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Affordance-based agent model for 
road traffic simulation

Feirouz Ksontini · René Mandiau · Zahia Guessoum · Stéphane Espié

Abstract Existing traffic simulations often consider normative driver behavior. Drivers do 
not always use physically delineated lanes: sometimes drivers use the entire road surface. 
Thus, current traffic simulations do not reproduce all observed urban and suburban traffic 

phenomena. To improve the validity of urban and suburban traffic simulations, we propose 
to consider driving context and driver behavior in terms of occupied space. We endow 

driver agents with an ego-centered representation of the environment based on the concept 
of affor-dances and virtual lanes. Affordances thus identify the possible space occupation 

actions afforded by the environment and by other agents. The proposed model was 
implemented using our ArchiSim tool. We show that this model is more efficient and 

realistic than existing models. The experiments also reproduce real traffic situations and 
compare simulated data to real data.

Keywords Multi-agent simulation · Affordances · Traffic simulation · Virtual lanes · Driver 
behavior · Ego-centered representation · Space occupation
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1 Introduction

Traffic modeling and simulation have generated a lot of interest in terms of improving the
planning, design and operations of transportation systems. In urban areas with high traffic
density, roads are often divided into lanes and drivers must respect road space divisions.
However, studies have shown that this static organization is not always the most efficient.
Subsequently, many European governments are studying dynamic road space reorganization
and its potential positive influence on traffic.

Multi-agent systems (MAS) provide a suitable solution for traffic simulation problems,
traffic management and traffic signal control [2,3,6,37]. Several multi-agent solutions have
been proposed to study road space occupation and related emergent phenomena [4,9,17,21].
In these models, the lanes used by drivers are defined by road markings. These models do
not consider maneuvers between vehicles or dynamic lane allocation. Bonte et al. [4] and
Lee et al. [21] proposed solutions for two-wheeled vehicles. However, the proposed solutions
cannot be generalized to other vehicles. They are developed for one particular type of driver
and cannot be applied to other situations such as traffic jams that occur following a particular
event or that result from toll plazas.

The purpose of this paper is to model road space occupation behavior, particularly in urban
areas with high traffic density or a high rate of specific event occurrence. Our model focuses
on filtering maneuvers between passenger or two-wheeled vehicles, road space re-adaptation,
specific events (stranded or improperly parked vehicles) and dynamic lane allocation. The
presence of road markings does not always prevent drivers from re-adapting road space to
meet their own goals and to conform to their context. We introduce a novel approach to
endowing agents with an ego-centered representation of the environment that permits the
agents to make a decision regarding space occupation. Our approach is based on the theory
of Affordances [15]—the ways in which an agent can interact with its environment. Note that
the concept of affordances was already used in MAS [27,29,35]. However, the affordances
are often considered as static properties perceived by agents in their environment.

This paper is structured as follows. After the introductory section, the second sec-
tion presents general information about the affordances concept and introduces the prob-
lems pertaining to occupying space in road traffic simulation contexts. The third and
fourth sections describe our affordance-based model and the notion of virtual lanes for
road space occupation. This model is part of ArchiSim, the behavioral traffic simulation
model developed by IFSTTAR1 [12]. These sections also provide the results of differ-
ent experiments. The last section concludes the paper and provides suggestions for future
research.

2 Affordances and space occupation

We present a novel approach to dealing with space occupation in a multi-agent traffic simu-
lation. There are two key elements in our approach. First, we use the concept of affordances
to identify potential space occupation actions afforded by the environment. Second, we use
an ego-centered representation of the situation surrounding an agent.

1 The French National Institute for Transport and Safety Research (ex-INRETS).
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2.1 Affordances

An affordance is a quality of an object or an environment that allows a situational agent to
perform an action. The theory of Affordances is derived from psychological models and has
been applied to design multi-agent models.

2.1.1 Psychological models

The theory of Affordances was introduced by Gibson [15]. It is based on ecological psychol-
ogy, which argues that perception is a direct process. The theory of Affordances states that
affordances are action possibilities or opportunities that humans (and animals) perceive in
the environment. This description strongly suggests a set of specific design requirements to
manage the interaction between an agent and its environment. An agent needs to perceive
possible actions or action opportunities directly in the environment.

Many researchers state that Gibson’s theory is insufficient to explain perception because it
neglects the processes of cognition [28,32]. These authors consider this theory to result from
the mental interpretation of things based on past knowledge and experience, which affect
the perception of these things. Raubal [32] used an expanded theory of Affordances within
a functional model for affordance-based agents. This theory supplements Gibson’s theory
of perception with cognitive elements, situational aspects and social constraints. Cornwell
et al. [8] have also shown that integrating affordances into agent architectures is an elegant
solution to the problem of providing both rapid scenario development and simulations of
individual differences in perception, culture and emotion.

2.1.2 Affordances in multi-agent contexts

The concept of affordances has been used, especially in multi-agent simulations, robot-
ics, path-finding problems and military operations simulations [27,29,35,43]. For example,
Kapadia et al. [18] proposed a navigation and path planning framework for pedestrian simu-
lation. They use affordances to represent the different potential interactions between an agent
and its environment. Each agent perceives the environment through a set of vectors and scalar
fields that are represented in its local space. Therefore, an agent represents the different fields
in an ego-centered location-space. The authors suggest affordance fields as a powerful way
to combine sensory information and define variable resolution, where information accuracy
decreases as distance from the origin increases. This prevents wasteful computations and
storage costs generated by longer distances and plans that are re-computed sooner than they
are used. The authors define a fitness function to evaluate affordances and select the most
suitable one. The final decision is the affordance associated with optimal fitness. This scalable
technique provides robust steering. However, the agent’s perception field is limited. In other
words, the agent does not consider all perception fields that may affect its decision, which
cannot be anticipated in any event.

If we refer to Gibson’s theory, affordances must be set in the environment and not in the
procedural memory of the agents. Nevertheless, an agent must intuit affordances for decision-
making. In this sense, Papasimeon et al. [29] propose two different approaches for modeling
affordances. The first approach is entirely based on the theory of Affordances presented by
Gibson and stores all affordances in an environment, while the second uses a more flexible
definition and considers the affordances to be in the agent’s memory.

The first approach, i.e., affordances described in the environment, has several advantages.
The most significant advantage is that the approach corresponds more closely to the represen-

DOI : 10.1007/s10458-014-9269-x 3



tation of the theory of Affordances as described in ecological psychology. Another advantage 
to this approach is that it places more importance on the environment and enables some of the 
intelligence in the environment to be transferred. However, in the context of this proposal, the 
environment model requires all the necessary relationships to be taken into consideration to 
calculate affordances (including information about individual agents) as well as to determine 
the affordances for each agent. Conversely, the agents must be able to perceive the affor-
dances, to evaluate them and to select those that are suitable. Furthermore, the simulation 
architecture must be able to provide appropriate interface mechanisms between the agent and 
the environment so that the agent can collect relevant affordances from the environment. The 
main disadvantage of this approach is that the impact of the design results in a large num-
ber of subsystems in the simulation architecture. Therefore, introducing affordances means 
reconsidering not only agent and environmental design but also the interaction between the 
two. This can be difficult if affordances are introduced into an existing simulation and require 
multiple environmental and agent changes.

The advantage of the second approach is that it is easier to introduce the concept of 
affordances into an existing multi-agent simulation since affordances can be introduced into 
the reasoning process of an agent without affecting the rest of the architecture. In the approach 
of Papasimeon et al. [29], the concept of affordances may also be integrated into a BDI (beliefs, 
desires, intentions) architecture [30,31]. An affordance-based agent reasoning model means 
that affordances are treated as just another type of mental attitude: affordances may be 
interpreted as a type of belief regarding action possibilities. The interaction models in multi-
agent simulations are thus more plausible and realistic in their representation of how agents 
interact with their environment. Another advantage of the BDI model is the ability to better 
understand agent reasoning. The computational design of this “augmented” BDI architecture 
for real-life situations remains an unresolved issue. Moreover, in real world systems such as 
road traffic simulations, agents represent human drivers: they are situated, i.e., they are able
to employ a reasoning mechanism and are located in a specific environment, and are thus 
considered “embodied reasoners”. However, modeling affordances as mental attitudes does 
not approach the theory of affordances as described in ecological psychology. This theory 
of affordances considers that the affordances exist as a result of the interactions between an 
agent and its environment, and not as a construct of an agent or of the environment. Each 
agent perceives affordances in the environment: affordances as mental attitudes bypass this 
concept of “direct perception” (i.e., meaningful information is available in the environment 
for agents to perceive without any filtered reasoning about what they can perceive).

The theory of affordances has been applied in the context of pedestrian movement [18], 
but to our knowledge, it has not been applied to road traffic simulations. The concept is 
suitable for road space occupation. Affordances allow to identify potential space occupation 
actions generated by the interaction of the perceived entities and the environment.

Therefore, we propose an affordance-based driver agent model for space occupation. Each 
agent perceives its environment. It builds a set of intervals representing the free space around 
it and depicts these different intervals in an ego-centered representation. It then uses Allen’s 
algebra to analyze these intervals and deduce affordances. Subsequently, the latter define the 
space occupation opportunities for an agent. The agent uses a fitness function to evaluate its 
affordances and select the most suitable one.

2.2 Road space occupation

We are interested in reproducing road space occupation practices, particularly in urban areas 
with high traffic density or frequent specific events (e.g., emergency vehicles, stranded vehi-
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cles). Drivers do not always use the road configuration provided by the existing, marked
physical lanes. Rather, drivers may occupy free space according to their goals and their
contexts. For example, two-wheeled vehicles tend to ignore road markings. To improve het-
erogeneous traffic simulations, we need to understand the behavior of different types of
drivers. Some empirical studies [25,26] aim to interpret two-wheeled vehicle behavior and
the properties of mixed traffic flows.

This section gives an overview of several multi-agent traffic simulation models, and then
focuses on traffic simulation models that consider virtual lanes.

2.2.1 Traffic simulation models

Most existing traffic simulation models highlight the interaction between drivers and their
environment. Two theories have been proposed to deal with the representation of the envi-
ronment and provide a generic solution that considers driver practices in terms of space
occupation: allo-centered and ego-centered representations [7,38]. In ego-centered represen-
tations, spatial relations are generally directly related to the agent, who builds a representation
using a reference system with terms such as left, right, forward or backward. When the con-
text changes, all spatial relations should be updated. An allo-centered representation locates
points within the agents’ environment and generates the representation without considering
the agents’ positions, i.e., a framework external to the agents generates the representation
independently of their positions. Allo-centered representations are more stable, but are also
more difficult to acquire. In addition, there are more spatial relationships since all relation-
ships between different objects in the environment are considered. Moreover, the number of
agents to be simulated can be highest in real applications. In these representations, the compu-
tational costs for the model increase to adapt the common representation of this environment
to a particular context for each agent.

Human drivers (considered situated agents) “discover” situations (or update their previous
knowledge) when moving. They need to know what happens around them to make decisions
(go straight, move to the left or right lane). From this point of view, ego-centered representa-
tions are more intuitive in traffic simulation environments, for which there is a need to have
a contextual and dynamic representation of what is happening around the agent. Further-
more, the ego-centered representation is suitable for dynamic contexts because the number
of relationships to be updated is lower than for an allo-centered representation. However, in
this case, redundancy in contextual information (difficulties in detecting inconsistencies in
different pieces of information) may also create implementation problems.

El Hadouaj et al. [11] use an ego-centered environmental representation that is composed
of physical lanes created by road markings. This representation cannot identify free road
space or reproduce the road space occupation observed in the simulation like for two-wheeled
vehicles. The idea is to create an environmental representation that considers the physical
constraints of the environment, the context and the driver goals.

Several multi-agent traffic simulation models were introduced to study driving behavior. In
these models, drivers consider road space in terms of physical lanes and are always positioned
in the middle of their lane [17]. The models do not consider all observed road space occupation
phenomena.

2.2.2 Virtual lanes

Existing simulation models do not consider that real driver behavior does not often respect
traffic rules [4,9,17,21]. Subsequently, the related simulations do not always correspond to
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Fig. 1 Non-normative behaviors in a situation representing a badly-parked vehicle

the real observed phenomena. For instance, actual observed practices show that drivers often 
do not comply with regulations in order to be more efficient, such as in terms of travel time 
(sometimes at a group level but more often for personal gain). Drivers tend to adapt to given 
road space by building their own environmental representation, which may not comply with 
norms (defined here as compliance with traffic rules). By definition, “normative behavior” 
(or “norm-compliant”) means that the driver respects the traffic rules (defined by norms). If 
the driver does not respect these rules, the driver’s behavior is considered “non-normative 
behavior”.

Figure 1 illustrates a traffic situation where vehicle a2 turns on its hazard lights. Vehicle 
a2 decides to stop on the roadside. Vehicle a4 is hindered by a2, which decides to pull over 
to the roadside, where it will be badly parked. Vehicle a4 perceives vehicle a3 because it 
considers it a danger: The driver will thus be constrained by vehicle a3, which is approaching 
because it is driving more slowly. Two situations are thus possible. In the first case, the driver 
displays “normative behavior”and chooses to move to another lane (using the physically 
delineated lane) if this is possible. In the second case (described on this figure), driver a4 
observes the situation and perceives a free space on the road between vehicles a2 and a3. The  
driver chooses this emergent space. Vehicle a3 perceives the lane change for a4 and if it is 
cooperative, a3 will shift to the left. The behavior of both drivers in this case is non-normative. 
Finally, a1 also decides to shift to avoid vehicle a2.

To reproduce this kind of non-normative behavior, Fellendorf and Vortisch [13] use VIS-
SIM, a commercial simulation tool that employs mathematical models to describe ongoing 
lateral movements in heterogeneous traffic situations. Drivers choose the lateral position 
where they have the longest longitudinal time-to-collision. To find this position, a driver 
divides the available road width into virtual lanes. These virtual lanes are created on the 
right and left sides of the vehicles on the road in front of the driver with some lateral space 
for a margin of safety. In our opinion, this configuration is insufficient because target lateral 
position selection is only based on an instantaneous evaluation. Lee et al. [21] propose a 
simulation model for two-wheeled vehicles. This proposed model is based on the Gipps [16] 
car-following model to describe the movement of both passenger cars and two-wheeled vehi-
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cles with some modifications to take the kinematic parameters of the two wheeled-vehicles
into consideration and provide the most suitable lateral movement. These interaction rules
are integrated into an agent-based simulation model. The latter considers a limited number of
parameters (of the vehicle in front or to the side) and does not enable drivers to significantly
anticipate the traffic surrounding them.

Bonte et al. [5] proposed a multi-agent solution for two-wheeled vehicles to reproduce
behaviors specific to them, such as driving between cars. In this context, the authors introduced
the concept of virtual lanes to represent the free space on the road. The lanes are called
“virtual” because they are not outlined on the road with markings like physical lanes. Virtual
lanes are specific to an individual in a situation and they emerge according to the context.
The authors thus propose an algorithm for breaking down road space into free and occupied
“bands”. This results in two types of virtual lanes: forbidden virtual lanes and authorized
virtual lanes. A forbidden lane is a virtual lane avoided by two-wheeled vehicle drivers.
However, an authorized lane is a virtual lane that two-wheeled vehicle drivers can take.
These lanes rely on the free space on the road between vehicles and the shoulder. In the
proposed model, vehicle size only is considered in virtual lane identification. The evaluation
of the lane does not consider the driver’s distance from the norm. This type of parameter
can affect our decision-making, particularly in the case of non-normative practices. To build
an agent’s environmental representation, the authors systematically and geometrically break
down the entire road space into free and occupied lanes according to vehicle size and road
position. This breakdown leads to a variable, and sometimes very high, number of virtual
lanes, especially in situations with multi-lane roads. Moreover, the authors use the control
zones initially defined by El Hadouaj et al. [11].

2.3 Discussion

Generally, the majority of existing simulation tools assume that the positioning of vehicles
on a road results from the existence of physical lanes. This modeling does not simulate
observed space occupation phenomena. Very few studies on multi-agent traffic simulations
employ these practices. They essentially model the behavior of two-wheeled vehicles for
which these practices are common. In this context, we basically presented the work of Bonte
et al. [4] and Lee et al. [21]. Both solutions were developed specifically for two-wheeled
vehicles and cannot be applied to other vehicle types or other situations, such as event-related
traffic jams or toll plazas. To address these limitations, we are interested in studying how
drivers represent the environment around them.

We propose to endow agents with an ego-centered environmental representation in which
an agent identifies its own affordances and may determine the possible actions offered by the
environment in terms of space occupation. Our ego-centered representation of the environ-
ment is composed of the identified affordances. For example, if a driver does not have the
possibility to continue forward in its lane (due to a lane closure), the driver will not necessar-
ily add this lane to its mental representation of the environment (i.e., the affordance identified
for this lane will not be defined in its representation) because this lane will be prohibited.
We can also consider the filtering behavior of two-wheeled vehicles: if there is enough space
between two lanes of vehicles, the emergent lane (i.e., a new affordance has been identified)
should be added to the ego-centered representation that the agent builds of its environment
because it affords an action opportunity that is different from that provided by the marked
physical lanes.

The virtual lanes correspond to the affordances available to the agent in terms of oppor-
tunities to occupy pavement space. Identified affordances will be used to build a dynamic

DOI : 10.1007/s10458-014-9269-x 7



ego-centered and contextual representation of the environment based on the possibilities
offered by the interaction between road users and their environment. Agents do not all inter-
pret the opportunities offered by the environment in the same way. Therefore, representa-
tions of a given traffic situation may vary with the point of view of the agents. For example,
a passenger car driver will not interpret the gaps that emerge on the road the same way a
motorcyclist will. This difference is mainly due to the physical characteristics of vehicles
(size, mobility) and the individual behavior of drivers (extent of norm violation for each
agent).

The following section is devoted to proposing an agent model to take into account real life
space occupation behaviors based on an agent’s ego-centered environmental representation.

3 Affordance-based agent model

This section provides useful definitions (3.1) and reasoning mechanisms for each agent (3.2
and 3.3).

3.1 Definitions

3.1.1 Definition of virtual lanes

Figure 2 illustrates a situation with four agents (a1, a2, a3 and a4). In this example, we
focus on the reasoning of agent a1. This agent perceives three other agents (a2, a3, a4),
considers them obstacles and builds three virtual lanes (from VV1 to VV3). Each virtual
lane is characterized by different properties. For example, the width of virtual lane VV2—
denoted width (VV2)—is determined by the space available between the vehicles a2 and a3;
its length is determined by the distance separating the two vehicles, denoted dist (a1, a4),
which determines the virtual lane as extending from a1 to obstacle a4.

In the following, we will demonstrate that the virtual lanes are built from virtual intervals.
We also assume that the physical properties of the virtual intervals and the virtual lanes are
similar.

Definition 1 (Obstacle) Let OB = {ob1, . . . , ob|OB|} be the set of obstacles. An obstacle
is characterized by all elements (i.e., defined either as a vehicle or a road closure) perceived
on the road by an agent.

Definition 2 (Virtual interval) Let I V = {iv1, . . . , iv|I V |} be the set of virtual intervals.
Each Virtual Interval is characterized by its width and is defined by the available space
between the agent and an obstacle (i.e., empty space in front of the vehicle).

a2

a3

a4a1 width(V V2)

dist(a1, a4)

V V1

V V2

V V3

Fig. 2 Description of virtual lanes
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Definition 3 (Virtual lane) Let VV = {VV1, . . . , VVj , . . . , VVl} be the set of virtual lanes.
A virtual lane is one virtual interval or a subset of virtual intervals. Each virtual lane is
referred to as VVj and is characterized by a set of properties Pj = {

p1 j , p2 j , . . . , pq j
}
.

Let P = {
P1, P2, . . . , Pj , . . . , Pl

}
be the set of all these properties with respect to the set

VV . These properties can be broken down into three classes: physical properties, flow-related
properties and environmental properties to the left and right (wall effect).

The physical properties of a lane are defined as those properties that mark out the space
occupied by this lane.

Definition 4 (Physical properties) The physical properties of virtual lane VVj are defined
by

〈
width(VVj ), dist (VVj )

〉
:

– Lane width width(VVj ) characterizes an interval with starting position pd(VVj ) and
end position p f (VVj ).

– Lane length dist (VVj ) has been represented by the distance from agent ai to obstacle
obk , and can also be denoted dist (ai , obk), i.e., the distance from which the lane remains
available.

We assume that each agent has a perception field that depends on its individual character-
istics (such as speed). Each agent uses these characteristics to estimate the lane’s flow-related
properties and wall effect properties.

Definition 5 (Flow-related properties) Properties related to traffic flow correspond to a char-
acterization of the traffic in the lane. These properties are defined by a triplet

〈
d, vAvg, σ

〉
:

– Traffic density d defines the number of vehicles in the lane.
– Average vehicle speed vAvg reflects the speeds of different vehicles.
– The standard deviation of driving speed σ measures the distribution of vehicular speed

throughout the lane. A high standard deviation would mean that traffic speeds are unstable
and therefore unpredictable.

In addition to physical and flow-related characteristics, we also consider other properties,
which in our opinion are important to characterize a lane, especially since they have an
impact on agent behavior. These properties are related to the wall effect. Studies in the
psychology of driving highlight the impact of this effect on a driver’s operating speed and
lateral positioning within lane [22,36]. It may be related to infrastructure (lane width, tunnel
walls) or road context (e.g., the effect of the existence of trucks in adjacent lanes, adjacent
lane speed variability).

Definition 6 (Wall effect properties) The wall effect represents the impact of the surround-
ing environment (adjacent lanes or shoulder) on driver behavior. This effect is a triplet,
〈vwall , stwall , proxwall〉 that relies on the following characteristics (affecting lateral position
and applied speed):

– The speed of each wall—vwall (the speed of the slowest vehicle in the lane that defines
the wall or 0 if the slowest vehicle is roadside).

– The stability of the walls—stwall (the difference between the average speeds of the walls
and the hypothesis that, when the speeds of the right and left walls are similar, the wall
effect can be considered stable).

– The proximity of the walls—proxwall (the available space between the vehicle and the
boundaries).
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3.1.2 Definition of affordances and ego-centered representation

According to our application, we define situated agents and their characteristics (which may
be perceived by the other agents) in their environment.

Definition 7 (Situated agents) LetA = {a1, a2, . . . , ai , . . . , a|A |} be a set of situated agents
in environment E . At a given maximal distance, we assume that each agent ai perceives the
other agents A ⊆ A around it and a subset of their individual characteristics C :

– Let A = {a1, a2, . . . , an} be a subset of A
– Let C = {C1,C2, . . . ,Cn} be a subset of the perceived characteristics of the agents (e.g.,

position, distance to the norm, speed, type, width). Each Ci is thus a set of properties
describing each ai ∈ A.

In our approach, we use an expanded version of the affordances concept enriched with
cognition. Affordances rely on environmental constraints and the mental capacities of the
agent. Therefore, we consider the “situational” interpretation of the environment by the
agents. To identify opportunities afforded by the interaction of perceived entities with the
environment, an agent takes into account the context, the properties of the other agents and
its own individual properties (capabilities, intentions, goals and behavioral properties, like
distance to the norm2). The affordances identified by one agent may be different from those
identified by another agent in the same context.

Definition 8 (Affordance) An affordance corresponds to a space occupation opportunity
resulting from the relationship between an agent and the entities it perceives in its physical
environment.

Affordances are used in the ego-centered representation, which has been defined for each
agent ai .

Definition 9 (Ego-centered environmental representation) Let EERai be the ego-centered
environmental representation. EERai is defined by the tuple 〈A,Aff , R〉:

– A = {a1, a2, . . . , an} is a subset of all agents perceived by agent ai , at a given viewing
distance.

– Aff = {VV1, VV2, . . . , VVl} denotes the set of affordances identified by agent ai in its
environment. Those affordances may be different from the physical lanes initially defined
by the road markings.

– R = {rai (wk)/wk ∈ A ∪ Aff } is the set of relations. Each rai (wk) establishes a binary
relation between agent ai and each agent ak from A reflecting the spatial relationship
between the two agents (e.g., to the right, to the left, in front, behind) or a binary rela-
tionship between agent ai and each virtual lane VVk of Aff reflecting the relationship
between the agent and the lane in question (e.g., the agent lane, the adjacent lane to the
left, the adjacent lane to the right).

Agent ai perceives its environment (road and other agents) and considers P , the set of
perceived properties for virtual lanes, and C , the set of individual characteristics for the
perceived agents.

The agent reasoning process ai is split into three steps according to the “Perception–
Decision–Action” loop (Fig. 3).

2 The distance to the norm (traffic rules) is randomly specified during agent initialization; it denotes the degree 
of compliance with norms and ensures heterogeneity for the agents.

DOI : 10.1007/s10458-014-9269-x 10



AGENT ai

ENVIRONMENT

Perception

Decision

Action
Affordance

Identification

Ego-centered
Environment

Representation

Goals

A = {a1, a2, . . . , an}
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EERai
= A,Aff , R

P = {P1, P2, . . . , Pl}

V Voptimal

Fig. 3 Agent ai ’s architecture

3.2 Perception

The affordances result from the interactions of perceived agents (their individual charac-
teristics) with the road configuration. The determination of affordances requires a cognitive
process of perceiving information to identify what space occupation possibilities are afforded
to the agent. This process verifies whether or not an identified affordance truly corresponds to
a suitable action. It is performed using a payoff function, identified as payoff , which evaluates
one possibility and determines if it can be a potential action.

Agent ai builds its ego-centered representation of the environment based on the detected
affordances. Note that each ego-centered representation EERai depends on the agent context.
It is composed of the identified affordances and a set of affordance properties, P . These
affordances correspond to space occupation possibilities. This representation corresponds to
an explicit mental representation of the situation, and therefore evaluates affordances and
enables a decision to be made.

The details of this process are given in the next sections.

3.2.1 Affordance identification

We propose a model to manage interactions with the environment. Figure 4 gives an overview
of our affordance-based model. The environment includes several agents and entities. The
latter may correspond to road objects such as equipment, signs, markings or other agents.
Decision-making relies on the context and must deal with environmental changes. The entities
in the environment can offer different action possibilities or affordances to agents. In the
context of space occupation, agents identify a set of available and occupied intervals. These
intervals correspond to elements designated by α, β and γ . For example, at time t , agent a1

identifies intervalsα andβ; agenta2 identifies intervalsα andγ . The agents reason about these
intervals to evaluate action possibilities based on space occupation criteria. These evaluation
and reasoning steps allow agent a1 to identify the affordance resulting from the merging of
α and β and allow agent a2 to identify the affordances α and γ . The environment is dynamic
and complex: the environment thus changes from time step t to time step t ′. At time step t ′,
these reasoning steps allow agent a1 to identify affordance α (β is no longer detected by this
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agent) and allow agent a2 to identify two affordances β (β becomes visible for this agent)
and θ (a new affordance perceived by a2).

An affordance corresponds to the potential space occupation resulting from interactions
between the perceived entities and the road configuration. The space occupation practices
are not normative because agents do not always follow road markings. The representation
of individual agent characteristics (e.g., distance to the norm, vehicle type) enables hetero-
geneous behaviors to occur. For example, a given space will offer different opportunities to
an agent driving a two-wheeled vehicle compared with an agent driving a truck, as it will
afford different possibilities to an agent engaging in normative behaviors (i.e., an agent who
does not consider inter-lanes spaces to be a possibility) compared with an agent engaging in
non-normative behaviors.

In the context of our application, we assume that there cannot be more than five affordances.
The affordances correspond to the following possibilities:

– Stay in own lane
– Move left towards an adjacent lane
– Move right towards an adjacent lane
– Move left to reach a space to the left of the adjacent lane
– Move to right to reach a space to the right of the adjacent lane

The latter two possibilities represent “reachable” opportunities to the left or right, just
beyond the adjacent lanes. These lanes are not necessarily adjacent to adjacent lanes. Rather, 
they indicate lanes that are reachable by a series of potentially unfavorable lane-changing 
maneuvers.

This choice is based on the following analysis. In a given interactive traffic situation, a 
driver can choose between staying in his lane and adapting to the constraint or changing 
lanes (to the left or to the right). To perform lane-changing maneuvers, a driver needs to 
have information on what is happening ahead (in his own lane) and laterally (lanes directly 
adjacent to the left and to the right). In addition, a driver needs to have information beyond the 
immediate environment in order to detect the most favorable options that can only be reached 
through iterated maneuvers. Lane changes can be an immediate solution to the constraint or 
a transitional step towards the goal if the driver tries to reach a favorable lane by crossing 
unfavorable ones.

Affordances are identified when the agent browses its environment starting with what is 
closest and moving towards what is furthest away.
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3.2.2 Identification mechanisms

We describe the different steps to determine the list of affordances available to the agent.
From the list of perceived agents (ordered according to their lateral position from the right
edge of the road to the left edge), the agent identifies set of virtual intervals I V . In this case,
there may be overlapping intervals or an interval that is included within another due to the
position of vehicles on the roadway. To identify and distinguish free intervals from those that
are occupied, we will use the model introduced by Allen [1] for reasoning about the construct
of virtual intervals.

Allen’s interval algebra [1] has been introduced for temporal reasoning. The calculus
defines possible relationships between time intervals and provides compositional rules that
can be used as a basis for reasoning about temporal event descriptions. Let X and Y be two
intervals: the relationships identified by Allen to reason about intervals are provided in Fig. 5.

In our model, we adapt these relationships to a spatial representation to allow the agent
to identify and reorganize virtual intervals. These relationships are useful for identifying
conflicts that may exist between spatial intervals. The free and occupied intervals obtained
in this way must cover the entire width of the road. Therefore, two adjacent intervals should
have end up meeting. The agent starts by identifying the intervals resulting from free spaces
and occupied spaces (detection of an obstacle). For occupied intervals, we defined a distance
to the obstacle as the distance between agent ai , who is calculating intervals, and obstacle
obX characterizing interval X . This distance is estimated by dist (ai , obX ) (same definition
for interval Y ).

Based on these relationships, an agent identifies the intervals that may cause problems.
The latter correspond to the following cases:

– One interval overlaps another
– One interval contains another
– One interval begins with another
– One interval ends with another

In the following, we do not develop the inverse relationships, which can be easily deduced.
If two intervals X and Y overlap, the agent must merge them to consider one:

(X o Y ) ∧ (width(ai ) > (p f (Y ) − p f (X))) → merge(X, Y )

If interval X contains interval Y (X during Y ), then the agent keeps the interval with the
highest width in the interval set:

(X d Y ) ∧ (width(X) < width(Y )) → I V \ {X}
DOI : 10.1007/s10458-014-9269-x 13
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If interval X starts with Y , the rule is:

(X s Y ) ∧ (width(X) < width(Y )) → I V \ {X}
If interval X ends with interval Y , the rule is:

(X f Y ) ∧ (width(X) < width(Y )) → I V \ {X}
If interval X is equal to interval Y , the agent keeps the closest interval:

(X = Y ) ∧ (dist  (ai , obX ) <  dist  (ai , obY )) → I V  \ {Y }
To illustrate this reasoning, we consider the situation shown in Fig. 6. We assume  that  the

reasoning is performed by agent a1. This agent detects four other agents: illegally parked 
agent a2, and three agents a3, a4 and a5 on the road. In this case, agent a1 builds the set of 
virtual intervals I V  = {iv1, iv2, iv3, iv4, iv5, iv6}. Interval iv1 corresponding to the width 
of vehicle a2 (iv2 for a3, iv4 for a4 and iv5 for a5), and iv3 and iv6 for the rest of this road. 
Firstly, there are two overlapping intervals iv1 and iv2. The agent applies the first merging rule 
to solve the conflict of spatial representation. Since space ( p f  (iv2) − p f  (iv1)) is not wide 
enough to allow the two-wheeled vehicle to continue its trajectory, agent a1 considers that 
these two intervals should be merged into a single interval (it does consider the road markings, 
thereby reducing this interval). In the figure, this interval will be considered virtual lane VV1. 
Secondly, virtual interval iv3 has not been changed and also will be considered as virtual lane 
VV2. Finally, vehicles a4 and a5 move on the same lane (the last rule can be applied and iv5 
has been omitted). Moreover, the size of interval iv6 is insufficient for a1: this interval should 
be merged with previous interval iv4 into a single interval. This interval resulting from iv4, 
iv5 and iv6 will be thus considered as virtual lane VV3. Analyzing this situation gives us 
three virtual lanes {V V1, VV2, VV3}.

All these rules allow the agent to reason about intervals to identify sources of conflict 
and reorganize free and occupied spaces. From the list of virtual intervals resulting from 
the above reasoning, the agent identifies the list of affordances by browsing intervals from 
closest to farthest (in the position lateral to the agent and the start and end positions of each 
interval). The agent starts by identifying and characterizing its immediate environment (its 
own lane), its adjacent environment (lanes to the left and the right), and finally the non-
adjacent environment (non-adjacent lanes to the left and right).
Immediate environment: The agent browses set I V  and identifies interval ivk to which it 
belongs according to its lateral position. This interval is transformed into virtual lane VV j 
by defining the aforementioned parameters, such as depth (distance to the obstacle in the 
lane in question), speed and density. This lane is then added to affordance set Aff . This new  
affordance corresponds to the action “stay in own lane and go straight”.
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Adjacent environment: From the agents’ immediate environment (i.e., their own lane), they
check the space to the left and to the right to identify possible affordances. The agent starts
by evaluating the first interval. If the agent considers that this lane is more beneficial, it adds
this possibility to its list of affordances. Otherwise it merges this lane with the next one (if
there is no physical marking in this interval) or it merges intervals until a road marking is
reached. The agent adds this new lane to its affordances set.

The evaluation mechanism is based on the lane properties identified above. Each agent has
a choice between two actions: stay in current lane or change. This evaluation is performed
through a function that compares the current speed of the agent with the estimated speed the
agent could have in the target lane. The agent selects the lane that improves its speed. The
agent estimates the speed of the identified lane and decides whether or not to choose this
lane. For example, for the situation illustrated in Fig. 6, agent a1 will decide to choose virtual
lane VV2; because it enables the agent to attain a higher speed than its current speed in its
current lane (the virtual lane is empty, whereas lanes VV1 and VV3 are occupied by several
vehicles). This evaluation function is provided by the difference between the two speeds3:

payoff (vcai ) = τ ∗ vai (VVj ) − vcai (1)

where ai represents an agent, VVj the lane, vai (VVj ) the expected agent speed in lane VVj ,
vcai the agent’s current speed and τ ∈ [0, 1] the social acceptance of the filtering, which
varies with vehicle type (e.g., two-wheeled vehicle, passenger car, bus). vai (VVj )

4 depends
on the following parameters:

– fai (VVj ): reflects the traffic flow characteristics of lane VVj and depends on lane density
and average lane speed.

– gai (VVj ): reflects the wall effect of lane VVj and depends on the closeness of the walls
and their stability in terms of speed.

– hai (VVj ): is related to the individual characteristics of each agent and translates the
agent’s distance to the norm (normative/non-normative behavior).

The evaluation function is positive when the target lane is appropriate for the agent (in
terms of speed). This estimation takes into account lane characteristics (width, distance
to obstacle), wall characteristics (stability, proximity) and individual agent characteristics,
especially distance to the norm.
Distant environment: For affordances that are not immediately adjacent, we propose to eval-
uate the lane by browsing the road space from the immediately adjacent lane to the edge of
the road (laterally, to the left and to the right) and to select the lane if its characteristics are
better than those of the current lane (browsing is performed on set I V ). Such a lane allows the
agent to expect a benefit, according to its own criteria, and this depends on individual charac-
teristics. The result of this step is a set of affordances corresponding to all the opportunities
identified by the agent.

After identifying the affordances set, agent ai builds its ego-centered representation of the
environment based on the affordances it detected, EERai .

3.3 Decision and action

The ego-centered environmental representation allows an agent to make a decision by choos-
ing the optimal affordance. The result (or output) of the decision mechanism is a possible

3 This function choice is completely empirical: we chose the parameters that affect agent behavior based on
psychological studies.
4 The expected agent speed in lane VVj is given by the weighted sum of the parameters mentioned below.
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virtual lane with properties such as width, position on the road, lane speed and lane wall
speed. These properties provide the agent with a future lateral position and a potential lateral
speed.

With a generalization of the virtual lanes and an enrichment of lane properties, we expect
that the alternative to choosing a virtual lane (between two rows of vehicles) will not be
systematic, especially for automobiles, trucks and buses, where there is low “tolerance”
for using such lanes and minimal time-savings. For these users, choosing a virtual lane
would be more favorable when specific events occur (badly-parked vehicles, emergency
vehicles). Filtering maneuvers are better suited to two-wheeled vehicles because there is
greater tolerance for these vehicles and significant travel time-savings. The proposed solution
is also expected to improve the validity of the model for situations in which there is a high
number of lanes, such as in “complex” toll plazas.

The agent is endowed with a decision-making mechanism to select an affordance to adopt
from its affordance-based ego-centered environmental representation. It computes a fitness
(score, interest value) for each affordance of Aff set. This fitness quantifies the relative
“strength” or “attractiveness” of all the affordances. It relies on the agent’s target goals
(In our context, the goals correspond to objectives defined by the agent’s itinerary) and its
representation of the environment. Let F(VVj ) be the fitness for given affordance VVj .

F(VVj ) = f (p1 j , p2 j , . . . , pq j , goals) (2)

where function f (.) is defined in such that F(VVj ) provides a numerical value indicating
the strength (expected utility) of a particular affordance. It is given by a weighted sum of
affordance parameters p1 j , p2 j , . . . , pq j such as width of the lane and average speed.

Choosing optimal affordance thus takes place after evaluating all identified affordances.
The final system output is the affordance (space occupation possibility) VVj associated with
optimal value F(VVj ). Optimality is defined by maximizing f (.).

VVoptimal = arg max F(VVj ) (3)

More generally, action selection in the BDI model may be defined by the following 
steps [31]: When an agent wants to fulfill a desire, it searches for a plan to do this. A 
hypothesis for these models relies on the fact that agents have different “plans”. The plans 
may be defined in different ways: the addition of a new desire, changes in beliefs, or the 
execution of a primitive action. These recipes have some conditions (external data from the 
environment or an internal agent state), which must be satisfied to adopt these plans as inten-
tions. If there are some plans that can be simultaneously activated, an arbitrary mechanism 
selects the plan. If the plan becomes an intention, each action must be executed until a new 
action is selected. This new selection may be useful if a new desire appears: the plan is then 
completely terminated/fails or a new event is observed in the environment.

In our approach, the agent builds its contextual representation based on affordances and 
selects an optimal affordance (the agents have no predetermined plans). The selected affor-
dance determines the action to be executed (stay in the virtual lane or go towards this 
new virtual lane). At the next time step, the agent builds a new contextual representation 
and once again selects a new optimal affordance (it may be different from the previous 
one).

Both approaches are highly reactive to different events observed in the environment. The 
BDI model selects the action, which depends on the agents’ new desires/intentions, whereas 
action selection in our approach depends only on new information from the environment.
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4 Validation

We implemented our agent model in a traffic simulation tool (4.1), called ArchiSim [12], and
then proposed a validation for our approach (4.2).

4.1 ArchiSim: traffic simulation platform

ArchiSim is a traffic simulation platform that is implemented with the MODULA 2 language.
This language has features that make programming easier. These features include a built-in
time scale and random generators for a range of distributions.

ArchiSim considers general road traffic to be a set of interactions between different actors
(road users such as vehicle drivers, motorcyclists and pedestrians) with road infrastructure
(road signs and markings). The platform can simulate a realistic traffic environment for
a human driver. The behavioral models are based on driving psychology studies [33] that
analyze a driver’s behavior in realistic situations. The model’s objectives are to identify
human driver knowledge and decision-making strategies.

ArchiSim is based on a MAS in which each simulated driver is an autonomous software
agent evolving in a virtual environment and interacting with other simulated agents (or human
drivers) to reach their goals in accordance with their current skills and situation. At each step
of the simulation, an agent receives information describing the surrounding environment (its
context). Based on this information, agents develop perceptions of their environments and
make their decisions accordingly.

ArchiSim has been validated for different actors, such as the drivers of two-wheeled vehi-
cles [4], passenger vehicles [10,11,24] and heavy trucks [34] for different highway and urban
situations. Preliminary research was conducted on this model to apply it to the ArchiSim
tool [20].

Results were obtained on a computer equipped with dual-core 2.5 GHz Intel Core i5 CPU
and 4GB of RAM.

4.2 Experiments

The first part of our evaluation involves a visual assessment of simulated driver behavior.
We begin our experiments by evaluating individual agent behavior in terms of road space
positioning in various scenarios.

The scenarios described in the following sub-sections allowed us to estimate our model
in traffic situations involving two-wheeled vehicle moving up in a road with a traffic light
(4.2.1) or vehicles moving up at an intersection with turning left or right (4.2.2). Finally, we
validated the macroscopic aspects of our model by comparing real data collected on a route
with simulation data (4.2.3) and a situation in which an emergency vehicle arrives (4.2.4).
We began by validating the usual behavior for two-wheeled vehicles in motion [19].

4.2.1 Experiment 1: a situation with a traffic light

The aim of this experiment was to verify the filtering maneuver behavior of two-wheeled
vehicles at a traffic light. We considered a road (1 km in length) with two physical lanes
and we put a traffic light on this road at 800 m. We considered 20 vehicles (19 cars and
1 motorcycle). The initial position, initial speed and desired speed of each vehicle were
provided by the simulation designer.

DOI : 10.1007/s10458-014-9269-x 17



(a) Reference model (without affordance-based model)

(b) with affordance-based model

Fig. 7 The behavior of a two-wheeled vehicle in a situation with a traffic light: a reference model (a) and an  
affordance-based model (b)

We ran the simulations 20 times with the same parameters. We compared the reference 
model simulations (the ArchiSim model without an affordance-based model) with the simu-
lations using our model (affordance-based model). The observed behaviors were similar for 
the 20 simulations.

Figure 7 presents one of the 20 simulations performed. Figure 7a (reference model) shows 
that the agent stays behind the different vehicles and stays in the same lane. At time step 
2510, the agent is still at the back of a lane of stopped vehicles. It continues to move in
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Fig. 8 Speed of the two-wheeled vehicle with/without affordance-based model

its lane when the traffic light changes from red to green. Figure 7b illustrates that for our
model, at time step 1253, the agent driving the two-wheeled vehicle chose to fit and filter
between the two rows of vehicles, moving to the head of a lane and stopping at the traffic
light (step 2501). The behavior of the two-wheeled vehicle in our model results from the
affordance-based ego-centered environmental representation. The two-wheeled agent detects
the potential emergence of a virtual lane (between the two rows of vehicles) afforded by the
interaction of the other agents with the physical road structure.

This kind of behavior does not appear in the reference model (ArchiSim without the
affordance-based model), since the lanes correspond to physical ones. These two physical
lanes are occupied by vehicles in front. Therefore, the two-wheeled vehicle driver gets stuck
behind stopped vehicles and has no other opportunity until the light turns green. This kind of
behavior does not always correspond to the two-wheeled agent’s behavior in an actual traffic
situation. Our model reproduces behaviors that are often observed in reality.

Figure 8 shows a typical example in which the model reproduces the observed behaviors.
This figure compares the speed profiles for two-wheeled vehicles in both the affordance-
based model and the reference model (without affordances). Between time-steps 0 and 1006,
the two-wheeled vehicle accelerates faster in our model than in the reference model. This
behavior is the result of using the virtual lane in our model, whereas in the reference model,
the two-wheeled vehicle is blocked behind a row of slower vehicles. Between steps 1006
and 2515, the speed variation is much lower for the model without affordances than for our
model. Between steps 2515 and 3090, the two-wheeled vehicle in our model must stop at
the red traffic light, while in the reference model, it continues to decelerate (it has not yet
arrived at the traffic light). At step 3090 in our model, the traffic light changes to green and
the two-wheeled vehicle begins to accelerate; in the reference model, it continues to move
with a speed close to 0 km/h. After step 3090, the two-wheeled vehicle accelerated faster in
our model than in the reference model: it is at the head of the lane in our approach; in the
reference model, it is again blocked behind different vehicles.

There are fewer variations for our model than for the reference model; the two-wheeled
vehicle is alone in the virtual lane (it decelerates only for a red traffic light); while in the
reference model, the two-wheeled vehicle adapts the speed to the speed of the vehicles in
front of it.

4.2.2 Experiment 2: a situation with an intersection

The objective of the second scenario is to evaluate a situation at an intersection with left-
and right-turning vehicles and a single vehicle moving straight ahead. More specifically,
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Fig. 9 Simulation in an intersection without an affordance-based model

this scenario aims to reproduce a behavior that we often observe at intersections. Generally, 
vehicles that turn right shift to the right, while those that turn left shift to the left, in order to 
allow vehicles moving straight ahead to pass.

Similarly to the previous experiment, we consider a bounded number of 15 vehicles, 
and the initial position, initial speed and desired speed of each vehicle are provided by the 
simulation designer. We ran the experiments 20 times. Figures 9 and 10 present an illustration 
of the scenario that occurs in this type of situation.

Figure 9 shows that agents move according to physical lanes, which are delineated by 
road markings. We focused on the behavior of vehicle 0. Vehicles 1, 3 and 5 are going to turn 
right. Vehicles 2, 4 and 6 move and turn left. We notice that vehicle 0 is blocked behind the 
row of vehicles turning right. Only once vehicles 1, 3 and 5 turn right, does vehicle 0 cross 
the intersection (time step 671): it cannot cross it before.

Figure 10 presents the same scenario based on our model. Mobile 0 creates a representation 
of the situation. Since vehicles 1, 3 and 5 turn right, they shift towards the right edge of the 
road. Vehicles 2, 4 and 6 follow the same behavior; however they shift to the left. We notice
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Fig. 10 Simulation in an intersection with an affordance-based model

that at time step 3, mobile 0 puts its turn signal on and starts moving in a virtual lane between
the two rows of vehicles. At time step 159, mobile 0 has already crossed the intersection while
at the same time step in the first simulation, it was still blocked behind the queue of vehicles.
Mobile 0 creates an ego-centered representation based on affordances. For that purpose, it
identifies three affordances:

– The lane furthest to the right, formed by vehicles 1, 3 and 5
– The lane furthest to the left, formed by vehicles 2, 4 and 6
– A lane that emerges in the middle, between the two rows of vehicles.
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In order to make a decision, an agent evaluates the affordances and selects the most suitable,
which is the virtual lane between the two rows. This lane presents better speed characteristics
and allows the agent to get out from the situation and move through the intersection.

4.2.3 Experiment 3: a real traffic situation

In order to validate the macroscopic view of the traffic simulation using our affordance-based
agent model, we considered a road situation with real, heavy traffic.

Real traffic context: In road traffic, it is very difficult to pick up real data on space man-
agement. So, we used the available data collected by ADEME5, which conducted a study
in order to compare the energy consumption and emissions of two-wheeled vehicles with
those of other vehicles. The considered data were collected on 23 km of a route composed of
departmental roads, national roads and highways. This route represents a typical path from
a driver’s place of residence to work (i.e., from the suburbs of Paris to the center of Paris).

The method used for collecting this traffic data involves simultaneously recording real
conditions for a scooter, a motorcycle and a passenger vehicle. We assume that the motor-
cyclists’ driving needed to be “serious”, i.e., they needed to obey speed limits and be able to
move up in a lane of slowly moving cars. These records provided data such as average speed,
travel time and number of stops.

The aim of our experiment was to simulate traffic in a context similar to the one considered
by ADEME, and to compare real data with those of our simulation.

Experimental protocol: We first used ArchiSim to simulate a route similar to the one con-
sidered by ADEME. We used the same components (departmental roads, national roads,
highways), traffic lights and road markings. We placed virtual sensors at the same kilometric
positions as on a real route. We generated heterogeneous traffic as follows:

– Each vehicle’ arrival time and position were defined using Poisson distribution.
– The desired speed was generated according to Gaussian law.
– The initial speed of each vehicle was established as the lowest speed between the desired

speed and the speed determined by the vehicle in front.
– The proportions of two-wheeled vehicles, trucks and buses were dependent on the number

of cars.

We then added a car and a two-wheeled vehicle with the same initial and desired speeds
and positions.

Results with real data versus simulated data: We carried out several experiments to pick
up data and compare them with ADEME’s data. These data included travel time, average
speeds and numbers of stops by vehicle type (passenger car or two-wheeled vehicle). First,
we compared the results of our model with those of the reference model to evaluate the impact
of our agent model. Then, we compared our results to real data. Figure 11 provides real data
and results obtained during simulations (with three different models) and gives the average
of 20 simulations for each approach. In the first case, agents were defined by the ”reference“
behavior associated with the ArchiSim model with no virtual lane: the agents moved on the
road within the physical lanes. The second case provided the results obtained by Bonte et
al. [4]’s model and the last case defined the results provided by our affordance-based model.

5 French acronym for “The Environment and Energy Management Agency”
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Fig. 11 Comparison between Real and Experimental measurements on a route 23 km long. a Travel time. b
Average speed. c Number of stops

These data included travel time (Fig. 11a), average speeds (Fig. 11b) and the number of stops
(Fig. 11c) by vehicle type (passenger vehicle or two-wheeled vehicle).

We focused on the behavior of a car and a two-wheeled vehicle generated with the same
characteristics as for this itinerary to study the impact of our model. The real data show that
the travel time for a two-wheeled vehicle is half that of a passenger car. This is not the case
in the reference model, where travel times are roughly equal. This is due to the fact that, in
the reference model, the behavior is the same for cars and two-wheeled vehicles. Both types
of vehicles use the physical lanes provided by the road markings.

We compared our results with those of the reference results. Travel time for the same
journey was shorter for the two-wheeled vehicle than for the car. The average speed of the
two-wheeled vehicle was higher than the average speed of the car. We also observed that the
two-wheeled vehicle made fewer stops than the cars did. Therefore, the affordance-based
model allowed an agent driving a two-wheeled vehicle to identify the virtual lanes afforded
by the environment. Due to their size, two-wheeled vehicles use virtual lanes more frequently
than other types of vehicles. Their travel time is shorter and they make fewer stops than cars.
Note that we observed the same trends when we compared results of our model with real
data. The difference between the simulated results and real results may be related to the
calibration of the simulation. We do not have data to precisely adjust the flow or speed of
simulated vehicles.
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Fig. 12 Temporal performance for the perception process with/without affordances

We can conclude that our model considers that filtering is better tolerated in two-wheeled 
drivers than in car drivers (i.e., two-wheeled vehicles make a given journey in less time). We 
have already outlined these different behaviors [19]: we observe that car drivers choose the 
virtual lane solution only if they engage in non-normative behavior (extreme cases). Choosing 
virtual lanes is not systematic; it depends on lane and vehicle characteristics (e.g., size) and 
individual agent characteristics (distance to the norm). Our model is generic because it is 
not specific to one kind of driver. The heterogeneous behavior results from different driving 
contexts and individual driver characteristics coupled with generic rules.

Performance evaluation: To evaluate the performance of the proposed affordance mecha-
nism, we considered the same route as in the previous experiments (the route similar to the 
one considered by ADEME). We simulated several traffic flow variations and we studied the 
CPU time required by the agents to perceive (i.e., the time that each agent takes to build its 
environmental ego-centred representation). We compared our affordance-based model to the 
reference model (named model without affordances). For low traffic densities (fewer than 
100 vehicles/h), perception time lengthens as traffic flow becomes heavier. For higher traf-
fic densities, perception time becomes almost constant (for 250 vehicles/h, perception time 
approaches to 0.1 s in our model). This is due to the fact that the number of agents considered 
in the perception process usually does not change when the traffic density is high. In the 
proposed affordance-based model, the affordance mechanism is the most costly process. So, 
the perception times of Fig. 12 are very acceptable. However, our implementation of the 
affordance mechanism could be improved to reduce this cost.

4.2.4 Experiment 4: generalization regarding emergency vehicles

The comparison between real data and our approach shows that we can reproduce the observed 
trends. For the same itinerary, car travel time is longer (estimated ratio of 2–1) than two-
wheeled vehicle travel time (when driving under the same conditions). We evaluated our 
simulations in the same context as the previous experiment, but we used a dynamically 
appearing emergency vehicle (ambulance, police car or fire truck). The purpose of this last 
experiment was to check the generic nature of our model.

In order to reproduce the “priority” given to this type of vehicle, we introduced a new 
behavior for the other agent types. This new behavior involved moving when an emergency 
vehicle is detected to make it easier for that vehicle to pass. Figure 13 describes the general 
behaviors for all agents. The presence of an emergency vehicle (vehicle 1) leads other vehicles
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Fig. 13 Appearance of an emergency vehicle in a traffic situation

to shift to the right (vehicles 3, 5 and 7) or the left side (vehicles 2, 4, 6 and 8), if possible.
When vehicle 1 disappeared, the other vehicles returned to the middle of their initial lane.

We consider that yielding to an emergency vehicle is equivalent to cooperative behaviors
for the other agents. This cooperative behavior has also been observed in two-wheeled vehi-
cles in certain situations, and especially in suburban contexts. In contrast with two-wheeled
vehicles, an emergency vehicle forces its way through traffic by positioning itself between
lanes: the space is insufficient to pass but the action creates space because other vehicles
cooperate by moving.

We present two situations with an emergency vehicle (Fig. 14):

– In the first, we compared times for the different types of vehicles (“passenger”, “two-
wheeled” and “emergency” vehicles): we assumed that the emergency vehicle stops when
the light changes red. We note that the emergency vehicle takes less time than a passenger
vehicle to move on the same road but it takes more time than a two-wheeled vehicle.
Given the width of the vehicle, this result is understandable: two-wheeled vehicle drivers
can weave through road traffic whereas emergency vehicles cannot.

– In the second situation, we assumed that the emergency vehicle goes through a red
light (this situation is more “realistic” than the first). The emergency vehicle is faster
than the others. The temporal difference between two-wheeled and emergency vehicles
is minimal: we think that two-wheeled vehicles tend to compensate for this temporal
difference by weaving in and out of traffic.

We believe that the results of the second situation are more realistic because emergency
vehicles must be faster than the others in real situations. These results seem to reproduce what

DOI : 10.1007/s10458-014-9269-x 25



Fig. 14 Travel time for different
agent types based on emergency
vehicle behavior
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is actually seen when emergency vehicles switch lanes. New spaces are produced when agents 
cooperate, and allow emergency vehicles to move faster, ensuring overall traffic fluidity. Note 
that we have no real data about the behavior of emergency vehicles to fully validate simulated 
behaviors for this type of vehicle.

5 Conclusion

This article introduced an affordance-based agent model mainly based on the agents’ inter-
actions with their environment. Affordances identify the possible actions offered to agents 
by the environment when they interact with perceived entities, thus facilitating the agent 
decision-making process. The theory of Affordances was introduced by Gibson [15]. This 
initial theory has several advantages. However, it is not sufficient to explain the “direct per-
ception”: several studies have shown that the cognition process plays an important role in 
the representation of affordances. An important issue to address is the computational aspect 
of affordances.

To deal with this issue, we propose to consider that affordances may be directly perceived 
in the environment or represented in an agent’s mind. This affordance-based mental repre-
sentation facilitates affordance implementation in a multi-agent simulation with situated and 
autonomous agents.

Our work also aims to validate traffic simulations in urban and suburban areas, by focusing 
more on the heterogeneity of vehicles and driver behavior in terms of road space positioning 
and occupation. In this context, agents represent human drivers and an affordance corresponds 
to a possible virtual lane, perceived by the agents.

The agents follow a decision-making loop based on the usual three processes: perception, 
decision and action. Each agent perceives the other agents and their characteristics, as well 
as information from the environment (e.g., road markings, signals). The perception process 
builds an “ego-centered representation” by analyzing the relationships between agents and 
the environment, and by identifying affordances. The different characteristics of agents and
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the environmental properties allow each agent to build different virtual intervals. Based on 
Allen’s interval algebra, these different virtual intervals are modified to obtain affordances 
(virtual lanes). Based on these affordances and its goals, each agent determines the “optimal 
affordance” and performs the corresponding action.

We implemented our model with ArchiSim, a road traffic simulation tool and we ran 
several experiments. The results of four experiments were reported in this paper. The first 
two experiments validated individual behaviors such as two-wheeled vehicles weaving in and 
out of traffic and passenger cars between rows of vehicles. The third experiment investigated 
a real traffic situation. We thus compared our affordance-based models to other models and 
real data. Our model gave the best results. The last experiment also illustrated a realistic 
situation with an emergency vehicle arriving to a traffic situation. The obtained results show 
that our model reproduces practices seen in real life.

Our approach uses Allen’s interval model to determine virtual intervals (free or occu-
pied spaces). These intervals are characterized by two dimensions: width and distance to an 
obstacle. Allen’s model has been used only to handle the width of different intervals. There-
fore, it may be interesting to improve this model by using the region connection calculus 
model [14,23,42] to build a continuous model with these two dimensions and represent such 
spaces.

Finally, we think that affordance-based models may be useful to design new interactions 
between agents and entities that are currently present in the environment. This approach 
defines relationships between agents and the environment, and identifies action possibilities 
for a given agent. Perception and cognition mechanisms must thus be reconsidered when 
designing MAS. The MAS designer must focus on the “interface” between the environ-
ment and the agent perception process. Therefore, affordances are used as a mechanism 
for better understanding and hopefully improving the representation of agent—environment 
interaction. Other existing models investigate the agent-environment interaction problem. 
For Weyns et al. [41], the environment is defined as a first-class abstraction that provides the 
conditions of existence for agents and supplies an abstraction for an exploitable model for 
designing MAS. Similarly, Weyns et al. [40] claimed that the interactions between agents and 
the environment are very important when designing multi-agent applications: they defined 
the concept of “artifact” as “…a software entity designed to provide some kinds of services 
that agents can use to achieve their goals” [39]. Future research is necessary to highlight the 
relationships between the various models.
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