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Objective: Microaneurysms represent the first sign of diabetic retinopathy, and their detection is fun-damental for the prevention of vision impairment. 
Despite several research attempts to develop an automated system to detect microaneurysms in fundus images, none has shown the level of perfor-

mance required for clinical practice. We propose a new approach, based on a multi-agent system model, for microaneurysm segmentation.

Methods and materials: A multi-agent based approach, preceded by a preprocessing phase to allow con-struction of the environment in which agents 
are situated and interact, is presented. The proposed method is applied to two available online datasets and results are compared to other previously 
described approaches

Results: Microaneurysm segmentation emerges from agent interaction. The final score of the proposed approach was 0.240 in the Retinopathy Online 
Challenge.

Conclusions: We achieved competitive results, primarily in detecting microaneurysms close to vessels, compared to more conventional algorithms. 
Despite these results not being optimum, they are encour-aging and reveal that some improvements may be made.

1. Introduction

The presence of microaneurysms (MAs) in the retina is often
the first sign of diabetic retinopathy (DR), so their early detection
is crucial for the prevention of blindness. Therefore, it is of great
importance to include automatic detection of MAs in a screening
program. These types of lesions are commonly described as iso-
lated, small, round objects, of 10–100 �m in diameter. In practice,
they may appear as a conglomeration of more than one MA or in
association with larger vessels. MAs are frequently indistinguish-
able from dot-hemorrhages in color fundus photographs, in which
both appear red. However, these two types of lesions have the same
clinical implications, so there is usually no need for an automated
MA detector to distinguish between them. The number of MAs is
positively correlated with the severity and progression of DR, at
least in the early stages of the disease [1].

Since MAs can easily be observed in digital color fundus
images and their number has clinical implications, several research
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attempts to develop an automated system to detect MAs have been
made in recent years. However, none has shown the level of perfor-
mance required for clinical practice. The primary difficulties with
these algorithms lie in the low contrast between red lesions and
background in fundus images, as well as the proximity of MAs to
blood vessels. The algorithms often process the entire image in the
same way and do not consider its local information, leading to rigid
systems without the capacity to generalize. In the present study, a
new approach, based on a multi-agent system (MAS), is proposed.
The inclusion of MAS models in automatic medical image analy-
sis systems is recent, and has been revealed as a research field
in expansion. However, these models have already been used in
the segmentation of magnetic resonance [2] and ultrasound [3]
images. To the best of our knowledge, this kind of approach has
been implemented by our group alone with regard to retinal blood
vessel segmentation in fundus images [4].

A MAS is typically composed of a set of agents that are situ-
ated, and interact, in a virtual or real environment. In this new
approach for detection of MAs in color fundus images, the environ-
ment includes an image resulting from a preprocessing step. The
MA segmentation then emerges from agent interaction as a global
behavior.
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Fig. 1. Schematic of the “standard” approach to microaneurysm detection.

Adapted from [1]

This paper is organized as follows. Section 2 consists of a lit-
erature review of MA detection in color fundus images. Section 3
describes the proposed approach and its two main phases (prepro-
cessing and the MAS model). The results are shown and discussed
in Section 4. Finally, Section 5 presents the conclusion and some
proposals for future research.

2. Related studies

Several approaches have previously been proposed with regard
to MA segmentation through fundus image analysis. These
approaches are frequently based on morphological [5,6], template-
matched [7–9] and supervised learning methods [10,11]. The
supervised methods are frequently preceded by one of the two
other approaches [5,6,9].

Some previous approaches have examined the detection of MAs
in fluorescein angiographies. In this type of image, MAs appear as
bright patterns and with improved contrast, compared to the green
plane image from the RGB color space. However, MAs have some
characteristics in common in both images; they appear small, iso-
lated and of a circular shape, which is fundamental when using
morphological approaches. The first algorithm was developed by
Laÿ [12] and then improved by other authors [6,10,13]. These
approaches utilized the top-hat transformation to discriminate
between circular, non-connected, red lesions and the elongated
vasculature. The method consists of morphological opening of the
green channel images, with a linear structuring element at different
orientations to obtain the vasculature, and then removing it from
the original image. The length of the structuring element is chosen
to be sufficiently short to fit inside curved vessels, and long enough
that it cannot fit inside MAs, such that it detects vessels (and other
large extended features), but not MAs. However, if the length of
the structuring element is increased to allow detection of larger
objects, vessel segmentation deteriorates, leading to the detection
of a greater number of spurious candidate objects on the vessel.
This approach has been modified and subsequently used by other
authors, such as Walter et al. [5], who detected MA candidates by
applying diameter closing and an automatic threshold scheme.

Niemeijer et al. [10] developed an MA detection approach
that has since inspired several research groups [6,13], and this
is schematically illustrated in Fig. 1. First, the digital green plane
image is shade-corrected to make uniform the background illumi-
nation of the retinal images. Shade-correction is normally achieved
by estimating the background illumination image by means of a
large median or mean filtering. The background image is either

subtracted from, or divided by, the green plane image. The next
step consists of detecting the vasculature by morphologically open-
ing the shade-corrected image with a linear structuring element
at several angles, to enhance all vessel segments (top-hat trans-
formation). The segmented vessels are then subtracted from the
shade-corrected image. The resulting image contains small, dark
objects, such as MAs, and small fragments left over from the ves-
sels, which are then highlighted by applying a matched-filter with a
circularly symmetric 2D Gaussian as a kernel. Hereafter, the image
is thresholded to detect the candidate MAs, which will be used
as locations to initiate a region-growing process on the shade-
corrected image to delineate the underlying morphology of the
candidate. Finally, intensity and shape descriptors are determined
in the region-grown object and a classifier used to ameliorate MA
detection. The primary drawback of this approach is that it cannot
typically detect MAs close to vessels.

Zhang et al. [8] presented an approach that differed from the
“standard” in the way that the MA candidates and vessels were
detected. Using this method to detect candidates, a non-linear fil-
ter with five Gaussian kernels with different standard deviations
was applied to the input retinal images. By maintaining the max-
imal correlation coefficient for each pixel, a maximal correlation
response image was obtained, which was then thresholded with a
fixed threshold value to determine the candidates. The vessels were
segmented by an adaptive thresholding technique and then used to
reduce the number of candidates. Finally, the region-growing pro-
cess was applied to determine the precise size of all candidates, and
a set of features was extracted for each. The same research group [9]
recently improved their method by including a supervised classi-
fier at the final stage, which was the dictionary learning with sparse
representation.

The approach used by Sánchez et al. [11] began with a normal-
ization process identical to the standard approach. An unsupervised
mixture-model-based clustering method was then used to extract
candidates on the normalized image intensities. A fitted model was
obtained by fitting a Gaussian mixture model to the image intensi-
ties. The MAs candidates were segmented by applying a threshold
to the fitted model. After automatically masking out the vascul-
ature, a set of color, shape and texture features were extracted
from the remaining candidates for use in a logistic regression, to
determine the likelihood of their being MAs.

Mizutani et al. [14] tailored their approach by applying bright-
ness correction, gamma correction and contrast enhancement, in
order to normalize the intensity and contrast between images.
The extraction of MA candidates was performed using a modified
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Table 1

Results and methodology categories of ROC approaches.

Publication Team name Method category Final score

Cree [13] Waikato Morphology and template matching

for segmentation and a supervised

classification

0.206

Mizutani et al. [14] Fujita Supervised 0.310

Sánchez et al. [11] GIB Valladolid Supervised 0.322

Zhang et al. [8] OKMedical Template matching 0.357

Zhang et al. [9] OKMedical II Template matching and supervised 0.369

Giancardo et al. [15] ISMV Template matching and supervised 0.375

Quellec et al. [7] LaTIM Template matching 0.381

Niemeijer et al. [10] Niemeijer et al. Morphology and template matching

for segmentation and a supervised

classification

0.395

Lazar et al. [16] Lazar et al. Morphology and template matching 0.423

Antal and Hajdu [17] DRSCREEN Supervised 0.434

double ring. The original double ring filter detects regions in the
image in which the average pixel value is lower than the average
pixel value in the region surrounding it. Conversely, in order to
reduce spurious detections on small capillaries, the modified filter
designed by the authors detects regions where the average pixel
value in the surrounding region is lower by a certain fraction of the
number of pixels under the filter. Hereafter, the original double ring
filter with a different parameter setting was used to detect the vas-
culature and so to remove false positive candidates that remained.
The region-growing process was then performed and a set of fea-
tures, based on color, intensity, shape, and contrast, were extracted
for use as input to an artificial neural network.

After normalizing the images using the standard approach,
Giancardo et al. [15] selected as MA candidates the pixels with an
intensity value higher than a specific threshold. Consequently, the
Radon transformation was calculated at various scanning angles
on original image windows for which at least one MA candidate
existed. The result of this step was a set of features that was clas-
sified through principal component analysis and support vector
machines.

Quellec et al. [7] proposed a method based on template match-
ing in the wavelet domain to detect MAs. In this domain, without
other image processing, it was possible to overcome the problems
caused by lighting variations or high-frequency noise by choos-
ing the working sub-bands. The authors sought the wavelet basis
that was best able to discriminate between lesions and lesion-free
areas. The MAs were modeled with 2D rotation-symmetric gen-
eralized Gaussian functions, and the wavelet basis was designed
empirically, by a numerical optimization procedure, using the lift-
ing scheme framework.

Lazar and Hajdu [16] presented an approach whereby cross-
section profiles with multiple orientations were used to construct
a multi-directional height map, in which each pixel contained a set
of height values that represented the difference between the pixel
and its surroundings in a particular direction. A score map resulted
from the application of a modified multilevel attribute opening step
on the height map. The small, dark circular, objects had the highest
scores on this map, so the MAs could be extracted by threshold-
ing. Antal and Hajdu [17] proposed an ensemble-based framework
to select the optimum combination between the preprocessing
methods and MA candidate extractors that had previously been
described.

With regard to the detection of MAs in color fundus images,
Niemeijer et al. [18] created the Retinopathy Online Challenge
(ROC) website. Its aim is to bring together research community
efforts toward the creation of algorithms for the detection of MAs,
by evaluating their performance on a common dataset and with the
same evaluation modality. This permits a fair comparison between
algorithms of different groups. To date, 11 research groups have

displayed their results on the website. The methodologies they
used, which have been published, are all described above, and the
results are shown in Table 1.

3. Materials and methods

3.1. Multi-agent paradigm

The primary goal of MAS research is to find methods that allow
the building of complex systems composed of multiple autonomous
entities, called agents, which, while operating on local knowledge
and possessing only limited abilities, are nonetheless capable of
enacting the desired global behaviors. A MAS is generally com-
posed of a set of agents situated in a virtual or real environment.
The agents interact with each other to coordinate their behavior in
a particular organization that can be dynamic and/or self-adaptive.
The self-adaptation results from the agents’ interaction to adapt
themselves to the environment and its constraints. The differen-
tiation of the agents and their interaction allow the emergence of
a global result, which influences the agents of the system, mak-
ing them converge toward a common, often unexpected solution,
which is not understood at the individual level. The dynamic results
from an emergent phenomenon allow additional functionality that
each agent cannot provide individually.

This study aimed to develop a MAS model for MA segmenta-
tion in fundus images. To prepare the environment in which the
agents will be situated, and will interact, a group of conventional
image-processing algorithms were implemented in a first phase
(image preprocessing). An overall view of the proposed approach
is illustrated in Fig. 2.

3.2. Environment – image preprocessing

We chose the green plane image to prepare the information
(environment) for the MAS model, since this is the plane in which
MAs have the highest contrast with the surrounding background.
First, an estimated background image was obtained by means of a
large median filter applied to the green image. This image was then
subtracted from the original green image, resulting in a shaded cor-
rected image with no background intensity variation across it, and
with the bright structures eliminated. MAs reveal a Gaussian shape,
so a Gaussian filter (width = 3; � = 1) was then applied to enhance
the small, dark structures. The final step of this phase consisted of
applying a modified Kirsch filter [19] to obtain edges of a two-pixel
thickness (Fig. 3). This enables the MAS model detection process,
since MAs present specific gradient patterns, some examples of
which can be observed in Fig. 3c.
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Fig. 2. Schematic representation of the proposed approach.

3.3. Model overview

The system is composed of a set of reactive agents, which are
dynamically launched and destroyed without external control. The
agents have the ability to extract the information they need from
the environment, and to autonomously act on it. Therefore, each
agent has the appropriate sensors and behaviors, as well as influ-
ences (reactions) over the environment, to perform the tasks for
which it was designed. The sensors permit the agents to perceive
information from the environment, and, according to the percep-
tions returned, agents act by sending influences to the system
(agents or environment). The influences form part of a behavior and
are all the actions an agent can carry out. The environment encom-
passes the prepared information (input images), its characteristics,
and the results.

The segmentation and exploration of the image are commanded
by the behaviors of the agent. Each behavior may comprise sev-
eral tasks, according to the agent state, which can be changed
by itself, responding to the system conditions, or by another
agent. There are two types of agents, defined by their percep-
tion and current state: explore agents (EAs) and region agents
(RAs).

An overview of the proposed MAS model algorithm is illus-
trated in Fig. 4. The EA explores the environment and launches
an RA when it finds a region of interest. The RA then seg-
ments and analyzes its region. In addition, RAs negotiate with
each other to attempt fusion of regions. The next subsections
detail the algorithm that was implemented to allow agents to
segment all the small and isolated dark structures in fundus
images.

3.4. Algorithm description

Each pixel of the environment contains the intensity gray
level, as well as a Boolean value defining whether the pixel has
already been explored by an agent. Furthermore, when located
in the environment, the agents perceive the modified Kirsch
gradient.

The sensors, behaviors, and respective states, as well as the influ-
ences for each type of agent defined in this algorithm are described
in Table 2. The details of each behavior are illustrated in Figs. 5 and 6.

The MAS model is initialized with an EA in the “active” state,
launched on one randomly chosen white point from Fig. 3b. It
evolves in the environment by analyzing positive gradient points
and their neighbors to seek specific gradient patterns correspond-
ing to MAs. When a valid pattern is found, the EA launches an RA
and becomes “inactive”. This RA is at the “explore” state, in which
it follows an edge until there is no direction to follow. The RA then
modifies its own state to “waiting” and sends a message to the
EA to change its state to “active”. This process is repeated until all
the positive gradient points have been explored by agents. The EA
then sends a message to all RAs to modify their state to “fusion”,
in which they attempt to fuse with their RA neighbors by sending
messages to them. An RA treats another RA as a neighbor if the dis-
tance between at least one of its points and one point of the other
RA is smaller or equal to a specific threshold (D). The two neighbor
RAs are then replaced by a new RA that contains the information of
the merged regions.

Each RA then determines its region contour size and if it
is smaller than a threshold (Tc), it fills the region, accounting
for the image gray-level values, otherwise, the RA disappears

Fig. 3. (a) Green plane image; (b) modified kirsch filter resulting image where the red and white pixels represent negative and positive values, respectively; (c) characteristic

gradient pattern of microaneurysms. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Schematic representation of the proposed multi-agent system model.

Table 2

Summary of agents’ sensor, behavior and influences in the proposed MAS model.

Agent Sensors Behavior and states Reactions

Explore agent Current position

Gradient corresponding to its current

position and neighbors

Positive gradient points list (Lp)

Explore behavior

Active

Inactive

Remove the explored point from the

list Lp

Add RA

Send and receive messages

Change RA state

Region agent Current position

Its points list

Gradient corresponding to its current

position and neighbors

Gray level intensity corresponding to

its current position and neighbors

Region Behavior

Explore

Waiting

Fusion

Filling

Add RA

Send and receive messages

Change EA state

with its region. Hereafter, each RA performs a region-growing
to ensure that remaining candidates represent the true MA
size. Finally, the RA analyzes its region shape and intensity
profile to validate it as a true lesion. At the end of the pro-
cess, agents should segment all the small and isolated dark
structures.

Several steps referred to above must be addressed to better
understand the MAS model algorithm proposed here. These are
described in the following sub-sections.

3.4.1. Seeking potential regions

When evolving in the environment, the EA looks for small,
dark structures by checking whether the pixel in which it is
located verifies these conditions: (1) it has not yet been vis-
ited by another agent; and (2) it corresponds to the MA pattern.
To verify the second condition, the agent analyzes gradient
profiles in the neighborhood in four directions (Fig. 7a). If it
discovers the sequences negative–positive–null–positive–negative
or negative–positive–negative gradient values in at least two

Fig. 5. UML state diagram of the explore behavior.
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Fig. 6. UML state diagram of the region behavior.

Fig. 7. Representation of the explore behavior (a–c); (d) possible directions to follow, according to region agent restrictions.

perpendicular directions (Fig. 7b and c), it views the pixel as belong-
ing to a dark structure. If the agent cannot confirm one of the two
conditions it moves to another, randomly chosen, point with posi-
tive gradient.

3.4.2. Directions to follow

Agents search for the white points in their 8-neighborhood that
have a red point in the 4-neighborhood, in order to determine pos-
sible directions to follow. This red point must also belong to the
8-neighbors of the target pixel. For instance, in Fig. 7d, only two
directions are available.

3.4.3. Region filling

The region is filled by analyzing the gray level points located
between each pair of boundary points, for which a line equation
that contains the two points is calculated (Fig. 8a and b), and the
points located between them are determined. An evaluation related
to its gray level intensity is made for each of them. The point is
added to the region if its gray level value is lower than the average
of the gray level values of the points that are already in the region
(Fig. 8c).

3.4.4. Region growing

The RA performs a region-growing algorithm based on [10]. This
algorithm determines the threshold by t = Idarkest − ˛(Idarkest − Ibg),
where Idarkest is the candidate with the lowest intensity pixel in
the green plane image, Ibg is the corresponding intensity in the
background image, and ˛ is set to 0.5 [10]. The growing process
stops when there are no more pixels in the 8-neighborhood with
an intensity lower than the threshold, or when the region size is
bigger than a threshold (Amax).

3.4.5. Region validation

The RA validates its region as a true lesion by means of shape-
and intensity-based features analysis. For region-shape analysis,
the RA calculates elongation, since some detected regions belong
to thin blood vessel fragments, meaning they have higher elon-
gation values. Since MAs are round local minimums, they can be
represented as an inverted 2D Gaussian shape. Therefore, a set of

cross-sectional intensity profiles was obtained from the inverted
green channel for the region intensity analysis (Fig. 9). To deter-
mine these profiles, a window around the region was considered.
The region was then dilated for use as a mask on the inverted green
plane, where scanning lines 15◦ rotated were applied. From these
12 intensity profiles, the Gaussian fitting parameters (height of the
Gaussian peak – a, position of the center of the peak – b, width of
the Gaussian “bell’ – c) (Fig. 9 below) were determined and ana-
lyzed (Table 3) for all regions of several images. Analyzing Table 3,
we may notice that parameter c allowed a better discrimination
between small, red lesions and other dark structures. In that way,
the difference between the maximum and the minimum parame-
ter c values of the 12 profiles was maintained as an intensity-based
feature (c range).

The features value used by the RA to evaluate its region were
elongation ∈ {1 : 0.2 : 4} and c range ∈ {0 : 1 : 20}.

3.5. Retinal images and system performance evaluation

A set of images by Quellec et al., available online [7] and
called LaTIM (Laboratoire de Traitement de l’Information Médicale)
dataset in this study, was used for the performance evaluation. This
dataset consisted of 36 images with 2240 × 1488 pixels and was
stored in tiff file format. Moreover, the dataset also contained a
text file for each image, with small, red lesions manually annotated
by a single DR expert.

Another publicly available database used in this study was pro-
vided in the ROC competition [18]. This database was composed
of 100 images, equally divided into a training set and a test set.
The images were acquired by three different cameras and were of

Table 3

Gaussian fitting parameters (a, b and c).

Small red lesion Other

a b c a b c

Minimum 0.676 2.730 7.50 0.538 2.740 5.560

Maximum 0.829 5.209 16.553 0.817 9.102 185.262

Mean 0.742 3.856 11.147 0.700 4.482 17.854

Standard deviation 0.038 0.479 1.856 0.053 0.904 9.567
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Fig. 8. Region agent “filling” state graphical representation.

different resolutions and sizes, ranging from 768 × 576 to
1389 × 1383. All images were stored in JPEG format, and compres-
sion was set in the camera. All MAs and other irrelevant lesions
from the 100 images were annotated by four retinal experts. The
irrelevant lesions were objects that, despite not being MAs, may
be identified as such by an automated program. For instance, hem-
orrhages and pigment spots are similar in appearance to MAs, so
they should not be considered as false positives. For the training
set, the lesion locations annotated by the four experts were com-
bined by a logical OR, while for the test set, the reference standard
was obtained in a different way. The annotations of one randomly
chosen expert were kept for human observer performance use. The
lesions annotated by the other three experts were combined for
the final reference standard, in which “MA” was an object that was
labeled as such by at least two experts. Those lesions identified by
only one specialist were assigned as “irrelevant”.

For both datasets, the proposed approach performance was
evaluated in terms of the free-response receiver-operating char-
acteristic (FROC) curve, where per lesion sensitivity values were
plotted against the average number of false positives (FP) per image.
Sensitivity represents the proportion of MAs correctly detected by
the algorithm, while FP is the number of non-MAs identified as

MAs. For the ROC dataset, and to facilitate the comparison with
the other methods already submitted on the challenge website,
the FROC curve was summarized in several quantitative points, by
which method the sensitivity values for the false positive per image
rates values of (1/8), (1/4), (1/2), 1, 2, 4, and 8 were achieved and
averaged to obtain a final score. Moreover, only the results obtained
with the test set and provided by the ROC organizers were analyzed,
as described in the next section.

4. Results

To facilitate the algorithm parameterization, the sizes of all
images from both datasets were normalized without losing the
relevant study information. The LaTIM images were resized to
1120 × 744 pixels and the ROC images to 836 × 835 pixels. The algo-
rithm parameters were chosen according to the image size and the
typical dimension of MAs in fundus images, thereby Tc = 40, D = 2
and Amax = 40 were the values used when applying the proposed
approach to both datasets.

The MAS model performance depended on the preprocessing
step and how the agents interpreted the information provided
from this first phase. As such, it is important to compare the

Fig. 9. Above (from left to right): window of the green plane image centered at a microaneurysm; window of the binary candidates image with a microaneurysm candidate;

the candidate of the previous image after a dilation; scan lines to be performed on the inverted green plane with the aid of mask from previous image. Below: microaneurysm

intensity profiles (dotted blue line) and respective Gaussian fitting function (red line) for orientations 0◦ , 90◦ and 135◦ . (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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Fig. 10. From left to right: manually annotated microaneurysm superimposed with the original image; image resulting from the preprocessing phase; segmentation performed

by the multi-agent system model before local feature extraction and analysis.

Fig. 11. Images resulting from the proposed approach. Above (from left to right):

color image; binary image with manually annotated microaneurysm superimposed

with color image. Below (from left to right): binary image with candidates detected

by the multi-agent system model before feature analysis and superimposed with

color image; binary image resulting from local feature analysis superimposed with

color image.

gradient image resulting from the preprocessing step with the
binary image resulting from the MAS model. Fig. 10 illustrates an
original color image with manually segmented MAs and the respec-
tive image resulting from the preprocessing phase, and the binary

image provided by the MAS model before the local feature anal-
ysis. Fig. 11 demonstrates the binary images that resulted from
the MAS model before and after the feature analysis step, made
by the RAs. The segmentation performance obtained with the MAS
model in the LaTIM dataset was compared with another approach,
which is schematically illustrated in Fig. 12 (bold), and consists
of the preprocessing and segmentation phases of the “standard”
approach referred in Section 2. That is, only the detection method
of the candidate was considered because the proposed approach is
unsupervised and, in that way, a fair comparison is made. The com-
parative results are illustrated in Fig. 13 where the curve for the
“standard” approach was obtained by varying the threshold value
(t ∈ {3 : 1 : 12}). Fig. 14 shows the results related to the detection of
MAs close to blood vessels using the two approaches.

Fig. 15 and Table 4 demonstrate the FROC curves and the ranked
quantitative results, respectively, of the ROC methods already
described in Section 2. The final score of the proposed approach
is 0.240, which corresponds to 10th place in the competition.

5. Discussion

Fig. 10 shows that the MAS model is capable of detecting small,
dark structures and excludes most of the edge pixels belonging
to blood vessels and some artifacts. In fact, all of the four MAs
were correctly segmented and the remaining elongated structures
could be easily removed with the local feature analysis step. Fig. 11
shows a false positive sensitivity of 1 and 4, representing a very
good performance, considering only two features of the candi-
dates. Therefore, it seems that the inclusion of an agent-based
learning classifier at the final stage should improve the algorithm
performance.

Fig. 12. Schematic representation of a classical approach used for microaneurysm segmentation.
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Table 4

Sensitivities of different approaches at various false positive points for the ROC test dataset.

Author 1/8 1/4 1/2 1 2 4 8 Final score

Waikato 0.055 0.111 0.184 0.213 0.251 0.3 0.329 0.206

Our approach 0.053 0.083 0.135 0.187 0.276 0.407 0.540 0.240

Fujita 0.181 0.224 0.259 0.289 0.347 0.402 0.466 0.310

GIB Valladolid 0.19 0.216 0.254 0.3 0.364 0.411 0.519 0.322

OKMedical 0.198 0.265 0.315 0.356 0.394 0.466 0.501 0.357

OKMedical II 0.175 0.242 0.297 0.370 0.437 0.493 0.569 0.369

ISMV 0.217 0.270 0.366 0.407 0.440 0.459 0.468 0.375

LaTIM 0.166 0.23 0.318 0.385 0.434 0.534 0.598 0.381

Niemeijer et al. 0.243 0.297 0.336 0.397 0.454 0.498 0.542 0.395

Lazar et al. 0.251 0.312 0.350 0.417 0.472 0.542 0.615 0.423

DRSCREEN 0.173 0.275 0.380 0.444 0.526 0.599 0.643 0.434

Fig. 13. FROC curves obtained with the proposed and “standard” approaches applied

to the LaTIM dataset.

Fig. 13 shows that our approach clearly outperformed the
“standard” approach. For any value of the average number of false
positives, it always produced a higher sensitivity value, meaning
that our method detects a greater number of candidates that are
true MAs than does the “standard” approach. A careful analysis of

Fig. 15. FROC curves of the ROC methods.

images resulting from the two approaches reveals that ours has the
advantage of preserving MAs close to vessels (Fig. 14). This is very
important for clinical practice, since this type of lesion very often
appears close to vessels.

The inclusion of this approach in the ROC gave relevance to the
present study, since it can be fairly compared to other previously

Fig. 14. Comparative results related to the detection of microaneurysms close to blood vessels. From left to right: original color image; multi-agent system model result;

“standard” approach result.
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reported methods. With a final score of 0.240, our results are
encouraging, in that they are comparable with the other ROC
methods. The FROC curve of the proposed approach (Fig. 15) and
the quantitative results shown in Table 4 show that for an aver-
age number of FP of 8, the sensitivity value was higher than
0.5, representing an improved performance, compared to other
methods. In fact, only the DRscreen approach and that used by
Lazar et al. gave higher sensitivity values at this average num-
ber of FP. Therefore, it seems that there are some issues with our
MAS model, with regard to discriminating between the candidates
that are true small, red lesions and those that are false positive,
which may be a problem of the local validation step. Therefore,
other features should be evaluated. Moreover, the use of further
agent potential, such as learning capacities, should allow the inte-
gration of some knowledge regarding the particularities of the
retina. The combination of this approach with methods to seg-
ment other important retinal structures could also improve system
performance.

6. Conclusions

A new, small, red-lesion segmentation algorithm, based on a
MAS approach, was proposed in this study. Through agent local
interaction, the improvement of traditional algorithm results was
possible, primarily by the detection of MAs close to vessels. The
addition of a validation step through a local feature analysis allowed
the reduction of the average number of FP and encourages the inclu-
sion of some agent learning capacity for future improvement of
the algorithm. The comparison with the ROC methods was impor-
tant for showing the scientific impact of the proposed approach.
Indeed, despite not being optimum, our results are encourag-
ing and can be compared with those that have previously been
reported.

Overall, the results show that the use of a MAS model
at the micro level could be an effective way to segment red
lesions in fundus images, and to overcome some common prob-
lems that have previously been reported, such as the detection
of MAs close to vessels. In future, the MAS model should
be improved to embrace some agent-learning capacities, as
well as some knowledge regarding retina geometry and other
particularities.
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