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Abstract

Sugar has only recently been identified as a key player in triggering bud outgrowth, while hormonal control of bud 
outgrowth is already well established. To get a better understanding of sugar control, the present study investigated 
how sugar availability modulates the hormonal network during bud outgrowth in Rosa hybrida. Other plant models, 
for which mutants are available, were used when necessary. Buds were grown in vitro to manipulate available sugars. 
The temporal patterns of the hormonal regulatory network were assessed in parallel with bud outgrowth dynamics. 
Sucrose determined bud entrance into sustained growth in a concentration-dependent manner. Sustained growth 
was accompanied by sustained auxin production in buds, and sustained auxin export in a DR5::GUS-expressing pea 
line. Several events occurred ahead of sucrose-stimulated bud outgrowth. Sucrose upregulated early auxin synthesis 
genes (RhTAR1, RhYUC1) and the auxin efflux carrier gene RhPIN1, and promoted PIN1 abundance at the plasma 
membrane in a pPIN1::PIN1-GFP-expressing tomato line. Sucrose downregulated both RwMAX2, involved in the str-
igolactone-transduction pathway, and RhBRC1, a repressor of branching, at an early stage. The presence of sucrose 
also increased stem cytokinin content, but sucrose-promoted bud outgrowth was not related to that pathway. In these 
processes, several non-metabolizable sucrose analogues induced sustained bud outgrowth in R.  hybrida, Pisum 
sativum, and Arabidopsis thaliana, suggesting that sucrose was involved in a signalling pathway. In conclusion, we 
identified potential hormonal candidates for bud outgrowth control by sugar. They are central to future investigations 
aimed at disentangling the processes that underlie regulation of bud outgrowth by sugar.

Key words:  Auxin, bud burst, cytokinins, Rosa sp., shoot branching, strigolactones, sugar, sugar signalling.
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Introduction

Bud outgrowth is a highly controlled process by which the 
plant can adjust its development to environmental condi-
tions. Among the internal regulators affecting this process, 
auxin (indole-3-acetic acid, IAA) produced by the young api-
cal leaves was suggested to be responsible for the inhibition of 
lower axillary buds during apical dominance a long time ago 
(Thimann and Skoog, 1934; Cline, 1991; Domagalska and 
Leyser, 2011). Recently, less emphasis has been given to the 
role of auxin during apical dominance; rather, the involve-
ment of sugar has been investigated. Indeed, after decapi-
tation in pea, Morris et  al. (2005) showed that initial bud 
outgrowth occurred prior to changes in auxin content in the 
adjacent stem tissues. Mason et al. (2014) support a theory in 
which loss of the shoot tip would remove a large sink for sugar 
and induce rapid distribution of sugar over long distances, 
which would be responsible for initial bud outgrowth. It is 
well established that bud outgrowth occurs along with a large 
induction of sugar metabolism and transport within buds 
(Marquat et  al., 1999; Decourteix et  al., 2008; Bonhomme 
et  al., 2010; Girault et  al., 2010; Henry et  al., 2011; Rabot 
et  al., 2012). Moreover, defoliation experiments (Mitchell, 
1953; Kebrom et al., 2010) and more recently the use of the 
wheat tiller inhibition mutant, in which sugars are diverted to 
highly elongating internodes (Kebrom et al., 2012), suggest 
the control of bud outgrowth by sugar availability within the 
plant. Mason et  al. (2014) demonstrated a causal relation-
ship between sugar availability and bud outgrowth in planta: 
external sugar supply was sufficient to trigger bud outgrowth 
in non-decapitated pea plants. Similarly, a supply of sugar 
is necessary to trigger the outgrowth of buds in vitro (Henry 
et al., 2011; Rabot et al., 2012; Mason et al., 2014). In this 
process, sucrose was suggested not only to play a trophic 
role, but also to act as a signalling entity, because palatinose, 
a non-metabolizable sucrose analogue, is able to trigger bud 
outgrowth (Rabot et al., 2012). Although these findings high-
light the importance of sugar as a trigger of bud outgrowth, 
the mechanisms underlying the induction of bud outgrowth 
by sugar are yet to be elucidated.

Much work has been done to unravel the inhibitory 
effect of auxin on bud outgrowth (Thimann and Skoog, 
1934; Ferguson and Beveridge, 2009; Waldie et  al., 2010; 
Domagalska and Leyser, 2011). This effect is indirect, since 
apically derived auxin does not enter the buds (Hall and 
Hillman, 1975; Prasad et al., 1993) and therefore two lead-
ing models, involving second messengers and the process of 
auxin canalization, have been proposed. The auxin canaliza-
tion-based model is based on Sachs’ auxin transport model 
(Sachs, 1981; Bennett et  al., 2014). In this model, axillary 
buds are activated when the auxin initially flowing out of the 
bud is sufficient to trigger the establishment of a polar auxin 
transport canal connecting it to the auxin stream in the stem 
(Li and Bangerth, 1999; Domagalska and Leyser, 2011). The 
continual flow of auxin produced at the apex prevents axil-
lary buds on the same axis from exporting their own auxin, 
thereby maintaining apical dominance. The establishment of 
polar auxin transport involves a regulatory positive feedback 

loop between the directional auxin flow and the polarization 
of the efflux facilitator PIN-FORMED proteins (PINs) at the 
plasma membrane in the direction of the initial flow (Bennett 
et al., 2014). Strigolactones would act upstream of auxin by 
stimulating PIN removal from the plasma membrane, thus 
reducing the ability of the bud to create its own polar auxin 
transport (Shinohara et al., 2013). In the second messenger-
based model, auxin flow in the main stem negatively regu-
lates the synthesis of cytokinins (Sachs and Thimann, 1967; 
Shimizu-Sato et al., 2009) and positively regulates the levels 
of strigolactones (Brewer et al., 2009), which act antagonis-
tically on buds by inducing and inhibiting their outgrowth, 
respectively (Hayward et al., 2009; Dun et al., 2012). Within 
buds, the antagonistic effect of cytokinins and strigolactones 
is notably integrated by BRANCHED1 (BRC1), a transcrip-
tion factor mainly expressed in non-growing axillary buds 
and with knock-out mutants that exhibit a highly branched 
phenotype (Aguilar-Martínez et al., 2007; Braun et al., 2012; 
Dun et al., 2012).

In contexts other than bud outgrowth, several studies report 
that sugars control the biosynthesis, transport, or signalling 
of certain hormones, including auxin and cytokinins (Mishra 
et al., 2009; LeClere et al., 2010; Arrom and Munné-Bosch, 
2012b; Sairanen et al., 2012). In Arabidopsis thaliana roots, 
a genome-wide expression profiling study showed that glu-
cose upregulated YUCCA2, an auxin biosynthesis gene, and 
two members of the auxin efflux gene family including PIN1 
(Mishra et al., 2009). Moreover, sugars stimulated auxin bio-
synthesis by upregulating ZmYUCC1 in developing maize 
kernels (LeClere et al., 2010) or AtTAA and AtYUCCA8 in 
Arabidopsis seedlings (Stewart Lilley et  al., 2012). Several 
genes involved in cytokinin metabolism are also regulated by 
sugars in Arabidopsis (Kushwah and Laxmi, 2013). Glucose 
upregulates the cytokinin biosynthesis gene IPT3, and has 
a differential effect on the expression of cytokinin catabo-
lism-related genes: it upregulates CKX4 and downregulates 
CKX5. Unlike for auxin and cytokinins, no report is cur-
rently available about the relationships between sugars and 
strigolactones, although we know that their biosynthesis and 
signalling pathways are under the control of phosphate and 
nitrogen (Czarnecki et al., 2013; Sun et al., 2014).

The objective of  the present study was to determine 
whether sucrose and its signalling component modulate 
early hormonal homeostasis during bud outgrowth in Rosa 
hybrida. To monitor sugar availability for buds, we culti-
vated bud-bearing stem segments in vitro and supplied them 
with different sugar conditions, including different sucrose 
concentrations and non-metabolizable sucrose analogues 
(Chatfield et al., 2000; Henry et al., 2011; Rabot et al., 2012). 
To assess the sequence of  events, we monitored the temporal 
patterns of  bud outgrowth and hormonal state. We used sev-
eral techniques to characterize hormonal state, including the 
determination of  hormone levels and gene expression, and 
imaging of  reporter genes. This latter technique required the 
use of  specific mutants of  other species (tomato and pea). 
We thus demonstrated that sucrose availability modulates 
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the entrance of  buds into sustained growth, and that this 
effect is conserved across species. This impact is preceded 
by an early modification of  hormonal homeostasis. We also 
identified some components of  the hormonal network as 
potential candidates explaining the regulation of  bud out-
growth by sucrose.

Materials and methods

Plant culture, in vitro cultivation of axillary buds and growth 
analysis
For the experiments on R.  hybrida L.  ‘Radrazz’, cuttings from 
cloned mother plants were grown in a greenhouse where the tem-
perature was maintained around 22°C. Extra light was supplied by 
high-pressure sodium vapour lamps below 200 W m–2. Water and 
mineral nutrients were provided by sub-irrigation for 10 min day–1. 
Nodes from the median part of the stem were harvested on single-
axis plants when the floral bud was visible, as previously described 
(Girault et al., 2010).

For the experiment on A.  thaliana (L.) Heynh., wild-type (WT) 
Columbia-0 was used. Seeds were sown and stratified for 48 h at 7°C, 
then plants were grown in a growth chamber with a 16 h day length 
at a temperature of 20/18°C (day/night). After 6 weeks of culture, 
first and second nodes bearing 1-mm-long buds were harvested on 
secondary flowering branches.

For the experiments on Pisum sativum L., the W6 22593 geno-
type was used for the WT, and DR5::GUS DSB2024, containing an 
auxin-inducible promoter fused with the β-glucuronidase reporter 
(DeMason and Polowick, 2009), was used to visualize auxin export. 
Plants were sown and grown in the growth chamber in the same 
conditions as for the Arabidopsis experiments, except stratification, 
which was not performed on this species. The third basal leaf-bear-
ing node of single-axis plants was harvested when the fourth leaf 
was totally expanded.

For the experiment on Solanum lycopersicum L., the ‘Money 
Maker’ genotype was used as the WT and the pAtPIN1::AtPIN1-
GFP-expressing line (Bayer et al., 2009) was used to visualize PIN1 
localization within bud stem. Plants were sown and grown in the 
growth chamber in the same conditions as for the Arabidopsis exper-
iments, except stratification, which was not performed on this spe-
cies. The second basal leaf-bearing node of single-axis plants was 
harvested when the plants were about 15 cm long (3 to 4-week-old 
plants).

Once harvested, 1.5-cm stem segments were grown in vitro on clas-
sical solid MS medium (Duchefa) (1% gelose, aubygel) supplemented 
with different sucrose concentrations or different non-metaboliz-
able analogues (palatinose, glucose[1→6]fructose; turanose, glu-
cose[1→3]fructose; melibiose, galactose[1→6]glucose; and lactulose, 
galactose[1→4]fructose). These sugar analogues were initially used 
at 80 mM for rose (Loreti et al., 2000) and then at 30 mM for herba-
ceous plants (pea and Arabidopsis), which was sufficient to induce 
bud outgrowth. In all experiments, mannitol was used as an osmotic 
control, as it is not metabolized by R. hybrida (Henry et al., 2011) 
and is non-toxic for bud outgrowth (Supplementary Figure S1). In 
vitro excised buds were grown in a growth chamber (Strader) with a 
16-h day length at a temperature of 23/20°C (day/night).

For the work shown in Fig.  3, buds were treated with 
1-N-naphthylphthalamic acid (NPA), an auxin transport inhibitor, 
by deposition, on a bud, of a drop of unsolidified mixture contain-
ing 1% gelose, 1% PEG, 0.01% Tween-20, and 0.2% DMSO sup-
plemented with 1 mM NPA. The control corresponded to the same 
mixture without NPA.

For the work shown in Fig. 6, synthetic cytokinin 6-benzylami-
nopruine (BAP) and inhibitors of cytokinin synthesis (lovastatine; 
Hartig and Beck, 2005) and signalling (LGR-991 and PI-55; Nisler 
et al., 2010), were added in the growth medium at 10 µM.

Once in vitro, buds were imaged daily and their elongation was 
quantified as described in the Supplementary material and in 
Supplementary Figure S2.

Free IAA content analysis
For each sample, 5 mg of frozen tissue was extracted with 50 mM 
phosphate buffer containing an internal standard of [2H5] IAA at a 
concentration of 100 fmol mg–1 of plant material. The extract was 
subjected to solid-phase extraction as described previously (Pencík 
et al., 2009) and free IAA was analysed three times by ultra-high per-
formance chromatography coupled with tandem mass spectrometry.

Cytokinin content analysis
For each sample, 10 mg of freeze-dried powder was extracted with 
0.8 ml of acetone/water/acetic acid (80/19/1, v/v/v), and 10 stable-
labelled isotopes (OLChemIm) were used as internal standards 
and added as follows: 1 ng of 2H5-t-Z7G (trans-zeatin-7-glucoside), 
1 ng of 2H5-t-Z9G (trans-zeatin-9-glucoside), 1 ng of 2H5-t-ZOG 
(trans-zeatin O-glucoside), 1 ng of 15N-t-Z (trans-zeatin), 1 ng of 
2H5-t-ZROG (trans-zeatin riboside O-glucoside), 1 ng of 2H5-t-ZR 
(trans-zeatin riboside), 1 ng of 2H6-iPRMP (isopentenyl adenosine 
monophosphate), 1 ng of 2H6-iP (isopentenyl adenine), 1 ng of 2H5-
t-ZRMP (trans-zeatin riboside monophosphate), 0.1 ng of 15N-
iPR (isopentenyl adenosine). The extract was vigorously shaken 
for 1 min, sonicated for 1 min at 25 Hz, shaken for 10 min at 4°C 
in a Thermomixer (Eppendorf), and then centrifuged (8000g, 4°C, 
10 min). The supernatants were collected, and the pellets were re-
extracted twice with 0.4 ml of the same extraction solution, then 
vigorously shaken (1 min) and sonicated (1 min, 25 Hz). After cen-
trifugation, the three supernatants were pooled and dried (final vol-
ume 1.6 ml).

Each dry extract was dissolved in 140  µl of  acetonitrile/water 
(50/50, v/v), filtered, and analysed using a Waters Acquity ultra per-
formance liquid chromatograph coupled to a Waters Xevo Triple 
quadrupole mass spectrometer TQD (UPLC-ESI-MS/MS). The 
compounds were separated on a reverse-phase column (Uptisphere 
C18 UP3HDO, 100 × 2.1 mm × 3  µm particle size; Interchim, 
France) using a flow rate of 0.4 ml min–1 and a binary gradient: (i) 
acetic acid, 0.1% in water (v/v); and (ii) acetonitrile, with 0.1% ace-
tic acid. The solvent gradient was applied as follows [t (min), % A]: 
(0, 95%), (12, 40%), (13, 0%), (16, 95%); the column temperature 
was 40°C. Mass spectrometry was conducted in electrospray and 
Multiple Reaction Monitoring (MRM) scanning mode, in nega-
tive ion mode. Relevant instrumental parameters were set as fol-
lows: capillary 1.5 kV (negative mode); source block and desolvation 
gas temperatures 130 and 500°C, respectively. Nitrogen was used 
to assist the cone and desolvation (150 and 800 l h–1, respectively); 
argon was used as the collision gas at a flow of 0.18 ml min–1. The 
parameters used for MRM quantification of the different hormones 
are shown in Supplementary Table S1A.

The amounts of ZOG and ZROG were expressed as a ratio of 
standard peak areas (2H5-t-ZOG 287 > 225 and 2H5-t-ZROG 519 > 
225) per unit dry weight, due to impurities contained in the samples. 
These matrix impurities co-eluted with the ZROG or ZOG peak.

Samples were reconstituted in 140  µl of  50/50 acetonitrile/H2O 
(v/v) per ml of injected volume. The limit of detection (LOD) and 
limit of quantification (LOQ) were extrapolated for each hormone 
from calibration curves and samples using the Quantify module of 
MassLynx software, version 4.1. The LODs and LOQs are listed in 
Supplementary Table S1B.

Gene molecular cloning
5′ and 3′ cDNA ends were amplified using GeneRacer technology 
(Life Technologies), and then full-length cDNAs of each gene were 
cloned. The amplified fragments were cloned into the pGEM-T-
easy vector (Promega) and transfected into Escherichia coli JM109 
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(Promega). Plasmids were purified using NucleoSpin Plasmid mini 
prep (Macherey-Nagel) and sequenced (GATC Biotech, Germany). 
Gene identity was determined based on their homology with 
Arabidopsis gene sequences and the presence of putative conserved 
domains in the corresponding peptide sequence (Supplementary 
Table S2). RwMAX1/2/3/4 and RhPP2A were identified in previous 
studies (Klie and Debener, 2011; Djennane et al., 2014)

Quantification of gene expression
Total RNAs from ground frozen samples were extracted from buds 
using an RNA NucleoSpin kit (Macherey-Nagel). Genomic DNA 
was removed by incubating RNAs with DNase (Biolabs) for 10 min at 
37°C (1 µl of DNase for 10 µg of RNA). The reaction was stopped by 
adding EDTA at a final concentration of 5 mM followed by 10 min at 
75°C. The absence of contamination by genomic DNA was checked 
by PCR using a specific primer designed against an intron region of 
the RhGAPDH gene (Girault et al., 2010; Henry et al., 2011). cDNAs 
were obtained by reverse transcription performed on 1 µg of RNA 
using SuperScript III Reverse Transcriptase (Invitrogen). Quantitative 
real-time PCR (qRT-PCR) was performed with SYBR Green 
Supermix (Biorad) using cDNA as a template, with the following pro-
gramme: 2 min at 50°C, 10 min at 95°C, then 40 cycles of 15 s at 95°C 
and 60 s at 60 °C. The primers used for the qRT-PCR are given in 
Supplementary Table S3. Specific sets of primers were selected accord-
ing to their melting curves. Fluorescence detection was performed 
using a Chromo4 Real-time PCR detector (Biorad). Quantification of 
relative gene expression was determined using RhSAND1 expression 
as an internal control (Henry et al., 2011; Rabot et al., 2012).

Confocal laser-scanning microscopy and GFP quantification
Longitudinal hand sections of in vitro-cultivated bud-bearing stem 
segments of pAtPIN1::AtPIN1-GFP-expressing tomato line were 
observed using a confocal laser scanning microscope (NIKON Eclipe 
Ti) with a 20× water immersion objective (excitation wavelength 
488 nm, emission spectra between 500 and 550 nm). Laser power 
remained unchanged throughout the experiment. Quantification of 
the GFP signal was performed on 2D images using ImageJ software. 
Representative micrographs are given in Supplementary Figure S4. 
Integrated density of grey was determined on the 10 most intensely 
polarized plasma membrane poles of cells for each sample. The 
results are the means of three to four for replicates for each condition.

GUS staining and light microscopy
Bud-bearing stem segments of garden pea were harvested in 85% 
(v/v) ice-cold acetone, rinsed in distilled water, infiltrated with a GUS-
staining solution (Na2HPO4, 68 mM; NaH2PO4, 32 mM; 0.2% Triton 
X-100; potassium ferrocyanide, 0.5 mM; potassium ferricyanide, 
0.5 mM; and 0.5 mg ml–1 of 5-bromo-4-chloro-3-indolyl-D-glucuronic 
acid) under vacuum and incubated at 37°C overnight. The samples 
were then cleared with ethanol:ethyl acetate 3:1 (v:v) prepared one 
week before and observed under a binocular microscope (Leica).

Statistical analyses
Statistical analyses were done using the Rcmdr package of R soft-
ware for Windows (R Development Core Team, 2011). One-way 
ANOVA (α = 0.05) was run to test for the effects of sugar conditions 
on bud outgrowth. Significant differences are indicated by different 
letters or asterisks directly on the figures.

Results

Impact of sucrose on bud outgrowth dynamics

In vitro cultivated buds elongated within the first 6 days with 
all the sucrose concentrations tested, whereas no sustained 

bud outgrowth was observed in the presence of mannitol, 
used as an osmotic control (Fig. 1A). Initial slow growth was 
detected visually with mannitol, just after stem excision from 
the plant (data not shown), but could not be quantified from 
bud pictures. Sucrose stimulated bud elongation in a con-
centration-dependent manner. After 5  days of incubation, 
the average length of the buds kept on 10 mM sucrose was 
5.3 mm, but was more than doubled (12.0 mm) on 250 mM 
sucrose. With sucrose, bud outgrowth showed a first phase 
of slow elongation, followed by a phase of rapid elongation. 
Fitting a two-phase exponential function on bud elongation 
(Supplementary Figure S2) revealed that increasing sucrose 
concentration gradually shortened the duration before the 
phase of rapid growth (2.9 and 1.1 days with 10 and 250 mM 
sucrose, respectively; Fig. 1B). Moreover, at 10 mM, the elon-
gation rate of the rapid growth phase was reduced [(0.31 
ln(mm) day−1] compared to higher concentrations [about 
0.45 ln(mm) day−1], but there was no significant difference 
between concentrations above 50 mM. These results demon-
strate that sucrose is necessary for the transition between slow 
and rapid growth and modulates the timing of the transition 
in a concentration-dependent manner.

Impact of non-metabolizable sucrose analogues on 
bud outgrowth

In order to confirm the previously suggested signalling role 
played by sucrose during bud outgrowth (Rabot et al., 2012), 
the effect of several non-metabolizable sucrose analogues was 
investigated on in vitro-cultivated buds. In R. hybrida, buds 
grew out with all sucrose analogues (Fig.  2A). Lactulose 
yielded the same bud elongation pattern as sucrose (13 mm 
after 6 days). In contrast, after 6 days, buds were shorter with 
melibiose (10 mm), palatinose, and turanose (8 mm) than with 
sucrose or lactulose.

Similarly, buds of Arabidopsis and P. sativum also grew out 
in the presence of sucrose or sucrose analogues but not in 
presence of mannitol (Fig. 2B, C). In Arabidopsis, palatinose 
triggered weaker bud elongation (11.4 mm after 6 days) than 
sucrose, lactulose, and melibiose (27, 31, and 25 mm, respec-
tively, after 6  days). In pea, all the sucrose analogues had a 
weaker effect than sucrose (6, 8, and 5 mm with melibiose, 
palatinose, and turanose, respectively, compared to 11 mm with 
sucrose, after 6 days). These data suggest that sucrose can play 
a signalling role in the processes governing bud entrance into 
rapid growth and that this effect is conserved across species.

Impact of sucrose on auxin export from buds.

It is well known that an active bud exports its own auxin in 
the stem (Li and Bangerth, 1999; Domagalska and Leyser, 
2011). The positive impact of sucrose on the establishment of 
an auxin transport canal between bud and stem was checked 
using a DR5::GUS-expressing pea line containing an auxin-
inducible promoter fused to the β-glucuronidase reporter gene 
(DeMason and Polowick, 2009). On intact plants (Fig.  3A, 
T0), the apex-derived auxin flux in the stem was visible but no 
clear flux was detected between bud and stem. 48 h after bud-
bearing stem excision from the plant, an auxin transport canal 
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was visible between bud and stem with both mannitol and 
sucrose, but the blue precipitate was more intense with sucrose 
(Fig. 3B, C). At 96 h, this canal had consistently disappeared 
with mannitol but had intensified with sucrose (Fig. 3D, E). 
Similarly to sucrose, lactulose and palatinose showed a sus-
tained auxin canal between bud and stem (Fig. 3F, G), sug-
gesting a possible signalling role for sucrose in this process.

The results above demonstrate that the ability of sucrose to 
sustain bud outgrowth is related to its ability to sustain auxin 
export. To test whether auxin export is limiting in the effect 
of sucrose on bud outgrowth, we used NPA, an inhibitor of 
auxin transport, specifically applied on the bud. Bud elonga-
tion was slowed down in the presence of sucrose + NPA com-
pared to sucrose alone (Fig. 3H). At 7 days, bud length was 
about 43% less with NPA than without NPA, indicating that 
auxin export from the bud is limiting for sustained growth in 
the presence of sucrose.

Impact of sucrose on auxin concentration and 
synthesis in buds

Sustained auxin export from buds implies an ability of  the 
buds to synthesize their own auxin and transport it into 

the stem. In the first 10 h, auxin levels dropped by a large 
amount in buds incubated with sucrose or mannitol (–57 
and –52%, respectively; Fig. 4A). This level remained low 
for the buds kept on mannitol throughout the whole incu-
bation period, while it gradually accumulated in the buds 
grown with sucrose, reaching its maximum level at 72 h 
(+95% compared to 10 h). The effect of  sucrose on auxin 
accumulation was concentration dependent (Fig.  4B). 
Increasing sucrose to 50 or 100 mM increased bud auxin 
content at 48 h by about 56% compared to mannitol. The 
increase reached 89% with 250 mM sucrose. Turanose and 
lactulose also increased the auxin content at 48 h com-
pared to mannitol (+51 and +82%, respectively; Fig. 4C), 
suggesting a possible signalling role of  sucrose in this 
process.
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Auxin is mainly synthesized from tryptophan through 
the indole-3-pyruvic acid (IPA) pathway (Mashiguchi et al., 
2011; Zhao, 2012) in two enzymatic steps implying the 

involvement of TRYPTOPHAN AMINOTRANSFERASE 
OF ARABIDOPSIS1 and related proteins (TAA1 and 
TARs) and YUCCA flavin monooxygenase-like proteins 
(Zhao, 2012; Ljung, 2013). To test whether auxin accumula-
tion in sucrose-fed buds is related to a stimulation of auxin 
synthesis within the bud, we investigated the effect of sucrose 
on certain genes implied to be involved in auxin biosynthe-
sis on the basis of their sequence: RhTAR1 and RhYUC1 
(Supplementary Table S2). As for auxin content, the expres-
sion level of these genes was mainly stimulated in the buds 
supplied with sucrose compared to mannitol (Fig.  4D, E). 
Higher expression with sucrose compared with mannitol 
occurred as early as 10 h for RhTAR1 (25- vs 21-fold) and 24 h 
for RhYUC1 (6- vs 2-fold), and was maintained over the 96 h 
period studied. The general temporal pattern of expression 
was close for the two genes, with an induction peak at 10 h, 
followed by a decrease until 72 h.

Impact of sucrose on PIN abundance and polarization 
in buds

Intercellular auxin export is mainly ensured by PIN-
FORMED efflux carrier proteins (Petrášek and Friml, 2009). 
Their targeting to a pole of the cell is antagonistically medi-
ated by the PINOID serin/threonin protein kinase (PID) and 
the PROTEIN PHOSPHATASE 2A (PP2A) (Michniewicz 
et al., 2007; Zhang et al., 2010). The transcripts of RhPIN1, 
putatively encoding an AtPIN1-like auxin efflux carrier 
(Supplementary Table S2), rapidly accumulated in the buds 
within the first 10 h (a 3-fold increase; Fig. 5), and were 2-fold 
higher with sucrose than with mannitol after 10 h. The tran-
script levels of RhPIN1 then decreased. RhPID and RhPP2A 
expression also peaked after 10 h (4- and 2-fold increases, 
respectively) with mannitol and sucrose. However, upregula-
tion with sucrose compared to mannitol only occurred late 
in the outgrowth process, after 96 h for RhPID and after 24 h 
for RhPP2A.

To check whether the presence of sucrose resulted in the 
targeting of PINs to the plasma membrane in the bud, we 
assessed the amount of PIN1 polarized in buds grown with 
sucrose or mannitol in the pAtPIN1::AtPIN1-GFP tomato 
line (Money Maker background). As in R. hydrida, sustained 
bud outgrowth in this tomato line was promoted by sucrose 
but not by mannitol (Supplementary Figure S3). A GFP sig-
nal localized at the basal pole of the cells was detected with 
both sugar treatments (Supplementary Figure S4). The quan-
tification of GFP signal indicated that there was no signifi-
cant difference between sucrose and mannitol at 24 h, but that 
it was 3-fold higher with sucrose than with mannitol at 96 h 
(Fig. 5D).

Impact of sucrose on cytokinin synthesis and 
accumulation in stem tissues

To test the involvement of cytokinins in sucrose-stimulated 
bud outgrowth, we quantified their accumulation in stem sec-
tions cultivated in vitro between 0 and 24 h (which is before 
rapid bud growth) with mannitol, sucrose, or palatinose 
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(Fig.  6A). Active cytokinins are derived from intermediate 
forms and can be converted into inactive conjugated forms 
(Sakakibara, 2006). The three types of sugars induced an 
accumulation of cytokinin intermediate forms (iPRMP, 
ZRMP, iPR, and ZR) and an active form (iP), while conju-
gated inactive forms (ZOG and ZROG) accumulated more 
modestly and zeatin, another active form, did not accumu-
late. Interestingly, cytokinin accumulation with mannitol was 
lower than with sucrose, and slightly lower than with pala-
tinose. This demonstrates that cytokinins accumulate before 
rapid bud growth in the presence of sucrose.

The rate-limiting step of cytokinin biosynthesis is cata-
lysed by enzymes of the ISOPENTENYL TRANSFERASE 
(IPT) family (Sakakibara, 2006; Miyawaki et al., 2006). As a 
complement to cytokinin quantification at 24 h, we quantified 
the relative expression of R. hybrida Isopentenyl Transferase3 
and 5 (RhIPT3 and RhIPT5) in the stem segments (Fig. 6B 
and C). These genes code for proteins that share high homol-
ogy with the cytokinin-biosynthesis enzymes of Arabidopsis 
AtIPT3 and AtIPT5, respectively (Supplementary Table 
S2). During the first 48 h, sucrose promoted the expression 
of RhIPT3 and RhIPT5 compared to mannitol. In response 
to sucrose, expression of RhIPT3 rapidly increased just after 
stem excision, within the first 10 h (12-fold increase), whereas 
in response to mannitol, it increased progressively and to a 
lesser extent than sucrose (7-fold increase). RhIPT5 transcripts 
accumulated more progressively than RhIPT3 with sucrose 
to reach their maximum value at 48 h (22-fold increase), but 
strongly compared with mannitol (7-fold). After 48 h, the 

expression level of RhIPT3 and RhIPT5 dropped to the same 
level with sucrose and mannitol. These results suggest that 
sucrose promoted cytokinin accumulation in the stems at 
least through a rapid upregulation of RhIPT3 and RhIPT5.

To determine whether the impact of sucrose on bud out-
growth could be mediated by cytokinins, 10  µM solutions 
of different inhibitors of cytokinin synthesis (lovastatine) 
and perception (PI-55, LGR-991) were added to the growth 
medium in the presence of 30 mM sucrose (Fig. 6D). On the 
whole, bud elongation was insensitive to these inhibitors. No 
difference was observed in the elongation of buds cultivated 
with sucrose or sucrose plus cytokinin inhibitors during the 
first 72 h. At 96 h, bud length became lower in the presence 
of PI-55 and LGR-991, but differences between treatments 
were slight and occurred well after buds entered rapid growth. 
Moreover, supplying 10  µM BAP, a synthetic cytokinin, to 
medium with mannitol did not trigger sustained bud out-
growth (Fig. 6E). These results suggest that the observed pro-
moted effect of sucrose on rapid bud growth is not mediated 
by cytokinins.

Impact of sucrose on strigolactone signalling genes

To test the involvement of strigolactones in sucrose-stimu-
lated bud outgrowth, we quantified the expression of genes 
putatively implied in strigolactone synthesis and signalling. 
Strigolactones are produced by a sequential cleavage of a 
carotenoid precursor that involves different CAROTENOID 
CLEAVAGE DIOXYGENASE enzymes (CCD7/MAX3/
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RMS5, CCD8/MAX4/RMS1) (Lin et  al., 2009; de Saint 
Germain et  al., 2013). Strigolactone perception is notably 
mediated by an F-box protein encoded by RMS4/MAX2/
D3 (Stirnberg et al., 2002, 2007; Hamiaux et al., 2012). The 
expression of RwMAX3 and RwMAX4, putatively involved 
in strigolactone synthesis, dropped abruptly after excision to 
become undetectable after 10 h and then remained very low 
whether the buds were cultivated with sucrose or mannitol 

(Fig.  7A, B). The expression of RwMAX2 was repressed 
with sucrose compared to mannitol in both stems and buds 
(Fig. 7C, D). In stems, RwMAX2 expression increased within 
the first 24 h with both sucrose and mannitol, but to a lesser 
extent with sucrose (5-fold increase) than with mannitol 
(9-fold increase). Afterwards, RwMAX2 expression in stems 
remained stable for both treatments. In buds, RwMAX2 
expression dropped (0.5-fold) within the first 24 h for sucrose 
while it remained stable for mannitol. This initial downreg-
ulation of RwMAX2 was negatively related to sucrose con-
centration and its expression was 5-fold lower with 250 mM 
sucrose than with mannitol (Fig. 7F). After 24 h, RwMAX2 
expression in buds increased to reach, at 96 h, a value close 
to that observed at 0 h with sucrose and a value 3-fold higher 
with mannitol.

Strigolactones modulate BRC1 expression, a gene cod-
ing for a transcription factor that inhibits bud outgrowth 
and with expression well related to bud outgrowth state 
(Aguilar-Martínez et al., 2007; Braun et al., 2012). Similarly 
to RwMAX2, RhBRC1 expression in buds was repressed over-
all with sucrose compared to mannitol (Fig. 7E). During the 
first 10 h, irrespective of the sugar tested, RhBRC1 expression 
showed a strong drop, which was slightly stronger with sucrose 
than with mannitol (8- and 4-fold, respectively). Thereafter, 
RhBRC1 expression remained quite stable until 48 h and then, 
with mannitol only, slightly re-increased. RhBRC1 expression 
at 24 h was negatively related to sucrose concentration, exhib-
iting much lower values with 100 or 250 mM sucrose com-
pared to mannitol, 10, or 50 mM sucrose (Fig. 7F).

Discussion

Sucrose promotes sustained bud outgrowth

Bud outgrowth can be divided into three stages: a dor-
mancy stage, a transition stage, and a sustained growth stage 
(Stafstrom and Sussex, 1992; Devitt and Stafstrom, 1995; 
Cline, 1997; Dun et al., 2006). Depending on the conditions, 
buds in the transition stage will either go back to dormancy 
or enter sustained growth (Waldie et  al., 2010). We clearly 
observed two growth periods for R. hybrida buds after their 
excision from the bud-bearing stem segments and their trans-
fer in vitro: an initial period of slow growth, which indicates 
that buds are not in a dormant stage, followed by a phase 
of rapid elongation in response to sucrose supply (Fig.  1). 
There was a progressive delay in buds entering rapid elonga-
tion when sucrose availability decreased. With mannitol, used 
as the ‘no sugar’ control, buds stopped their growth after the 
initial slow growth phase. These results support the hypoth-
esis that sugar availability controls the entrance of buds into 
sustained growth. This need for sugar is conserved across spe-
cies, as demonstrated in Arabidopsis and P. sativum (Fig. 2). 
Our results complement those showing that early bud release 
after decapitation is also controlled by an increase in sugar 
availability in pea (Mason et al., 2014). For in vitro-cultivated 
R. hybrida buds, we observed a rapid degradation of starch 
reserves in the stem parenchyma (Supplementary Figure S5A) 
after excision of bud-bearing stem segments from the plant. 
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Starch degradation may increase sugar availability for buds 
and in turn lead to their initial slow growth. Alternatively, 
initial slow bud growth could be related to the high auxin 
drop in the stem observed as early as 10 h after stem excision 
(Supplementary Figure S6).

Sucrose acts as a trophic and signalling entity in bud 
outgrowth

The role of sucrose cannot be restricted to a trophic role 
since different non-metabolizable sucrose analogues induced 
bud elongation in R. hybrida, Arabidopsis, and P. sativum in 
vitro (Fig. 2). Bud elongation was not always similar between 
sucrose and the analogue tested, probably due to different 
conformations of analogues, as previously observed with 
barley embryos (Loreti et  al., 2000) and in tobacco cell 

suspensions (Atanassova et al., 2003). By contrast to sucrose, 
none of the sucrose analogues increased the dry weight of 
the bud-bearing stem segments, demonstrating that none of 
them were metabolized (Supplementary Figure S5B), which 
is in line with previous studies (Loreti et al., 2000; Atanassova 
et al., 2003). Moreover, the analogues were not absorbed by 
RhSUC2 (Supplementary Table S4; Rabot et  al., 2012), a 
sucrose transporter preferentially expressed in R.  hybrida 
during bud outgrowth (Henry et al., 2011). Such an absence 
of analogue import into cells rules out their potential deg-
radation by vacuolar invertases and sucrose synthases, as 
reported with palatinose in sugarcane cells (Wu and Birch, 
2011). Finally, the effect of analogues was unlikely to be an 
indirect result of an impact on starch reserve mobilization or 
auxin depletion from the stem, as starch and auxin decreases 
in the stem were similar among treatments with and without 
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analogues (Supplementary Figure S5A and C). These find-
ings and others, discussed below, are consistent with the fact 
that sugars can serve, at least partly, as signalling molecules in 
the control of bud outgrowth.

Sucrose promotes sustained auxin synthesis within buds 
and auxin export from bud to stem. It is well known that bud 
outgrowth occurs along with auxin export out of the bud 
(Morris, 1977; Li and Bangerth, 1999). We checked this for 
sucrose- or sucrose analogue-promoted bud outgrowth using 
the auxin-inducible DR5::GUS-expressing pea line (Fig. 3A–
G). We observed a sustained auxin canal between bud and 
stem with sucrose or sucrose analogues, but not with man-
nitol. Interestingly, we noted initial auxin export just after 
excising the bud-bearing stem segments, irrespective of the 
presence of sucrose or mannitol. Consistently, we noted a 
substantial auxin drop in buds within the first 10 h after stem 
excision with sucrose or mannitol (Fig.  4A). Such a drop 
could be explained as follows: stem excision from the plant 
is followed by a rapid auxin drop in the stem (Supplementary 
Figure S6), initiating the creation of a canal of active auxin 
transport between bud and stem by positive feedback between 
auxin directional flux and PIN polarization in the direction 
of the flux (Bennett et al., 2014). In line with this idea, the 
genes responsible for PIN polarization, RhPID and RhPP2A, 
were rapidly induced after stem excision with sucrose or man-
nitol (Fig. 5B, C).

The maintenance of auxin export with sucrose or its non-
metabolizable analogues was accompanied by the capacity of 
the bud to synthesize auxin. After the initial auxin drop due to 

excision, buds supplied with either sucrose or non-metaboliz-
able analogues were able to re-accumulate auxin, in contrast 
to buds grown with mannitol (Fig. 4A). Stimulation of auxin 
synthesis by sugars has been reported in a variety of devel-
oping plant organs including kernel embryos (LeClere et al., 
2010), as well as Arabidopsis roots (Mishra et al., 2009), seed-
lings (Sairanen et  al., 2012), and hypocotyls (Stewart Lilley 
et al., 2012). RhTAR1 and RhYUC1, two genes involved in the 
indole-3-pyruvic acid pathway, the main auxin biosynthesis 
pathway (Mashiguchi et al., 2011), showed a higher expression 
with sucrose compared with mannitol; this began early, before 
any visible effect on auxin re-accumulation in buds (Fig. 4D, 
E). This induction of auxin synthesis genes by sucrose could 
be direct via the WRKY transcription factor (TF) from 
R. hybrida, SUCROSE SIGNALLING1 (RhSUSI1). Indeed, 
this orthologue of the sucrose-induced TF SUSIBA2 in bar-
ley (Sun et al., 2003) was both induced by sucrose in the bud 
and able to bind to the promoter of RhTAR1 (Supplementary 
Figure S7), suggesting that sucrose could induce RhTAR1 in 
an RhSUSI1-dependent manner. For buds cultivated with 
mannitol, we observed an initial peak in auxin biosynthe-
sis gene expression, as with sucrose, but expression values 
progressively decreased to become even lower than those 
observed with intact plants. This initial peak may be related 
to the release of sucrose and hexoses from the breakdown of 
stem starch reserves, as well as to auxin depletion in the stem 
after excision (Supplementary Figures S5 and S6).

Besides auxin synthesis, the maintenance of an auxin canal 
with sucrose was also highly related to the capacity of buds 
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to upregulate PIN1, an auxin efflux carrier involved in polar 
auxin transport and auxin canalization (Wisniewska et  al., 
2006; Bennett et al., 2014). RhPIN1 showed an early higher 
expression with sucrose compared with mannitol, which was 
maintained throughout the 96-h period studied (Fig.  5A). 
Consistent with this, glucose highly upregulates AtPIN1 
and AtPIN2 in Arabidopsis roots (Mishra et  al., 2009) and 
sucrose upregulates AtPIN7 and downregulates AtIAA3, a 
negative regulator of AtPIN7 in Arabidopsis shoots (Stewart 
Lilley et al., 2012). RhPP2A, which is required for the post-
translational mechanisms leading to the polarization of PIN 
proteins at the basal pole of the cells (Michniewicz et  al., 
2007; Grunewald and Friml, 2010), was also upregulated 
with sucrose. However, we did not observe sucrose-mediated 
RhPP2A upregulation as early as RhPIN1 upregulation 
(Fig.  5C), suggesting that RhPP2A may be involved in the 
maintenance of the canal rather than in its initial establish-
ment. Consistently, in pPIN1::PIN1-GFP-expressing tomato, 
sucrose triggered a higher GFP signal than mannitol at the 
basal pole of cells in bud stem tissues during the sustained 
bud outgrowth period (after 96 h; Fig.  5D). These findings 
suggest that sucrose could promote the establishment of 
polar auxin transport within the axillary bud by controlling 
PIN protein synthesis and/or PIN targeting to the plasma 
membrane. Such regulation could be the result of the negative 
impact of sucrose on the strigolactone pathway (discussed 
below), which has been shown to deplete PIN proteins from 
the plasma membrane (Shinohara et al., 2013). Moreover, it 
cannot be excluded that the effect of sucrose on PIN1 polari-
zation is the consequence of an increase of the auxin flow 
between bud and stem due to stimulation of auxin synthesis.

Altogether, these findings support the hypothesis that the 
sustained bud outgrowth observed in response to sucrose 
involves an early stimulation and the maintenance of pro-
cesses responsible for auxin synthesis and transport. By 
applying NPA, an inhibitor of auxin transport, specifically 
on buds we further demonstrated that auxin export from the 
bud is limiting in sucrose-promoted sustained bud outgrowth 
(Fig. 3H). Similarly, NPA application on pea buds of decapi-
tated plants was able to inhibit sustained bud outgrowth, but 
not earlier phases (Brewer et al., 2009; Mason et al., 2014), 
suggesting that auxin transport in bud is not critical in bud 
release following decapitation, although it may be crucial 
for ongoing bud outgrowth (Dun et al., 2006; Ferguson and 
Beveridge, 2009).

Sucrose promotes sustained growth in a 
cytokinin-independent manner

Cytokinins are involved in stimulation of bud outgrowth in 
different species including rosebush (Sachs and Thimann, 
1967; Bredmose et al., 2005; Shimizu-Sato et al., 2009). Our 
results demonstrate that sucrose upregulates cytokinin bio-
synthesis in stem tissues and that a disaccharide signalling 
pathway can be at least partially involved. Indeed, compared 
to mannitol, sucrose and palatinose induced an overaccu-
mulation of intermediate and active forms of cytokinins in 
R.  hybrida stems very early in the outgrowth process, and 

the overexpression of RhIPT3 and RhIPT5, two cytokinin 
biosynthesis-related genes (Fig.  6A–C). The effect of sugar 
on cytokinin production has previously only been reported 
for Lilium floral tissues (Arrom and Munné-Bosch, 2012a) 
and Arabidopsis seedlings (Kushwah and Laxmi, 2013). The 
effect of sucrose on the expression of RhIPT3 and RhIPT5 
started after stem excision and was maintained over the first 
48 h during the phase of slow growth (Fig. 1B). Thereafter, 
their expression levels dropped (Fig.  6B, C), as previously 
observed with PsIPT1 and PsIPT2 in P. sativum stems upon 
decapitation (Tanaka et al., 2006). This may involve a feed-
back loop in which auxin derived from outgrowing buds after 
48 h represses cytokinin biosynthesis, as suggested by the 
expression pattern of the cytokinin-catabolizing R.  hybrida 
CYTOKININ OXIDASE/DEHYDROGENASE1, RhCKX1 
(Supplementary Figure S8), an auxin-inducible gene in stems 
(Shimizu-Sato et al., 2009). RhCKX1 expression was low in 
the first 48 h following excision and subsequently increased 
only in the presence of sucrose.

Beside sugars, cytokinin biosynthesis is well known to be 
repressed by auxin in different species (Tanaka et al., 2006; 
Minakuchi et  al., 2010), while it is induced by nitrogen in 
Arabidopsis (Takei et  al., 2004). This makes cytokinin pro-
duction in the nodal stem a good potential integrator of the 
nutrient and auxin status in the regulation of bud outgrowth. 
However, we report here that cytokinins are not necessar-
ily involved in sucrose-promoted bud outgrowth in our sys-
tem. Indeed, bud outgrowth with sucrose was not inhibited 
by different cytokinin synthesis and perception inhibitors 
(Fig. 6D). Moreover, the addition of BAP, a synthetic cyto-
kinin, in the medium did not trigger rapid growth of buds 
grown with mannitol, indicating that cytokinins are not lim-
iting in our system (Fig.  6E). Similarly, cytokinins applied 
directly to axillary buds or the overexpression of cytokinin 
biosynthesis genes does not always induce bud outgrowth in 
other species (King and Van Staden, 1988; Medford et  al., 
1989).

Sucrose downregulates MAX2 and BRC1, two genes 
involved in strigolactone signal transduction

Strigolactones are involved in the inhibition of bud out-
growth and have been suggested to be second messengers 
of auxin (Brewer et al., 2009; Waldie et al., 2010, 2014). In 
buds, the expression of the strigolactone synthesis-related 
genes, RwMAX3 and RwMAX4, was not modulated by 
sucrose (Fig. 7A, B), but it dropped a lot within the first 10 h, 
probably related to auxin depletion following stem excision. 
In contrast, RwMAX2, a key regulatory gene in the signal 
transduction of strigolactones, was repressed early and in 
a concentration-dependent manner by sucrose (Fig.  7C, D, 
F). Strigolactone perception through RwMAX2 could thus 
be one of the ways whereby sucrose promotes sustained bud 
outgrowth. MAX2 was also reported to be involved in bud 
outgrowth regulation by light. In sorghum, inhibition of bud 
outgrowth in the phyB mutant or by FR treatment was related 
to high SbMAX2 expression in buds (Kebrom et al., 2010). 
In Rosa, darkening of the distal part of the shoot triggered 
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a strong increase of RwMAX2 expression in darkened buds 
(Djennane et al., 2014).

BRC1 appears as a common target for different sig-
nals controlling bud outgrowth, including strigolactones 
and cytokinins, and thus as an essential component of bud 
outgrowth control (Aguilar-Martínez et  al., 2007; Braun 
et al., 2012; Dun et al., 2012). The expression of R. hybrida 
BRANCHED1, RhBRC1, in buds was repressed early with 
sucrose compared to mannitol, and with high sucrose con-
centrations (100, 250 mM) compared with low concentra-
tions (10, 50 mM; Fig.  7E, F). Accordingly, Mason et  al. 
(2014) observed that artificially increasing sucrose levels in 
pea plants repressed BRC1 expression early. In our condi-
tions, RhBRC1 expression appeared more sensitive to stem 
excision than to external sucrose supply. Indeed, the expres-
sion showed an initial strong drop whether the buds were cul-
tivated with sucrose or mannitol. This drop may be related to 
the fact that stem excision increased sucrose and hexoses from 
breakdown of stem starch reserves, or to the auxin depletion 
from the stem, another variable known indirectly to control 
BRC1 (Chen et al., 2013) (Supplementary Figures S7 and S8).

In conclusion, our study demonstrates that sucrose, 
recently shown to control initial bud release, also regulates 
the entrance of buds into sustained growth. We identified sev-
eral hormonal components of the bud outgrowth regulatory 
network that were affected early by sucrose availability before 
the effect of sucrose was visible on bud outgrowth, suggest-
ing their possible involvement in the control of sustained bud 
growth (summarized in Supplementary Figure S9). This study 
on isolated buds provides basic information on which further 
investigations could focus for understanding the mechanisms 
whereby sugars control bud outgrowth and therefore their 
role in the control of bud outgrowth patterns in planta.
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