N

N

Efficient Computation of Attributes and Saliency Maps
on Tree-Based Image Representations
Yongchao Xu, Edwin Carlinet, Thierry Géraud, Laurent Najman

» To cite this version:

Yongchao Xu, Edwin Carlinet, Thierry Géraud, Laurent Najman. Efficient Computation of Attributes
and Saliency Maps on Tree-Based Image Representations. Mathematical Morphology and Its Appli-
cations to Signal and Image Processing, Benediktsson, J.A.; Chanussot, J.; Najman, L.; Talbot, H.,
May 2015, Reykjavik, Iceland. pp.693-704, 10.1007/978-3-319-18720-4_ 58 . hal-01168781

HAL Id: hal-01168781
https://hal.science/hal-01168781

Submitted on 26 Jun 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01168781
https://hal.archives-ouvertes.fr

Efficient Computation of Attributes and Saliency
Maps on Tree-Based Image Representations

Yongchao Xu'2, Edwin Carlinet!2, Thierry Géraud', Laurent Najman?

! EPITA Research and Development Laboratory (LRDE), France
{yongchao.xu, edwin.carlinet, thierry.geraud}@lrde.epita.fr
2 Université Paris-Est, LIGM, Equipe A3SI, ESIEE, France
1l.najman@esiee.fr

Abstract. Tree-based image representations are popular tools for many
applications in mathematical morphology and image processing. Classi-
cally, one computes an attribute on each node of a tree and decides
whether to preserve or remove some nodes upon the attribute function.
This attribute function plays a key role for the good performance of
tree-based applications. In this paper, we propose several algorithms to
compute efficiently some attribute information. The first one is incremen-
tal computation of information on region, contour, and context. Then we
show how to compute efficiently extremal information along the contour
(e.g., minimal gradient’s magnitude along the contour). Lastly, we depict
computation of extinction-based saliency map using tree-based image
representations. The computation complexity and the memory cost of
these algorithms are analyzed. To the best of our knowledge, except in-
formation on region, none of the other algorithms is presented explicitly
in any state-of-the-art paper.

Keywords: Min/Max-tree, tree of shapes, algorithm, attribute, saliency map

1 Introduction

In a large number of applications, processing relies on objects or areas of interest.
Therefore, region-based image representations have received much attention. In
mathematical morphology, several region-based image representations have been
popularized by attribute filters [2/17] or connected operators [13J14], which are
filtering tools that act by merging flat zones. Such operators rely on transforming
an image into an equivalent region-based representation, generally a tree of com-
ponents (e.g., the Min/Max-trees [I3] or the tree of shapes [9]). Such trees are
equivalent to the original image in the sense that the image can be reconstructed
from the associated tree. Filtering then involves the design of an attribute func-
tion that weighs how important/meaningful a node of the tree is or how much a
node of the tree fits a given shape. The filtering is achieved by preserving and re-
moving some nodes of the tree according to the attribute function. This filtering
process is either performed classically by thresholding the attribute function [14]
or by considering the tree-based image representations as graphs and applying
some filters on this graph representation [2320)].

0.045

Yt 0.04]

: 0.035

e > 0.03]

' L ‘ D 3 20.025
IHII 2 o002

| o Ay

nf AMM_“;} e 0005 Y

0 20 40 60 80 100 120 140 160
Nodes

(a) Illustration on a synthetical image. Green: exterior region; Blue: interior region.

(b) Tlustration of cerebrospinal fluid detection on MRI images of a newborn’s brain.

Fig. 1. Examples of object detection using the context-based energy estimator [21]
relying on contour and context information. An evolution of this attribute along a
branch starting from the yellow point to the root is depicted on the right side of (a).

There exist many applications in image processing and computer vision that
rely on tree-based image representations (see [20] for a short review). All these
applications share a common scheme: one computes a tree representation and
an attribute function upon which the tree analysis is performed. The choice of
tree representation and the adequacy of attribute function mainly determine the
success of the corresponding applications.

Many algorithms for computing different trees have been proposed (see Sec-
tion for a short review). In this paper, we focus on attribute computation,
which is also an important step for the tree-based applications. To the best of our
knowledge, only the algorithms for information computed on region have been
presented [I9] so far, none of the existing papers gives explicitly the algorithms
computing the other attribute information employed in tree-based applications.
In this paper, firstly, we detail explicitly how to incrementally compute some
information on region, contour, and context. These informations form the ba-
sis for many classical attribute functions (e.g., area, compactness, elongation).
Let us remark that contextual information is very adequate for object detec-
tion, such as the context-based energy estimator [21] that relies on information
computed on contour and context. Two examples of object detection using this
attribute are shown in Fig. [[] Another type of interesting information is ex-
tremal information along the contour (e.g., the minimal gradient’s magnitude
along the boundary). An example employing this information is the number of
false alarms (NFA) for meaningful level lines extraction [7J3]. Here we propose
an efficient algorithm that does not require much memory to compute this kind

(b) Circular object oriented extinction-based saliency map.

Fig. 2. Illustrations of extinction-based saliency maps from the tree of shapes.

of information. Lastly, we depict an algorithm computing the extinction-based
saliency map [20] representing a hierarchical morphological segmentation using
tree-based image representations (two examples are illustrated in Fig. . These
algorithms form the main contribution of this paper.

The rest of the paper is organized as follows: A short review of some tree-
based image representations and their computations using immersion algorithm
are provided in Section [2] Our proposed algorithms to compute some attribute
information and saliency maps are detailed in Section [3] and we analyze in Sec-
tion 4] the complexity and the memory cost of the proposed algorithms. Finally,
we conclude and give some perspectives in Section [5

2 Review of Morphological Trees and their Computations

Region-based image representations are composed of a set of regions of the orig-
inal image. Those regions are either disjoint or nested, and they are organized
into a tree structure thanks to the inclusion relationship. There are two types
of such representations: fine to coarse hierarchical segmentations and thresh-
old decomposition-based trees. In this paper, we only consider the threshold
decomposition-based trees.

2.1 Tree-based Image Representations

Let f be an image defined on domain (2 and with values on ordered set V'
(typically R or Z). For any A € V', the upper level sets X and lower level sets
X* of an image f are respectively defined by Xy(f) = {p € 2 | f(p) > A}
and X2 (f) = {p € 2| f(p) < \}. Both the upper and lower level sets have
a natural inclusion structure: VA; < Ay, Xy, 2 &), and XM C X*2 which
leads to two distinct and dual representations of the image: Max-tree and Min-
tree [I3]. The tree of shapes is a fusion of the Max-tree and Min-tree via the

>0
E<J

0]
': 2 Iy
B <1 c>2
e 4
22 22 <2
(a) Input image. (b) Max-tree. (¢) Min-tree. (d) Tree of shapes.

Fig. 3. Tree-based image representations relying on threshold decompositions.

notion of shapes [9]. A shape is defined as a connected component of an upper
or lower level set with its holes filled in. Thanks to the inclusion relationship of
both kinds of level sets, the set of shapes can be structured into a tree structure,
called the tree of shapes. An example of these trees is depicted in Fig.

2.2 Tree Computation and Representation

There exist three types of algorithms to compute the Min/Max-tree (see [4] for a
complete review): flooding algorithms [I3JI8ITT], merge-based algorithms [T9I12],
and immersion algorithms [IIT0]. In this paper, we employ the immersion algo-
rithm to construct the Min/Max-tree. Concerning the tree of shapes [9], there
are four different algorithms [IT5I6IR]. We use the one proposed by Géraud et
al. [8]. It is similar to the immersion algorithms used for the Min/Max-tree com-
putation. All these trees feature a common scheme of process: they start with
considering each pixel as a singleton and sorting the pixels in decreasing tree
order (i.e., root to leaves order), followed by an union-find process (in reverse
order) to merge disjoint sets to form a tree structure.

Let R be the vector of the N sorted pixels, and N (p) be neighbors (e.g.,
4- or 8-connectivity) of the pixel p. The union-find process is then depicted in
Fig. [(a), where parent and zpar are respectively the parenthood image and
the root path compression image. The whole process of tree computation is
given in Fig. 4| (b), where SORT_PIXELS is a decreasing tree order sorting. The
algorithms for computing the Min/Max-tree and the tree of shapes differ in this
pixel sorting step. For the Min/Max-tree, they are either sorted in decreasing
order (Min-tree) or increasing order (Max-tree). If the image f is low quantized,
we can use the Bucket sort algorithm to sort the pixels. Concerning the tree
of shapes, the sorting step is more complicated. It first interpolates the scalar
image to an image of range using a simplicial version of the 2D discrete grid:
the Khalimsky grid as shown in Fig. [f] We note Ky, the domain 2 immersed
on this grid. In Fig. [5| (a), the original points of the image are the 2-faces, the
boundaries are materialized with 0-faces and 1-faces. The algorithm in [8] ensures
that shapes are open connected sets (e.g., the purple shape in Fig. |5| (a)) and
that shapes’ borders are composed of 0-faces and 1-faces only (e.g., the dark
curve in Fig. [5[(a)). We refer the interested reader to the work of Géraud et
al. [§] for more details on this pixel sorting step.

The tree structure is encoded through the image parent : 2 — 2 or K —
K that states the parenthood relationship between nodes. In parent, a node is

1 FIND_ROOT(zpar, x) 1 CANONIZE_T(f, R, parent)

2 if zpar(z) = x then return x 2 fori+ 0toN—1do

3 else 3 p <+ R[i];

4 zpar(z) < FIND_ROOT (zpar, zpar(x)); || 4 q < parent(p);

5 return zpar(z) 5 if f(parent(q)) = f(q)

6 UNION_FIND(R) then

7 for all p do zpar(p) < undef; 6 | parent(p) < parent(q);
8 fori <~ N —1to0do 7 return parent

9 p < RIi], parent(p) < p, zpar(p) < p; 8 COMPUTE_TREE(f)
10 for all n € N(p) if zpar(n) # undef do || 9 R < SORT_PIXELS(f);
11 r < FIND_ROOT (zpar,n); 10 parent < UNION_FIND(R);
12 if r # p then 11 parent <+
13 ‘ parent(r) < p, zpar(r) < p; CANONIZE_T(f, R, parent);
14 return parent 12 return parent

(a) Union-find process. (b) Complete tree construction.

Fig. 4. Tree construction relying on union-find process.

represented by a single pixel (a 2-face of the Khalimsky grid in the case of the
tree of shapes) called the canonical element, and each non-canonical element is
attached to the canonical element representing the node it belongs to. In the
following, we denote by getCanonical : {2 — 2 or K — Ky, the routine that
returns the canonical element of each point in the image.

3 Proposed Algorithms

In this section, we detail several algorithms related to some applications us-
ing tree-based image representations, including computation of some classical
information used in many attribute functions (accumulated information in Sec-
tion and extremal information along the contour in Section , and com-
putation of extinction-based saliency maps [20] in Section For the sake of
simplicity, we consider the Min-tree or Max-tree representation. The algorithms
for the tree of shapes construction share the same principle.

3.1 Incremental Computation of Some Accumulated Information

There are three main types of accumulated information: computed on region A
(e.g., area), on contour L (e.g., length), and on context X (interior context X*
or exterior context X¢).

Attributes computed on regions. During the tree construction process, the
algorithm starts with the pixels lying on the leaves, and the union-find acts
as a region merging process. The connected components in the tree are built
during this region growing process. We are able to handle information computed
on region efficiently, such as its size, the sum of gray level or sum of square of

”D”DHD|DHD| I)
I]DI]DHDIDI]DI 0 0

unionland update
COEOEE o 0
NN =S55RESECE

(a) Khalimsky grid. (b) Updating contour. (c) Regional context.

IEICICcIcn

00 IIIDIIDII

Fig.5. (a): A point in a 2D image is materialized with O-faces (blue disks), 1-faces
(green strips), and 2-faces (red squares). (b): Updating contour information when an
union between two components (yellow and blue) occurs thanks to a pixel (gray).
(c): The approximated interior and exterior regional context of the red level line is
respectively the dark gray region and the light gray region.

gray level that can be used to compute the mean and the variance inside each
region, the moments of each region based on which we can compute some shape
attribute that measures how much a node fits a specific pattern. The algorithm
for computing these information is depicted in Fig. [6] by adding some additional
operations (red lines) to the union-find process during the tree construction,
where i4 encodes information on pixels (i.e., 2-faces). For example if A is the
size or the sum of gray level, then i4 would be 1 (size of a pixel) or the pixel
value. The operator F is a binary commutative and associative operator having
a neutral element 0 [19]. For example, if A is the size, then the operator F and
0 would be the classical operator 4+ and 0 for the initialization.

Attributes computed on contours. Attribute functions relying on contour-
related information are also very common, such as average of gradient’s magni-
tude along the contour. Information accumulated on contour can be managed in
the same way as information computed on region. The basic idea is that during
the union-find process, every time a pixel p is added to the current region to
form a parent region, process the four 1-faces which are the four neighbors (4-
connectivity) of the current pixel (i.e., 2-face in the Khalimsky grid in Fig.|5|(a)).
If a 1-face e is already added to the current region (i.e., belongs to its bound-
ary), then remove e after adding p, since that 1-face e will be inside the parent
region, consequently it is no longer on the boundary. Otherwise, add this 1-face
e. This process is illustrated in Fig. [5[(b). It relies on an image is_boundary de-
fined on the 1-faces that indicates if the 1-face belongs to the boundary of some
region. Information on contour is computed by adding some supplementary pro-
cess (green and gray lines in Fig. @ to the union-find process, where i;, encodes
information defined on 1-faces. For example if L is the contour length or the sum
of gradient’s magnitude, then i, would be 1 (size of a 1-face) or the gradlent S
magnitude on the 1-faces. The operator — is the inverse of the operator +.

Attributes computed on contexts. In [21I], we have presented a context-
based energy estimator that is adequate for object detection (see Fig. for some

1 UNION_FIND(R)
2 for all p do

3 zpar(p) < undef;
4 A(p) + 0; //information computed on region (e.g., area, sum of gray level)
5 L(p) + 0; //information computed on contour (e.g., contour length)
6 X'(p) + 0, X¢(p) « 0; //information computed on context
7 Vi(p) « M; //extremal information along the contour
8 for all e do is_boundary(e) < false;
9 fori< N —-1to0do
10 p < Rl[i], parent(p) < p, zpar(p) < p;
11 A(p) + A(p) Fia(p); //ia: information on pixels (i.e., 2-faces)
12 for all n € N (p) such as zpar(n) # undef do
13 r + FIND_ROOT (zpar, n);
14 if » # p then
15 parent(r) < p, zpar(r) < p;
16 A(p) Alp) + A(r);
17 L(p) + L(p) + L(r);
18 X'(p) « X'(p) + X'(r), X(p) = X“(p) + X°(r);
19 for all e € Ny(p) do
20 if not is_boundary(e) then
21 is_boundary(e) < true;
22 L(p) + L(p) ¥ ir(e); //ir: information on 1-faces
23 //i% and i%: top-right and down-left context of 1-faces
24 if e is above or on the right of p then
25 | X'(p) < X'(p) + iX(e), X°(p) = X“(p) + iX (e);
26 else X'(p) < X'(p) +iX(e), X°(p) X“(p) +i%(e);
27 appear(e) < p;
28 else
29 is_boundary(e) + false;
30 L(p) « L(p) = ir(e);
31 if e is above or on the right of p then
32 | X'(p) < X'(p) = i (e), X°(p) = X“(p) = iX(e);
33 else X'(p) « X'(p) = iX(e), X“(p) « X°(p) = iX(e);
34 vanish(e) < p;
35 for all e do
36 N, < appear(e), Ny < vanish(e);
37 while N, # N, do
38 VL(Na) < update(VL(Na),iL(e)); //update: either min or max
39 Ng < parent(Ng);

40 return parent

Fig. 6. Incremental computation of information on region (in red), contour (in green),
and context (in blue). The computation of extremal information is in magenta. The
black lines represent the original union-find process, and the gray lines are used for the
computation of contour, context, and extremal information.

examples). It relies on regional context information. The interior and exterior
contextual region of a given region S (e.g., a shape) is defined as the set of
pixels respectively inside and outside the region with a distance to the boundary
less than a given threshold €. More formally, given a ball B, of radius €, the
exterior and interior of the shape S are defined as Fxtg(S) = dp(S) \ S and
Intp(S) = S\ eg(S) where § and € denote the dilation and erosion.

An approximated interior and exterior contextual region is illustrated in
Fig. 5| (c) with e = 2. As shown in this figure, we approximate the interior
region and the exterior region of each level line by only taking into account the
pixels which are aligned perpendicularly to each 1-face of the level line. Note
that some pixels may be counted several times. Information on context can be
computed in the same way as information on contour. But one has to attend
closely to interior and exterior information while doing the update operation.
The algorithm for computing interior (resp. exterior) contextual information X°
(resp. X¢) is shown in Fig. [f| by adding the gray and blue lines to the union-find
process. This algorithm relies on two pre-computed images defined on 1-faces:
it and i9 that encode information of e pixels above (horizontal 1-face) or on
the right side (vertical 1-face) of e, and respectively below (horizontal 1-face) or
on the left side (vertical 1-face) of e.

Contextual information can be retrieved exactly at cost of a higher computa-
tion complexity. For every point p, we aim at finding all the shapes for which p is
in the interior or the exterior. Given two points p and ¢ such that ¢ € B(p), we
note S, and S their respective shapes (nodes). We also note Anc = LCA(Sp, Sq)
where LC'A stands for the least common ancestor of the two nodes and finally,
let [A~ B)={S|ACS C B} denotes the path from A to B in the tree. For
all shapes S € [Sp ~» LCA(Sp, Sq)), we have p € S, but ¢ ¢ S, thus p € Intg(S)
and g € Extp(S) (see Fig.[7)). The algorithms in Fig. [8| use the above-mentioned
idea to compute contextual information, where ix stands for information on pix-
els. A set of nodes DjVu is used to track the shapes for which the current point
has already been considered. If for neighbors ¢; and g2, [Sp ~» LCA(Sy, Sq1))
and [S, ~» LCA(Sp, S42)) have shapes in common, they will not be processed
twice.

LCA(Sp,5q)

Sp=
LCA(S.5,)

Sq Sq

Sq=
LCA(Sy.54)

s,

Fig. 7. Three cases for contextual computation. p and g are two neighbors (w.r.t. B).
The red path denotes the nodes in [S, ~ LCA(Sp, Sq)) for which p is in the interior
and ¢ in the exterior. Left: case S, C S,, middle: case S, and S, are in different paths,
right: case S; C Sp.

OS5y

1 EXTERNAL_CONTEXT (parent) 1 INTERNAL_CONTEXT (parent)

2 foreach node z do X°(z) + 0; 2 foreach node z do X'(z) + 0;

3 foreach point ¢ in {2 do 3 foreach point p in {2 do

4 DjVau + 0; 4 DjVau + 0;

5 foreach point p in B.(q) do 5 foreach point ¢ in B:(p) do

6 N, < getCanonical(p); 6 N, < getCanonical(p);

7 N, < getCanonical(q); 7 N, + getCanonical(q);

8 Anc + LCA(Np, Ny); 8 Anc + LCA(Np, Ny);

9 while N, # Anc do 9 while N, # Anc do
10 if Np € DjVu then 10 if N, ¢ DjVu then
11 X¢(N,) + 11 X(N,)

XE(Np) + ix(a); XH(Np) + ix(p);

12 DjVu < DjVu U {N,}; 12 DjVu <+ DjVu U {N,};
13 N, < parent(Np); 13 N, < parent(Np);
14 return X° 14 return X*

Fig. 8. Algorithms for exact computation of contextual information X* and X°¢.

3.2 Computation of Extremal Information along the Contour

Apart from those attributes based on accumulated information, the number of
false alarms (NFA) [73] (see [3] for several examples of meaningful level lines
selection using NFA) requires to compute the minimal gradient’s magnitude
along the boundary of each region. Here we propose an efficient algorithm that
requires low memory to handle this extremal information along the contour V. It
relies on two images appear and vanish defined on the 1-faces. appear(e) encodes
the smallest region A, in the tree for which the 1-face e lies on its boundary,
while appear(e) stands for the smallest region N, for which e is inside it. Note
that N, and N, might be equal, e.g., in the case of 1-faces in the interior of a flat
zone. The computation of extremal information along the contour V7, is depicted
in Fig. [f| by adding the gray and magenta lines to the union-find process, where
M in the initialization step is the maximal (resp. minimal) value for minimal
(resp. maximal) information computation, and the operator “update” is a “min”
(resp. “max”) operator for the minimal (resp. the maximal) information.

3.3 Computation of the Saliency Map

As shown in [22]20], the saliency map introduced in the framework of shape-based
morphology relies on the extinction values £ defined on the local minima [16].
Once the extinction values computed for all the minima (see [16] for details
about the computation of the extinction values COMPUTE_EXTINCTION),
we can weigh the extinction values on the region boundaries corresponding to
the minima. Each 1-face takes the maximal extinction value of those minima for
which this 1-face is on their boundaries. This can be achieved via two images
appear and vanish that have been used in the computation of extremal infor-
mation along the contour (as shown in Fig. [6). For each 0-face o, it takes the

COMPUTE_SALIENCY_MAP(f)
(T, A) « COMPUTE_TREE(f);
& < COMPUTE_EXTINCTION(T, A);
for all e do Mg(e) + 0;
for all e do

Nq < appear(e), Ny < vanish(e);

while N, # N, do

| Me(Na) < max (E(Na), Me(e)), Na < parent(Na);

for all 0-face 0 do Mg (0) + max(Me(e1), Me(ez), Me(es), Me(ea));

return Mg

© 00N, A W N

[uy
o

Fig. 9. Computation of extinction-based saliency map Mg.

maximal value among the four 1-faces eq, eq, e3, and ey that are neighbors (4-
connectivity) of o in the Khalimsky grid. Finally, the extinction-based saliency
map Mg is obtained. The computation of the saliency map is given in Fig. [0

4 Complexity Analysis

We use the algorithms based on the Tarjan’s Union-Find process to construct
the Min-tree and Max-tree [I0J1/4] and the tree of shapes [8]. These approaches
would take O(nlog(n)) time, where n is the number of pixels of the image f.
For low quantized images (typically 12-bit images or less), the complexity of the
computation of these trees is O(n a(n)), where « is a very slow-growing diagonal
inverse of the Ackermann’s function. In this section, we analyze the additional
complexity and the memory usage of the algorithms proposed in Section

4.1 Accumulated Information on Region, Contour, and Context

As described in Section [3.1] and shown in Fig. [6] information computed on re-
gions, contours, and contexts (the approximated version) are computed incre-
mentally during the union-find process. Consequently, they have the same com-
plexity as the union-find which is O(n «(n)). Besides, the pre-computed images
(e.g., i, or i%) can be obtained in linear time, so the O(n«a(n)) complexity is
maintained. To compute exactly contextual information as described in Fig.
for each pixel p, we have to compute the least common ancestor Anc of p and
any ¢ € B.(p) and propagate from N, to Anc. The computation of the least
common ancestor has a O(h) complexity if a depth image is employed, where h
is the height of the tree. Consequently, the total complexity is O(ne2h).

Apart from the necessary memory of the union-find process, the computation
of information on regions does not require auxiliary memory. For information
computed on contours and contexts (approximated), the auxiliary memory usage
is 4n for the intermediate image is_boundary (defined on the Khalimsky grid).
For the exact computation of contextual information, we need the depth image
(n pixels) used by the least common ancestor algorithm and the intermediate
set DjVu (O(h) elements). The total auxiliary memory cost is thus n + h.

4.2 Extremal Information along the Contour

The algorithm computing extremal information along the contour relies on two
auxiliary images appear and vanish. As described in Section [3.2] and shown
in Fig. [6] these two images are computed incrementally during the union-find
process. The complexity of this step is O(na(n)). Then, to compute the final
extremal information, for each 1-face e, we have to propagate the value to a set
of node (from appear(e) to vanish(e)). In the worst case, we have to traverse
the whole branch of the tree. Consequently, the complexity would be O(nh). In
terms of auxiliary memory cost, it would take 4n for each intermediate image
appear, vanish, and is_boundary. So the total additional memory cost would
be 12n. Such extra cost is acceptable for 2D cases, but become prohibitive for
very large or 3D images. Actually, we could avoid the extra-memory used for the
storage of appear and vanish as the information they provide could be computed
on the fly in each algorithm. Nevertheless, for the purpose of clarification, we
have chosen to compute these information one for all to avoid code redoundancy
in the algorithms we have proposed.

4.3 Saliency Map

The computation of extinction-based saliency map given in Section [3.3] and de-
picted in Fig. [0 also relies on the two temporary images appear and vanish.
Suppose that we have the extinction values £ for all the local minima. In the
same way as the computation of extremal information along the contour, for
each 1-face e, we have to propagate from appear(e) to vanish(e). The worst
time complexity would be O(nh). The computation of extinction values &£ re-
lies on a Max-tree computation process, which is quasi-linear. The auxiliary
memory cost would be 12n (4n for each temporary image appear, vanish, and
is_boundary). Yet, the remark about the memory usage given in Section
holds for this complexity analysis.

5 Conclusion

In this paper, we have pesented several algorithms related to some applications
using tree-based image representations. First of all, we have shown how to in-
crementally compute information on region, contour, and context which forms
the basis of many widely used attribute functions. Then we have proposed an
algorithm in order to compute extremal information along the contour (required
for some attribute functions, such as the number of false alarms (NFA)), which
requires few extra memory. Finally, we have depicted how to compute extinction-
based saliency maps from tree-based image representations. The time complexity
and the memory cost of these algorithms are also analyzed. To the best of our
knowledge, this is the first time that these algorithms (except for information
computed on region) are explicitly depicted, which allows reproducible research
and facilitates the development of some novel interesting attribute functions. In
the future, extension of these algorithms to 3D images will be studied. And we
would like to study some more attribute functions: learning attribute functions
in particular would be one interesting future work.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Berger, C., Géraud, T., Levillain, R., Widynski, N., Baillard, A., Bertin, E.: Ef-
fective component tree computation with application to pattern recognition in
astronomical imaging. In: Proc. of IEEE ICIP. vol. 4, pp. 41-44 (2007)

. Breen, E., Jones, R.: Attribute openings, thinnings, and granulometries. CVIU

64(3), 377-389 (1996)

Cao, F., Musé, P., Sur, F.: Extracting meaningful curves from images. JMIV 22,
159-181 (2005)

Carlinet, E., Géraud, T.: A comparative review of component tree computation
algorithms. IEEE Transactions on Image Processing 23(9), 3885-3895 (Sep 2014)
Carlinet, E., Géraud, T.: A color tree of shapes with illustrations on filtering,
simplification, and segmentation. Submitted for publication (2015)

Caselles, V., Monasse, P.: Geometric Description of Images as Topographic Maps.
Springer Publishing Company, Incorporated, 1st edn. (2009)

Desolneux, A., Moisan, L., Morel, J.: Edge detection by helmholtz principle. JMIV
14(3), 271-284 (2001)

Géraud, T., Carlinet, E., Crozet, S., Najman, L.: A quasi-linear algorithm to com-
pute the tree of shapes of nd images. In: ISMM. pp. 98-110 (2013)

Monasse, P., Guichard, F.: Fast computation of a contrast-invariant image repre-
sentation. IEEE Trans. on Image Processing 9(5), 860-872 (2000)

Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE
Trans. on Image Processing 15(11), 3531-3539 (2006)

Nistér, D., Stewénius, H.: Linear time maximally stable extremal regions. In:
ECCV. pp. 183-196. Springer-Verlag, Berlin, Heidelberg (2008)

Ouzounis, G.K., Wilkinson, M.H.F.: A parallel implementation of the dual-input
max-tree algorithm for attribute filtering. In: ISMM. pp. 449-460 (2007)
Salembier, P., Oliveras, A., Garrido, L.: Antiextensive connected operators for
image and sequence processing. ITIP 7(4), 555-570 (1998)

Salembier, P., Wilkinson, M.H.F.: Connected operators. IEEE Signal Processing
Mag. 26(6), 136-157 (2009)

Song, Y.: A topdown algorithm for computation of level line trees. IEEE Transac-
tions on Image Processing 16(8), 21072116 (Aug 2007)

Vachier, C., Meyer, F.: Extinction values: A new measurement of persistence. IEEE
Workshop on Non Linear Signal/Image Processing pp. 254257 (1995)
Westenberg, M.A., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Volumetric attribute
filtering and interactive visualization using the max-tree representation. ITIP
16(12), 2943-2952 (2007)

Wilkinson, M.H.F.: A fast component-tree algorithm for high dynamic-range im-
ages and second generation connectivity. In: Proc. of ICIP. pp. 1021-1024 (2011)
Wilkinson, M.H.F., Gao, H., Hesselink, W.H., Jonker, J.E., Meijster, A.: Concur-
rent computation of attribute filters on shared memory parallel machines. PAMI
30(10), 1800-1813 (2008)

Xu, Y.: Tree-based shape spaces: Definition and applications in image processing
and computer vision. Ph.D. thesis, Université Paris Est, Marne-la-Vallée, France
(Dec 2013)

Xu, Y., Géraud, T., Najman, L.: Context-based energy estimator : Application to
object segmentation on the tree of shapes. In: ICIP. pp. 1577-1580. IEEE (2012)
Xu, Y., Géraud, T., Najman, L.: Two applications of shape-based morphology:
Blood vessels segmentation and a generalization of constrained connectivity. In:
ISMM. Lecture Notes in Computer Science, vol. 7883, pp. 390-401 (2013)

Xu, Y., Géraud, T., Najman, L.: Morphological Filtering in Shape Spaces: Appli-
cations using Tree-Based Image Representations. In: ICPR. pp. 485-488 (2012)

	Efficient Computation of Attributes and Saliency Maps on Tree-Based Image Representations

