,p) :
L2(M) =H} @ dW, (M) ® d*W, 7 (M).
In 1995 Scott [17] proved a strong L™ Hodge decomposition but on compact riemannian manifold

Ly(M) = H, @ dW,", (M) @ d*W, 1 (M).
Let d7, be the formal adjoint of d relatively to the measure dju(r) = e~ ?@du,(z), where p € C*(M),
and let A, , = dd;, + d7d acting on p forms. Setting A = TrV? the covariant Laplace Beltrami
operator acting on p forms and L = A — Vi - V, then, in 2009 X-D. Li [14] proved, among other

nice results, a strong L" Hodge decomposition on complete non compact riemannian manifold :

Theorem 1.4 (X-D. Li) Letr > 1, r' = Ll Let (M, g) be a complete riemannian manifold,
r —

@ € C3(M), and du(x) = e ?@dv,(x). Suppose that the Riesz transforms dA;;/Q and d*A;vp/Q are
bounded in L" and L", and the Riesz potential is bounded in L. Suppose also that (M,q) is L
stochastically complete, then the strong L™ Hodge direct sum decomposition holds on p forms :

These results are valid for the family of weights ¢ € C*(M) and for the Hodge laplacian associated
to them, in the Witten sense [20].

1.3 Hodge decomposition in L" spaces. Main results.

The results of X-D. Li are based on the boundedness of the Riesz transforms in L™ and L” and
the results we get use only the spectral gap hypothesis (HL2,p). In this way they may appear to
be the natural generalisation of Gromov results from L? to L". On the other hand our results are
proved only in the case ¢ = 0.

To get these decomposition theorems we shall apply our results on solutions of the Poisson
equation. Recall that H : L"(M,w) — ’H;(M ) boundedly, where H is the orthogonal projection
from L;(M) on ’HIQ)(M), and this explain the appearance of 'HIQ)(M) in the following theorem.

Theorem 1.5 Letr < 2 and choose a weight w € L*>(M) such that y(w,r) < oo ; with k :: Sk(r) >
2, set wy = R(x)™*, and suppose we have hypothesis (HL2,p). We have the decompositions given by
linear operators

Ly (M, wg) = 7—[12, & A(Wg"’(M, w)).
With r' > 2 the conjugate exponent of r,

LY'(M)NLA(M) = H2OH & AW (M)).
The & means that we have uniqueness in these decompositions, i.e. they are direct decompositions.

As a corollary we get



Corollary 1.6 Letr < 2 and choose a weight w € L>(M) such that y(w,r) < oo ; with k :: Sg(r) >
2, set wy = R(x)™%, and suppose we have hypothesis (HL2,p). We have the direct decompositions
gwen by linear operators

Li(M,wg) = H2 @ d(Wy" (M, w)) ® d* (W, (M, w)).
With r' > 2 the conjugate exponent of r,

LY (M) N LAM) = HENH, @ dWE (M) @ d*(WE (M)).

We also have a weak L" Hodge decomposition.

Theorem 1.7 Suppose that (M, g) is a complete riemannian manifold and suppose we have (HL2,p).
Take a weight w verifying v(w,r) < oo for r < 2.
Then we have
LE(M) = H; & d(D, (W) & d*(Dy(M)),
the closure being taken in L™ (M, w).

Remark 1.8 In the case s > 2 we get the decomposition
Ly(M)NLAM) =H,NH, @ d(W,* (M) ® d*(W,*(M)),

which applies for L (M) HL;(M) and the intersection with LIZ)(M) may seem strange but in fact it is
necessary by a result of N. Lohoué [15] : in the hyperbolic space H*, which fulfils all our assumptions
i.e. for anyp =0,...,4, A, has a spectral gap, he proved that, for s big enough, there is not even a
weak decomposition of Ly(M). He also proved that the Riesz transforms are not bounded on L*(M)
for s big enough and, because our decomposition is still valid, this proves that there is a priori no
link between our results and the boundedness of the Riesz transforms.

So a striking point in this work is the independence of our " Hodge decompositions with respect
to the boundedness of the Riesz transforms.

This work will be presented in the following way.

In the section 2 we define the conformal balls and the conformal radius and the basic facts relative
to them.

In section 3 we use a Vitali type covering lemma with our conformal balls and we prove that its
overlap is finite.

In section 4 we define the Sobolev spaces, following E. Hebey [11].

In section 5 we prove the local estimates for the Hodge Laplacian. This is essentially standard
by use of classical results from Gilbarg and Trudinger [8|.

In section 6 we develop the Raising Steps Method in the non compact case. The useful weights
are defined here.

We prove Calderon Zygmund inequalities with weights and we use them to get the RSM theorem
which is at the basis of our results.

In section 7 we deduce the applications to the Poisson equation associated to the Hodge Laplacian.
We use these solutions to get strong L" Hodge decomposition theorems. We also get a weak L"
Hodge decomposition theorem.



2 Basic facts.

Definition 2.1 Let (M, g) be a riemannian manifold and x € M. We shall say that the geodesic
ball B(z, R) is € conformal if there is a chart ¢ : (x1,...,x,) defined on it with
1) (1 —€)dij < gij < (1+€)d;; in B(x, R) as bilinear forms,

2) Y Sup ijet o yenan [0795(y)] < e
18]=1

Definition 2.2 Let x € M, we set R'(z) =sup {R > 0:: B(x, R) is € conformal}. We shall say
that R.(z) := min (1, R'(x)) is the € conformal radius at x.

This is a special case of the harmonic radius of Hebey and Herzlich [12].

Of course for any € > 0, = € M, taking ¢;;(x) = d;; in a chart on B(z, R) and the radius R small
enough, the ball B(z, R) is € conformal.
We shall use the following lemma.

Lemma 2.3 Let (M,g) be a riemannian manifold then with R(x) = R.(x) and d(z,y) the rie-
mannian distance on (M, g) :

d(r,y) < §(R2) + Ry) > R(x) < 4R(y).

Proof.
1
Let z,y € M :: d(z,y) < Z(R(SL’) + R(y)) and suppose for instance that R(x) > R(y). Then

y € B(z, R(x)/2) hence the ball B(y, R(z)/4) C B(z, zR(az)) But by definition of R(z), the ball

3
B(z, ZR(x)) is conformal and this implies that the ball B(y, R(x)/4) is also conformal for exactly
the same constants and the same chart ; this implies that R(y) > R(z)/4. |

3 Vitali covering.

Lemma 3.1 Let F be a collection of balls {B(xz,r(x))} in a metric space, with VB(x,r(x)) €
F, 0 <r(x) < R. There exists a disjoint subcollection G of F with the following property :
every ball B in F intersects a ball C' in G and B C 5C.

This is a well known lemma, see for instance [7], section 1.5.1.

So fix € > 0 and let Vx € M, r(x) := R.(x)/120, where R.(x) is the conformal radius at z,
we built a Vitali covering with the collection F := {B(x,7())}senm. So lemma 3.1 gives a disjoint
subcollection G such that every ball B in F intersects a ball C' in G and we have B C 5C. We
set G’ .= {x; € M :: B(zj,r(z;)) € G} and C. := {B(x,5r(z)), v € G'} : we shall call C, the e
conformal covering of (M, g).

Then we have :



Proposition 3.2 Let (M, g) be a riemannian manifold, then the overlap of the € conformal cov-

A+ o
m(lQO) , 1.€.

Ve € M, z € B(y,5r(y)) where B(y,r(y)) € G for at most T such balls.

ering Ce is less than T =

Proof.
k

Let B; := B(z;,7(z;)) € G and suppose that = € ﬂ B(z;,5r(x;)). Then we have
j=1
Vi=1,..k, dlz z;) <5r(z;)
hence
d(z;, ) < d(zj,z) + d(x, ) <5(r(z;) +r(x)) <
So we get
Vi l=1,..k, r(z;) <4r(x).
Now the ball B(z;,5r(z;) + 5r(z;)) contains z; hence the ball B(x;, 5r(x;) + 6r(x;)) contains the
ball B(x;,r(z;)). But, because r(x;) < 4r(z;), we get
B(xj,5r(x;) + 6x4r(x;)) = B(zj,r(x;)(5+ 6x4)) D B(xy, r(x1)).
The balls in G being disjoint, we get
k

(R(x;) + R(z;)) = R(z;) < 4R(x).

AN

> "Vol(By) < Vol(B(z;, (5 + 6x4)r(z;))).
j=1
The Lebesgue measure read in the chart ¢ and the canonical measure dv, on B(z, R.(x)) are
equivalent ; precisely because of condition 1) in the conformal radius definition, we get that :
(1— e < |detg| < (1+€)",
and the measure dv, read in the chart ¢ is dv, = \/|detg;;|d§, where d¢ is the Lebesgue measure in
R™. In particular :
Vz € M, Vol(B(z, R.(x))) < (1+ ¢)"?v,R",
where v, is the euclidean volume of the unit ball in R"™.
Now because R(x;) is the conformal radius and 4(5 4+ 6x4)r(x;) < R(x;), we have
Vol(B(xj, (5 + 6x4)r(2;))) < (14 €)"20,(5 4+ 6x4)"r(z;)".
On the other hand we have also
Vol(By) > v, (1 — €)"2r(2)" > v, (1 — €)™ 47 (z;)",
hence

(1— e)”/24’”7’(:cj)" < (1+ 6)"/2(5 + 6x4)"r(x;)",

]~

1

=

so finall
(1 +€)n/2

k< 27

— (]_ _ 6)71/2

which means that T' <

(54 6x4)4)",

(14 €)™/?

o 6)n/2(120)". o

4 Sobolev spaces.

We have to define the Sobolev spaces in our setting, following E. Hebey [11], p. 10.



First define the covariant derivatives by (Vu); := d;u in local coordinates, while the components
of V2u are given by
(V2u)ij = Oju — Ffjaku,
with the convention that we sum over repeated index. The Christoffel Ti?j verify [3] :
L, Ogr . Ogi;  Ogji
Pfj — 5 l( J J )

Jzi — Ozk  Oxt
If k € Nand r > 1 are given, we denote by Cj(M) the space of smooth functions u € C*°(M) such
that }Vju} € L"(M) for j =0,...,k. Hence
Ch(M) :={ueC*(M), Vj=0,..k, / }Vju}rdvg < o0}
M

Now we have [11]

Definition 4.1 The Sobolev space W*"(M) is the completion of Ci(M) with respect to the norm :
k 1/r
j=0 M

We shall be interested only by k£ < 2 and we extend in a natural way this definition to the case
of p forms.

Definition 4.2 We shall define the Sobolev exponents Si(r) by D) =
k

1 1k
roon
The k th Sobolev embedding is true if we have
Yu € Wh (M), u e L% (M).
This is the case in R", or if M is compact, or if M has a Ricci curvature bounded from below and
inf ,epvy(Bz(1)) > > 0, due to Varopoulos [19], see [11]| theorem 3.14, p. 31.

5 Local estimates for the laplacian.

Lemma 5.1 Let U be a domain in R™ and suppose that D = A + A, where A is the standard
laplacian in U acting on p forms and A is a second order partial differential (system) operator such
that :

Ve >0, 3V U, Yue W V), |Aull 1oy < (AUl gy + 1Vl e ry)-
Then there is a V- C U and a C' > 0 depending only on n and r such that :

vy ap form in L(V), Jve W2 (V) :: Dv =7 and |v][y. < ClVI vy

and the constant C' depending only on n and r.
Moreover there is a bounded linear operator T = Ly (V') — W2 (V) such that v = T.

Proof.
We know that A operates component-wise on the p form v € L7 (U), so we have
V1 € Ly(U), Fu € W2 (U) = Avo =7, Jllyarey < Clhllzrny
simply setting the component of vy to be the Newtonian potential of the corresponding component
of 7 in U, these non trivial estimates coming from Gilbarg and Trudinger [8], Th 9.9, p. 230 and
the constant C' = C(n,r) depends only on n and r.
Clearly v is linear in 7.



We start with v € L;(U) and we solve A :

Fug € W'(U) = Avg = 7, ||'U0||W27T(U) < CHVHLT(U) ;

so we get Avg + Avg = v + 1, with
N = Avg = ||71||Lr(U) < C(”ARUOHU(U) + ||VU0||U(U))- ‘

Because  [|vollypery < Clvll ey, we have |[vollyirqry < CllVll ey, with the same constant C
hence | Vol < Ol S0

7l @y < elllAvoll ey + IVl r ) < U+ OVl L -
Set n:= c(1+ ('), then we get [|71/[,r ) < nf
We solve A again, still linearly in v,

For € WPT(U) = Avy =y, lollwer @y < Clillrwy = Cnllv ey
and we set

Yo = Avy = H’V2”LT(U) < C(HAUIHLT(U) + valHLr(U)> = 77”’71”LT(U) < 772H’VHLT(U)-
And by induction :

vk €N, i = Avir = el oy < llveall ey < 012

Yl 0r)-

and

Juy, € W;’T(U) i ARvg = Y, HUkHWM(U) < CH%HU(B) < CﬁkH’VHLr(B)-
Now we take ¢ such that 7 = ¢(1 4+ C) = 1/2 and the associated open set V' C U and we set

vi= Y (=1)v;,

jeN

this series converges in norm W}"(V) and we have

Dv = Av+ Av =Y. (1) (Av; + Av;) =7,
the last series converging in L (V).
All the steps are linear, hence we proved the lemma. |

Lemma 5.2 Forx € M, € >0, we suppose that we have a € conformal ball B,(R).
Then there is a g > 0, hence a R > 0, and a constant C' depending only on n = dimg M, r and €
such that :

Vw € L"(By(R)), Ju € W' (B,(R)) :: Au = w, ||u||W2W(Bx(R)) < CHWHLT(Bx(R))'
Moreover u is linear in w.
We also have a Calderon Zygmund inequality : there are constants cy,co depending only on n =
dimg M, r and €y such that

R = R/2, Yu € W*"(B,(R)), ||u||W2’T(Bx(R’)) < ClHUHLT(Bx(R)) + CZHAUHLT(Bx(R))-

Proof.
For x € M we take € > 0, the e conformal ball B,(R) and we take the chart ¢ : (z1,...,x,) such
that

1) (1 —€)di; < gi5 < (1+€)d;; in By(R) as bilinear forms,

2) Z SUp ;j=1,...n, yeBz(R) laﬁgij(y)’ <e

18]=1
Of course the operator d on p forms is local and so is d* as a first order differential operator.

So the Hodge laplacian A, read by ¢ in U := (B, (R)) is still a second order partial differential
system of operators and with Ag the usual laplacian in R™ acting on forms in U, we set :
Aw, = Ayw, — Arwy,,



where w,, is the p form w read in the chart (B,(R),¢) and A is a matrix valued second order
operator with C> smooth coefficients such that A := A, — Ag : W2"(U) — L"(U).
This difference A is controlled by the derivatives of the metric tensor up to order 1 :

for instance for function f we have in the chart ¢ :
1

A, f = ——=—==0,(g"\/det(g:;)0; ) = " ;[ + Yo,
det(gi;)

where Y} is a first order differential operator depending on ¢ and its first derivatives ;
more generally for a k form w, still in the chart ¢, [18| formula 21.23, p. 169, gives

Agu = g7 (2)d5u + Yiu,
where Y}, is a first order differential operator.
So A, depends on first order derivatives of g hence the difference A := A — Ag, where Agpu(y) =
5 Q-qu(y), is controlled by the first order derivatives of g.
So we have

[A) ()] < [(97(y) = 07)u(y)| + |E(w) ()], (5.1)

where F is a first order partial differential operator whose coefficients depend on the first order
derivatives of g, and are 0 for y = z. So
Vy € Bo(R), [E(u)(y)] < n[Vu(y)] ) )
where 7 is a function of the metric ¢ and Vg only, hence, because ‘ g7 (x) — ‘ < 2¢, n may be
chosen to depend on € > 0 only and 1(0) = 0.
Hence, integrating (5.1), we get
||Au||LT(Bx(R)) < ||Vg||L°°(Bx(R))||ARU||LT(BUC(R)) +n(€)||vu||LT(Bx(R)'

So there is a 0 < ¢(¢€), ¢(0) = 0 and ¢ continuous at 0, such that ||A|f < c(e)(||Ar]l + [|V]]), the
norms being the norms as operator W' (B,(R)) — L (B,(R)).

We can apply lemma 5.1 with U := p(B,(R)), D :=A,, A = Ag to get that there is a positive
€0 such that :

Vw, € Ly(U), Ju, € W2 (U) = Ay = w,, [uellyzr @y < Cllwell e
the constant C' depending only on n and r. Moreover wu,, is linear in w, by lemma 5.1.
Now we fix € = €.
The Lebesgue measure on U and the canonical measure dv, on B,(R) are equivalent ; precisely
because of condition 1) we get that :
(1— )" < |detg] < (1+ )",

and the measure dv, read in the chart ¢ is dv, = \/|detg;;|d€, where d¢ is the Lebesgue measure in
R™. So the Lebesgue estimates and the Sobolev estimates on U are valid in B, (R) up to a constant
depending only on n and €. In particular :

Vo € M, Vol(B,(R)) < (1 +€)"?v,R", (5.2)

where v, is the euclidean volume of the unit ball in R".
So going back to the manifold M we get the right estimates :
Su € W27 (Ba(R)) 5 Aayu = in Bo(R), [l s,y < CIollir
where C' depends only on n, r and ¢, and u is linear in w.
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For the Calderon Zygmund inequality (CZI) we proceed the same way.
By the condition 2) in the lemma, we have that the Christoffel Ffj can be made as small as we wish,
so the second covariant derivatives are uniformly near to the usual second derivatives in the chart
U, ).
By the classical CZI for the usual laplacian Ag in R™, [8], Th. 9.11, p. 235, we have, with a
=R/2, U = p(B.(R)) €U,
Vu € W (U), [[ullyr @y < callll ) + Sl Arull 1o
because the laplacian on forms in R" is diagonal. Because A, = Ar + A we get
Yu € W (U), 1Arull ey < 18w = Aull gy < 18 oy + Al ey <
1A gl ) + el Artll g
So
vu e W (U), (1= o)llArully @y < 1Apull 1
and finally

T CI
Vu € Wpl (), ||u||w2,r(U/) < ClHUHLr(U) + 1 _2 CHASOUHLT(U)
/

It remains to set ¢y := 102 to get the CZI for A,. So passing back to M, we get the CZ interior
—c

local inequality on B,(R') C B,(R) C M because the Sobolev are the same up to a constant
depending only on n, r and e. ]

6 The raising steps method.

From now on we take € = ¢y with ¢; given by lemma 5.2 and we take the ¢, conformal radius and
the Vitali covering {B(x;, 5r(x;))};jen associated to it.

Definition 6.1 A weight relative to the covering {B(z;,5r(x;))}jen is a function w(z) >0 on M
such that :
there are two constants 0 < ¢;,, < 1 < cg, Ssuch that, setting

Vj €N, Bj:= B(x;,or(z;)), w; = (B /s w(x)dvy(x),
g J j

we have Vj € N, Vo € B;, cpw; < w(zr) < cgw;. By smoothing w if necessary, we shall also
suppose that w € C®(M).

This means that w varies slowly on B;.
So let w(xz) > 0 be a Welght we say that w e Ly(M,w), if :

- / (@) w(z)dvy(z) < co.

6.1 Weighted Calderon Zygmund inequalities.

The aim is to generalise the Calderon Zygmund inequalities done in [10] by adding weights.

Theorem 6.2 Let w be a weight relative to the covering {B(x;,57(x;))}jen and u € Ly(M,w")
such that Au € Ly(M,w) then there are constants ci,cy depending only on n = dimgM, r and &
such that if u, Au € L)(M,w) then u € W' (M,w) and :
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||U||W2,T(M,w) < ClHUHLr(M,w) + CQHAUHLT(M@)’
Moreover we have for t = Sy(r) that u € L;(M,w) with ||u||Lt(Mw) < c||u||W2,T(Mw).

Proof.
Let u € L"(M,w), Au € L"(M,w). Set R; := 5r(x;), Bj := B(x;, R;), Bj = B(x;,2R;) and apply
lemma 5.2 to get :
there are constants ¢y, co depending only on n = dimg M, r and ¢, such that
[ullyzr ;) < Cl||u||Lr(B;.) + C2||AU||LT(B;.)-
We have
||u||TI;V27T(M,w) < Cus ijHuH:/V?W(Bj) ;
jEN
to see this we Just take the L" norm of covariant derivatives of u :
/ |VEu(a x)dv,(x <cwsZ/ w; | VEu(a)|” dog(a
]GN
But on B; we have ‘Vk ‘ <C }81“ } where the constant depends only on n, r and ¢, and
0% are the k th usual derivatives in the local coordinates, k < 2.
With the CZ part of lemma 5.2 we get :

|0 u(z)|" dvg ()" < ClHUHLr(B;.) + CQHAUHLT(B;V
hence ’
[V¥ul

ZT(Mvw) < Cewstr Z wj||“||2r(3;.) + CcusCy Z wj”AUHZr(B;)-
jEN jEN
Because the overlap is less that T" we get
> willullyr iy < i Tlulll ar
jEN

ij||Au||2T(B;.) < C;ilTHAuH;,T(M,w)'

jeN
So finally, with C; = cjc;il, j=1,2,

k r r
[V ] Lr (M) S T lull e atwy CyT" AU 1 (ag ) -
Taking successively k = 0, 1,2 we prove the first part of the theorem.
To prove the "moreover" we follow the same line : because Vj € N, u € WPQ’T(BJ-) and using the

Sobolev embeddings, true in B;, we have, with t = Sy(r),

u € Ly(B)), Nullps,) < cllullyz g,

and

Now

t t
lullbeary < cws D wyllullegs,)
JEN
hence, because the overlap is smaller than T’

> willullzs,y < cuiTllullzar
jEN
SO HthLi(M,w) < CwsC;Z-lTHUHth(M,w) which proves the theorem. |

Corollary 6.3 Let h € Hy(M,w) then Vs > r, h € H (M, w).

Proof.
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Let h € H,(M,w) then Ah = 0 € Li(M,w) then theorem 6.2 gives h € W"(M,w) and h €
L;II(M,w) with #; = Sy(r). By interpolation between L] (M,w) and L;'(M,w) we get that h €
L} (M, w) for any t' € [r,t1]. If t; > s we are done, if not we have that h € H}' (M, w) and we play
the same game with ¢; in place of r and this proves the corollary by induction. |

6.2 The raising steps method.

With R(z) the €y conformal radius, we shall prove now :

Theorem 6.4 (Raising Steps Method) Let (M, g) be a complete riemannian manifold and take w
a weight relative to the Vitali covering {B(z;,5r(z;))}jen-
For any r <2, ¥s >, there is a k € N such that, with wo(z) := w(x)R(x) ™",
Vw e L"(M,w(), Jv e L"(M,w") N L (M,w*) : Av=w+@
with s1 = Sa(r), ti, = Sk_1(r) > s, @ € L*(M,w®) and control of the norms.
Moreover v and @ are linear in w.
If w is of compact support, so are v and @.

Proof.
Set R; := b5r(z;), Bj := B(z;, R;) and apply lemma 5.2 to get :
Ju; € W2(By) = Auy = w, |ujllypzegs,) < allwllps,),
with wu; linear in wip, .
So by Sobolev embeddings, true in B;, we get, with s = Sy(r),
uj € L*(By), Nujll o)) < allwll sy
Hence, because u; € L"(B;), we have by interpolation [4], that Vs' € [r, s], u; € L* (B;) with control
of the norms.
Let {x;}jen be a partition of unity associated to {B(x;, R;)},en then we set
vy = Z XjU;-
jeN
Because the w; are linear in wip;, vy is linear in w.
We have

151 Lo(B;) = Cl”WHLT(Bj)a
and multiplying by w;

willxguill s, < wicillwll sy

So
”UOHSLS(M,ws) < Cow ngs'HXj“ﬂ SLS(BJ-) < Cw Zw;”“ﬂ SLS(BJ-)
jEN jEN
s/r
< it S ulleli <t (Tt loll
jEN jeN

because s > r.
Because the overlap is less that T" we get

s/r
‘Zs(M,ws) < Gl (Z w;HwHZT(Bj)) < Ci_wlczwcf(THwH;f(M,wT))S/T’
JEN

[0l

SO
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[[vo| Lo (M) = Ci_wlcswclTl/r||W||LT(M7wT)-
We also have vy € L' (M,w") because u; € W>"(B;) = u; € L"(B;) as well, this means that
vow € L"(M) N L*(M) hence by interpolation we have that
vow € LY (M) = vy € LY (M, w") for any t' € [r, s| with the same control of the norms.
If w is of compact support, then we can cover Supp w by a finite set {B,};=1, .~ and then add
N
a layer {B;};—n+1,..N, to cover U B;. Then by linearity we get Vj = N 4+ 1,..., Ny, u; = 0 and
j=1
No NO

setting now vy 1= Z X;u; we can extend vy as 0 outside U Bj hence we get that vy is compactly

j=1 j=1
supported.

Now, for x € D(M) and u € WpQ’T(M), set B(x, u) := A(xu) — xA(u). Exactly as for Proposition
G.II1.6 in [3] we have in an exponential chart at a point x € M,
g 0
u= Z uydr’, g (x) = &;; and the basis {6—}j:1""’n is orthogonal.
:Z‘ .
1 |=p !
In this chart and at the point x we have that the laplacian is diagonal so
92
Au(z)= Y 8;‘; (z)da’
J|J|=p J
hence, for any = € M,

Bluw(e) = vl ~2 3 (G

Ydx”.

So we get
[BOx; w)| < [Ax] ful +2[Vx|[Vul.

Now consider Avgy, we get
Avy = ZA(Xjuj) = ZXJAUJ + ZB(Xj, uj) = w + wi,
jeN jeN jEN
with w; = Z B(x;,uj).
jEN
Clearly Auwy is linear in w so is wy.

1 1
We have |Vy;| < - and |Ax;| S —=5. We also have
R, R

||vuj||Lt(Bj) < ClHWHLr(Bj) and ||uj||Ls(Bj) < CIHWHLT(Bj)v
with t = S1(r), s = Sa(r). Let q € [r,t].
By Young’s inequality we get
il emy = el o,y < Wtsllo o 108, | g,y = Wil e,y R
because Vol(B,(R)) < (1 4 €)"/?v,R" by equation (5.2), we get, with ¢, = ¢; {/vn(1 + €)7/2,

1
||uj||Lt(Bj) < |Bj] /n ||uj||Ls(Bj) < CijHWHLT(Bj)-
Hence a fortiori HujHLq(Bj) < e Rjllwll g (p))-

So we get
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1BOG Uiy < 19X eIVl sy DAY sl o) < 0B el
Multiplying by w; we get

will BOG, )| pageyy < By wicollwll s,y
We take the power ¢ and we add

> wlIBOG up)llfags,) < b Y Ry “willwll? s,

JEN jEN
But

Z a? < (Z ag)q/r because ¢ > r, hence

jEN jEN

> R willwl|7r s, < b O R"w W[l es,)) "

jeN jeN
By lemma 2.3 we have

1 1

Vo € By, d(z,z;) < Rj =5r(x;) < ZR(ZL‘j) < Z(R(xj) + R(z)) = R(z) < 4R(z;)
hence

Vr € Bj, R(r) <4R; = R;" <96"R(z)™",

R(z;)

so, because r(x;) = and R; = br(x;),

j
120

Ry willwllpr s,y < 967¢q, /B jw(@)|" R(x)™"w"(x)dvy(z).
Because the overlap is smaller than T by proposition 3.2 we get

> R0 el < 96T [ Ria) T wla) )] duy(a).

jEN M
Now, with
wy = ZB(Xj,uj),
jEN
we have

w(a)! wr(2)|" dug(z) < c7ct D RWIIBOG, u3) |0,

JEN

([ wor o) Y < enen (1 ] oy rotey o an ) e

Set t; =t = S)(r), we have, with w(z) = w(z), wo(z) = w(z)R(x)™", Vg € [r,t1]

||w1||Lq Muwl) ~ ||W||Lr (Mw?)*
If wis of compact support, we have seen that vy is also of compact support hence so is Avy = w+w;.

Which means that w; is also of compact support.

M
hence

Now we do the same game starting with w; in place of w and we get, with
sy = So(t1), ta = Si(t1) = Sa(r), wo(x) = w(z), wi(r) = w(@)R(@)™", w(r) =
w(z)R(z)~?,
that
Juy € LY M, wi) :: Avy = wy + wsy for any ¢ € [r, s1],

and

wy € LU(M,w3), q € [r;ta], w2llpoarws) S Mwill s arny S N9l prarug):
We keep the linearity of v; w.r.t. to w; hence to w. So ws is still linear w.r.t. w.
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So by induction we have, with
te = Si(r), wi(z) == w(z), we_i(x) = w(z)R(x)™, ..., wolx) = w(x)R(z)™*,
and
J=0,., k=1, vy € L(M,w},,), sji1 = S2(t;), for any q € [r, s;11],
and

wr € LM, wl), 0 € [rted, Tonllpoqary S S 1ol pa gty S Bl (63)

k-1
Setting now v := Z (=1)7v; and & := (—1)*wy, we have that Av = w + & and
=0

Vg € [r,s1], v € LYM,wl,,), s1= Sa(ty), wjry = w(x)R(z)V ",
this implies, because wy, = w < wj4q,
vq € [T7 81]7 Uj S Lq<M7 ,wq)’ ijHLq(M7wQ) < ClTl/er”L’"(M,w{))'

k-1
So we have also for v := Z (=1)Yv; -
=0
Vg € [r,s1], v e LY (M, w?), ”UHLq(M,wq) < kclTl/er”LT(M,w{))' (6.4)

We cannot go beyond s; because of vy.

And

vq € [Ta tk]7 w€E Lq<M7 wlz>7 Hwk”LII(M,wZ) Sx HWHLT(M,wS)' (65)

Clearly the linearity is kept along the induction.
If w is of compact support, we have seen that vy and w; also and by induction all the v; and w;
are also of compact support. |
We shall refer to this theorem as RSM for short.

Remark 6.5 We have, by inequalities (6.3), that ¥q € [r,t], wp € LY(M,wl). With the choice
of w =1 we get that wl = R(x)™% > 1 hence Yq € [r,t}], wp € LY(M). This implies, with the
notations of the RSM, that ¥q € [r,s|, © € LY(M).

Corollary 6.6 Let (M, g) be a complete riemannian manifold and choose as a weight w = 1. For
any T <2, w e L'(M,w}), k € N, wy(z) := R(x)™ and any sequence w' € Dy(M), w' — w in
L, (M, wg), we have two sequences :

v € D,(M), v' — v in L (M) and &' € D,(M), &' — @ in L'*(M)
such that Avt = W' + @' ; Av=w +@.
Moreover if tj, > 2 > t,_y then with H : L2(M) — H2(M) the orthogonal projection, H extends
boundedly from L (M, wg) to H2(M).

Proof.
By theorem 6.4 we have that v', @' have compact support and by linearity with (6.4)
(v—2") € L"(M)Nn L (M), Hv — vl} ) < k;clTl/THw - wl’

L1 (M LT (M,wp)
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|

SO Hv =Vl gy (awer) 0 and the same way with (6.5) we get

(@—a') e L*(M), |
~
hence Hw —w HL%(M) — 0.
It remains the "moreover" to prove. So let w € L"(M,w}) and take a sequence w! € D,(M), w! —
w in L7 (M, wg), then H is well defined on o', Av!, w' and @' and we have
Avt =Wl + ot = HAY = Ho' + HO .
Take t;, > 2, h € H;(M) then <HAvl,h>L2(M) = <Avl,h>L2(M) because Hh = h and H is self

adjoint. But because A is essentially self adjoint in L*(M) and v! has compact support, we have
! !

(Av ’h>L2(M) = (v ’Ah>L2(M) =0.
So we have VI € N, HAv! = 0 and this implies

VieN, HJo'+ Ho' = 0.
Now t; > 2 > t,_; implies that we can choose, by (6.5), @ € L2(M) and the convergence
H(IJ—(I/HLQ(M) — 0. So, because H is bounded on Li(M), we get Ho! — H@ in L;(M), and
this means Hw' — —H& also in L;(M). So we define, for any sequence w' € D,(M), w' = w in
L;(M, wo),

Hw :=lim Hoonl,
and we just proved that Hw' converges in LIZ,(M ) to —H®, with @ given by the the Raising Steps
Theorem. [ ]

& — @

l S o -
Ly ~ 1Y T Yl L arwg)

7 Applications.

Lemma 7.1 Lett < 2, if the weight w is such that : ~vy(w,t) := / w22_—ttdvg < 00, we have :
M
we Ly(M)=we Li(Muw).

Proof.
1 1 1
Young’s inequality gives ||fgll;. < || fll2llg]l;. with T =357t 7 so let w € L2(M), then, with
t <2, we get
1/t 1/2 o 2=t
(/ |w|twdvg) < (/ |w|2dvg.) (/ w%—tdvg) .
M M M
So if the weight w is such that ~(w,t) := w22_—ttdvg < 00, we are done. |

For instance take any origin 0 € M, M a é‘gmplete riemannian manifold, and set p(x) := dy(0, z).
We can choose a weight w, function of p, w(z) := f(p(x)), such that ~(w,t) < oo, provided that
w(z) goes to 0 quickly enough at infinity.

Recall that R(z) is the €y conformal radius at x € M.

Corollary 7.2 Suppose that (M, g) is a complete riemannian manifold ; choose a weight w €
L>(M) wverifying lemma 7.1 for r < 2, t = Sy(r), i.e. y(w,t) < oo, and suppose we have the
condition (HL2,p).

With k == Sp(r) > 2, setting wo(x) := R(z)™", then for any w € L' (M,w}) verifying Hw = 0, for
the orthogonal projection H defined in corollary 6.6, there is a v € Ly(M,w) N LZ(M, w), such that
Au = w.
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Moreover the solution u is given linearly with respect to w.

Proof.
We have t;, := Si(r) > 2 and we use the assumption (HL2,p) :
it gives the existence of a bounded linear operator L : L2(M) — L2(M) such that
ALg = g, provided that Hg = 0,
by the spectral theorem, see, for instance, the proof of theorem 5.10, p. 698 in Bueler [5].
Take w € L"(M,wy), the theorem 6.4 gives linear operators
T : L"(M,wy) — L"(M) ; A : L"(M,w}) — L*(M),
such that
v:=Twe L'(M)N L' (M) verifies Av = w + @,
with ¢ = Sy(r) and @ := Aw.
But
ve LY(M)=ve L'(M,w) because w(x) € L>°(M) is bounded :

1ol 2ty = /M|U(f€)\tW(fC)dv($) < [lwllo M\v(x)|tdv(fﬁ) = llwll oo llvllz: ary-
And the same v € L' (M) = v € L"(M,w).
By corollary 6.6 if Hw = 0 then Ho = 0. So setting f := Lo € LIQ)(M) we have Af =& € Li(M).
Then lemma 7.1 gives f € L'(M,w). But then w verifies also lemma 7.1 for 7 = r, because
2%
2—t 2—r
Now we set u = v — f = Tw— LAw, and we get u € L"(M,w)NL'(M,w) and Au = w+0 - = w.
[
Now we shall use the linearity of our solution to get, by duality, results for exponents bigger than

2. Take r < 2 and 7’ > 2 its conjugate.
Let T : L"(M,w}) — L"(M), A : L"(M,w}y) — L*(M) be the linear operators, given by the
RSM, such that

ATw =w+ Aw.
The hypothesis (HL2,p) gives the existence of a bounded linear operator L : L2(M) — L2(M)
such that

AL = @, provided that Ho =0 < Hw = 0.
Hence, setting C = LA : L"(M,w}) — L*(M) we get

Vw € L"(M,wg), AT — Cw = w.
We notice that

A(T — C)AyY = A,
just setting w = At. This is possible because

Vi) € Dy(M), Y € L2(M), (HAY, ) = (A, Hg) = (i, A(Hp)) =0,

and we use that A is essentially self adjoint and A(Hp) = 0 because H is harmonic. So HAY =0
and we can set w = At. Hence

so we have also f € L"(M,w).

(T'= C)A¢ = ¢ + b, (7.6)

with h € H.
Now let p € L2(M) N L;,(M) and consider u := (T — C)*p.
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This is meaningful because T* : L' (M) — L (M,w}) and C* : L*(M) — L" (M, w}) hence
we L (M, w)). We get
VQ/J S D<M) N Lr(Ma U)S), <Au7 w>L2(M,w6) = <A<T - C)*907 1/}>L2(M,w8) =

— [ AT - oy pppugn, = [ (T - C)eatup)sy, = (T - 0o AR a0

because A is essentially self adjoint and 1w has compact support.
Hence by (7.6)

(Au, ¢>L2(M,wg) =(p,(T'=C)A (wwo»L?(M) (¢, Ypwg + h)L?(M (¢, wU}O)LQ (M)
provided that ¢ 1 H. Putting back the weight in the integral, we get

(Au, ¢>L2(M,w()) = (¢, ¢>L2(M,wg)'
This being true for any ¢ € D(M) we get

Au = ¢ in distributions sense, so we proved

Corollary 7.3 Suppose that (M, g) is a complete riemannian manifold ; suppose we haver < 2 and

(HL2,p), with k :: S(r) > 2, setting wo(x) := R(x)™", then for any ¢ € LA(M)N L;/(M), Hyp =0,
= (T —C)*p, u€ L"(M,w}) and u verifies Au = ¢

Moreover we have u € WI?’T'(M) with control of the norm.

It remains to prove the "moreover" and for it we notice that, because R(z) < 1 = wy > 1, we
have

we L (M, w)) :>/ |u|" dvg / |u| whdv, < 00,
hence u € L™ (M) ; but Au-ngU( ), so, by the CZI, theorem 6.2, we getuEWz’"(M) |

7.1 Strong L" Hodge decomposition.
We shall need :

Lemma 7.4 Letr <2 and a€ W;fl( ); Be Wplfl(M), h € H2(M) then
(da, )y = (d*B,h) =

Proof.
Because h € 7—[;, we have that dh = d*h = 0 by theorem 5.5, p. 697 in Bueler [5]. By the density of
Dy (M) in W' (M) which is always true in a complete riemannian manifold by theorem 2.7, p. 13
in [11], there is a sequence oy € Dyy1(M) such that o — agllyy1r(p — 0 and there is a sequence
Bk € Dp—1(M) such that |8 — Bkl — 0.
By use of corollary 6.3, we have that h € 7—[; = hé€ 7—[;/ hence, because da € L (M),

(da, h)y = lim g_yoo({day, h) = lim o0 {ay, d*h) =0,

because d* is the formal adjoint of d, ay € D,y1(M) and d*h = 0.
The same way we get (d*f,h) = 0. |

Theorem 7.5 Let the weight w € L (M) be such that y(w,r) < oo with r < 2 with k :: Sk(r) > 2,
set wy = R(z)™", and suppose we have hypothesis (HL2,p). We have the direct decomposition given
by linear operators :

Vs, 1 <5 <2, L3(M,wy) =M, d AW (M, w)).

Vs, s> 2, LS(M) NL2(M) =H2NH; & AW (M)).
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Proof.
If s <2wesetr=s Letwe L)(M,wy) the RSM with w = 1, wy = R(x)™, gives u := Tw €
Ly(M), @:=Aw € LIZ)(M) such that Au = w + ©. So we get
w=Au—0=Au— (w— Hw)— Ha.
This is well defined because @ € L2(M) and H is the orthogonal projection from L2(M) on H2.
Now H(& — H®) = 0 hence f := L(& — H®) solves Af = (0 — H®), f e L2(M). So we get

w=Au—w=—-Hu+ Au— Af, (7.7)

with Ho € H2. We have & € L7 (M) N L2(M) by remark 6.5 and w € L"(M,wf) C L"(M) because
wy > 1,80 u € L(M), Au=w+w € L (M) hence, by CZI, u € WpQ’T(M). The same way we have
that f € W2*(M).

This gives a first decomposition :

w=—Ho+ Au—Af, (7.8)

with Ho € H2(M), uw e W2 (M) and f € W2*(M).
With the weight w € L>°(M) such that y(w,r) < co we have that

f € LA(M) C L(M,w), and u € L(M) C L'(M, w).
Moreover Au = w € Lj(M,wg). But w € Ly (M,wy) = w € L,(M,w) hence we can apply the
weighted CZI 6.2 :

W2 (M, w), |l < allullrar + AU ar )

ue Wy W), w2 (Mw) S CLU prar,w) T C2 L (M,w)

This gives the case s < 2.

If s > 2 we set s =1/, the conjugate exponent of r. So let w € L;/(M) N Lf)(M), then we have
w=Hw+ (w— Hw) with H(w — Hw) = 0.
We have that Hw € H2(M) hence by corollary 6.3 we get that Hw € 'H;/(M) sow:=w— Hw €
L;/(M) N LIZ)(M) and Huo = 0./ Now we have by corollary 7.3 a u € L;/(M, w() such that Au = @.
Again this implies that u € L, (M) hence, by CZ1 6.2 :
u < WpQ’T (M), ||u||W2’T'(M) < C1||U||Lr’(M) + CQHAUHLT'(M)'
Hence we have the decomposition

r’ 2
Vwe Ly (M)N Ly(M), w=Hw+ Au = h + Au, (7.9)

with h € HA(M)NH, (M) and u € W2 (M).
Because at each step we keep the linearity w.r.t. w, we get that that the decomposition is also linear
w.r.t. w.

To get the uniqueness in the case s < 2, we consider the first decomposition (7.7) :
w=h+A(u— f) with h € H2 and uw € W' (M), f e W2*(M).
If there is another one w = A"+ A(u' — f') then 0 = h — '+ A(u — v’ — (f — f)) ; so we have to
show that
0=h+A(u— f) with h € H2 and uw € W} (M), f e WZ>*(M),
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implies h = 0 and A(u — f) = 0.

Now Au = d(d*u) + d*(du) = do + d*B, with o = d*u € W,{,(M) and 8 = du € W, (M). By
lemma 7.4 we get (da,h) + (d*8,h) =0, so (Au,h) = 0. Exactly the same proof with r = 2 gives
(Af,h) =0, so, from h+ Au— Af =0, we get

0= (h,h) + (Au, h) + (A, h) = |[hll 20

which implies A(u — f) = 0 and proves the uniqueness of the decomposition for s < 2.

For s > 2 we have the decomposition (7.9)
Yw € L;,(M) N Li(M), w = h+ Au,
with 7 € H2(M) NH} (M) and u € W2" (M).
By (HL2,p) we have
v € LA(M) :: Av =@ :=w — h because © € L2(M), hence, by CZI, v € W}*(M).
But Av = Au = @, so if there is another such decomposition
w=h+Au =n+ AV
then
O=h—N+Au—u)=h—-n"+ A -1,
Still with v — v" € W*(M). So changing names we have

O=h+Au=h+Av (7.10)

with h € H2(M) and v € W2 (M).
Again Av = da+d* with a = d*v € W;;QI(M) and g = d'v € Wplfl(M) and by lemma 7.4 we get
(da, h) + (d*B,h) =0, so (Av,h) =0.
Hence (Au,h) = (Av,h) =0. But by (7.10) we have
0= (h,h) + (Au, h) so ||h||L2(M) =0=h=0
which ends the proof of uniqueness of the Hodge decomposition. |
There are two extreme cases done in the next corollaries.

Corollary 7.6 Let the weight w € L>®(M) be such that v(w,r) < oo with r < 2. Suppose the
conformal radius verifies Vx € M, R(x) > § > 0, and suppose also hypothesis (HL2,p). Then we
have the direct decomposition given by linear operators

Vs, 1<s<2, L3(M) =MD AWM, w)).

Proof.
We have just to set wg = 1. |
The conformal radius verifies Vo € M, R(x) > ¢ > 0, if, for instance, the Ricci curvature of M is
bounded and the injectivity radius is strictly positive [12].

We also have

Corollary 7.7 Letr < 2, with k :: Sp(r) > 2 set wy = R(x)™" and suppose the riemannian volume
is finite and hypothesis (HL2,p). We have the direct decomposition given by linear operators :
Ly (M, wg) = H; @ AW (M)).

Here the weight w is no longer necessary because the volume being finite, if a form is in L?(M)
then it is already in L°(M).
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Corollary 7.8 Let the weight w € L>®(M) be such that y(w,r) < oo with r < 2, with k :: Sg(r) > 2
set wy = R(x)™" and suppose we have hypothesis (HL2,p). We have the direct decomposition given
by linear operators :

Ly (M, wg) = H2 @ dW," (M, w)) @ d* (W, (M, w)).
With r' > 2 the conjugate exponent for r,

LY (M)NLA(M) = H2NH, @ d(WE' (M) @ d (WL (M)).

Proof.
The case r’ follows exactly the same line. We already have w = Hw+Au and Au = d(d*u)+d*(du) =
do + d*B, with o = d*u € Wplfl/(M) and f = du € Wpl’f{(M). This gives the decomposition.

For the uniqueness, suppose that
0=h+da+dB, with a € W, (M) and 8 € W, (M),
then, by use of lemma 7.4, we get (da, h) + (d*3,h) = 0, hence h = 0. So it remains
0=da+dp.
Take ¢ € D, 1(M) and consider (da, d*p) = {a,d?p) = 0 because d** = 0. By the density of
Dy.(M) in W*(M) there is a sequence £ € D,_1(M) such that || — Brllwr2(ary — 0 hence
Vk €N, (da,d*B) = (a,d®B) = 0= (da,d"B) =0,
hence ||d*6||L2(M) =0so d*f =0 and also da = 0.

For r, we have, by (7.8) : Yw € L (M, wy),
w=—-Ho+ Au—Af,
with Ho € H2(M), uw € W2"(M) and f € W}*(M). Again
Au = do + d*B, with o € W', (M) and 8 € W, (M),
and

Af =da’ +d*f', with o € W, (M) and 8 € W, (M),

p+1
Hence

w=h+dla—-ao)+d(B-05).
With the weight w we get a € W;’fl(M) =€ Wpl’fl(M, w) and the same for 5. And also
o € W;’_Ql(M) =ad € Wpl’_rl(M, w) and the same for . So, setting v := a — o/, § = 5 — ', we
have the decomposition
w € Ly(M,wy) = w = h+dy+ d*,
with i € H2(M) NHL(M,w), v € W,"\(M,w), § € W) (M, w).

For the uniqueness, suppose that
O=h+da—-ao)+d(B-p),
by use of lemma 7.4, we get (da, h) + (d*3,h) = 0 and also (da’,h) + (d*8',h) =0, so h = 0. So
we have
0=dla—a)+d(8-7).
This implies that

do+d*B = dd' +d*f, (7.11)
hence
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do+d*B e Ly(M)NLAM) ; do/ +d*B" € Ly (M) N Ly(M),
because
do+ d*B € Ly(M) and do' + d*B' € L2(M).
Now take ¢ € D,(M), because (HL2,p) is true we have the L* decomposition :
o= Hyp+dy+d*§ with v,6 € WL2(M).
We have
(d(a—a),p) = {dla—a'), Hp + dy + d*0) ;
by use of lemma 7.4, we get (d(a — '), Hp) = 0. By density we have v = lim 00V, V& € Dp1
and 0 = lim j_,000k, 0 € Dpi1, the convergence being in WY(M), so dy = lim j_,0edy; and
d*0 = lim 4_,00d™ 0y In LIQ,(M). So we get
(d(a— o), dy+d*6) =1lim g o(d(a — ), dyy + d* ).
But
Vk €N, (d(a— o), d* ) = ((a — &), d™6;,) = 0
because d* is the formal adjoint of d, d*8j has compact support and d*? = 0. So
(d(a—a),p) =lim jo{d(a—a),dv).
With (7.11) we get
Vk e N, (dla—a),dy) — (d(B—p),dv) =0,
and
Vk €N, (d"(8—B'),dvw) =0,
because d* is the formal adjoint of d, dv; has compact support and d*> = 0. So
Vk e N, (d(a—a'),dy) =0,
which gives
(d(a — '), ) = lim 400 (d(a — a'), dyy) = 0,
and this being true for any ¢ € D,(M), we get d(a — ') = 0 ; this gives with (7.11) d*(8— /). B

Let us set the Sobolev embeddings hypothesis :
(SE,p) provided that Vr > 1, u € W' (M) = u € LI (M), t = Sy(r).

This property is true for instance if M has a Ricci curvature bounded from below and inf ,¢pv,(B,(1)) >
d > 0, due to Varopoulos [19], see [11] theorem 3.14, p. 31.
Then we have a direct proof of the L" Hodge decomposition for r» > 2 with this extra hypothesis.

Theorem 7.9 We have, with the hypotheses (HL2,p) and (SE,p), the decomposition
W, 1> 2, LN(M) N LA(M) = H) @ A(W2"(M)).

Proof.
Take w € L7(M) N L2(M), Hw = 0 ; by interpolation we have Vt € [2,7], w € L} (M). By (HL2,p)
we can solve A :
Ju € LIZ)(M) tAu = w.
By CZI we have then u € WPQ’Q(M). By (SE;p) u € L)}(M), t; = S5(2) > 2. If t; < r then Au=w €
L (M) hence by CZI we get u € W (M), and again with (SE,p) we get u € L2 (M), to = Sa(t;) =
S4(2) > t1. And by induction up to the fact that ¢, = Sx(2) > r. Then we have u € L (M)NL2(M)
hence still by interpolation, u € L)(M). But Au =w € L) (M) so by CZI we get u € W2'(M). B

Remark 7.10 The Sobolev embeddings property is not true if M has a Ricci curvature bounded
from below and inf ,epvy(B(1)) =0, see [11] theorem 3.18, p. 37. Nevertheless theorem 7.5 is
still valid.
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The corollary 7.3 which gives the theorem 7.5 in fact is stronger : if r > 2, hence ' < 2, w €
Ly(M) N LIZ)(M), Hw =0, set k 2 Sp(r') > 2, then there is a u € L(M, wh ) with wy == R(z)™" ;
because wy < 1, the space Ly (M, wy ) is in general much smaller than L,(M) which we use in
theorem 7.5.

7.2 Weak " Hodge decomposition.

Now we shall need another hypothesis :
(HWr) the space D,(M) is dense in W' (M).
We already know that (HWr) is true if :

e cither : the injectivity radius is strictly positive and the Ricci curvature is bounded ( [11]
theorem 2.8, p. 12).

e or : M is geodesically complete with a bounded curvature tensor( [10] theorem 1.1 p.3).

We have a weak L" Hodge decomposition theorem :

Theorem 7.11 Suppose that (M, g) is a complete riemannian manifold, choose a weight w verifying
lemma 7.1 for r < 2, with k :: Sp(r) > 2, take the weight wy := R(x)™". Suppose we have (HL2,p)
and (HWr) ; then

Ly(M,w) = H, & A(Dy(M)),
the closure being taken in L™ (M, w).

Proof.
Take w € Lj(M,w), Hw = 0, by corollary 6.6. By density there is a w. € D,(M) such that
oo = el qary < €
Then we have w. € Ly (M, wg) hence by RSM :
v € L (M) 2 Ave = we + @,
with @ € L2(M) of compact support. Because ||w — Well 1 (a1.) < € We have, by the continuity of
H @ L (M,wy) — L;(M) given by corollary 6.6, that |[Hw — Hw[|;2(,,) < Ce. Hence, still by
corollary 6.6, we have [[H&| = [[Hwe| 2y = [[Hw — Hwel| 25y < Ce, because by assumption
Hw = 0.
Hence by (HL2,p) there is a f. € W2*(M) = Afe = & — Hi..
By (HWr) there is a g € Dp(M) :: || fe = gelly22(ar) < € and this implies
[We = Hwe — Agell 2 ary < €5
but by the choice of w we get
[we — AgeHLr(M,w) < |lwe — Hooe — A96”L2(M) + ”H(De”L?(M) <(1+C)e
On the other hand we have v, € L;(M) =, € L;(M, w) hence setting u, := v. — g. we get
Aue = we + we — Age = lw — AUEHLT(M,w) < lw — We“Lr(M,w) + [|we — Age”Lr(M,w) < (24 C)e,
and the proof is complete. [
We also have a weaker L" Hodge decomposition without hypothesis (HWr) :

Theorem 7.12 Suppose that (M,g) is a complete riemannian manifold and suppose we have
(HL2,p). Take a weight w verifying y(w,r) < 0o, for r < 2. Then we have

Ly(M) = Hy @ d(D,(M)) ® & (D, (M),
the closure being taken in L™ (M, w").
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Proof.
For any 2 > r > 1, w € L (M) N 'H;, we proved that there is a u € L (M,w") such that
lw — Aul| o (pr 4y < € The point here is that u ¢ D, (M). Nevertheless we have :
|w = dd*u — d*dul[ 1 (pg ) < €
and now we approximate d*u by a € D(M) in W' (M), and du by 8 € D(M) in W' (M), and
this is always possible by theorem 2.7, p. 13 in [11].
So we get
|w = da = d*B| prar ) < 26
and we are done. |
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