Yongchao Xu
email: yongchao.xu@lrde.epita.fr

Edwin Carlinet
email: edwin.carlinet@lrde.epita.fr

Thierry Géraud
email: thierry.geraud@lrde.epita.fr

Laurent Najman
email: l.najman@esiee.fr

Efficient Computation of Attributes and Saliency Maps on Tree-Based Image Representations

Keywords: Min/Max-tree, tree of shapes, algorithm, attribute, saliency map

HAL is

Introduction

In a large number of applications, processing relies on objects or areas of interest. Therefore, region-based image representations have received much attention. In mathematical morphology, several region-based image representations have been popularized by attribute filters [START_REF] Breen | Attribute openings, thinnings, and granulometries[END_REF][START_REF] Westenberg | Volumetric attribute filtering and interactive visualization using the max-tree representation[END_REF] or connected operators [START_REF] Salembier | Antiextensive connected operators for image and sequence processing[END_REF][START_REF] Salembier | Connected operators[END_REF], which are filtering tools that act by merging flat zones. Such operators rely on transforming an image into an equivalent region-based representation, generally a tree of components (e.g., the Min/Max-trees [START_REF] Salembier | Antiextensive connected operators for image and sequence processing[END_REF] or the tree of shapes [START_REF] Monasse | Fast computation of a contrast-invariant image representation[END_REF]). Such trees are equivalent to the original image in the sense that the image can be reconstructed from the associated tree. Filtering then involves the design of an attribute function that weighs how important/meaningful a node of the tree is or how much a node of the tree fits a given shape. The filtering is achieved by preserving and removing some nodes of the tree according to the attribute function. This filtering process is either performed classically by thresholding the attribute function [START_REF] Salembier | Connected operators[END_REF] or by considering the tree-based image representations as graphs and applying some filters on this graph representation [START_REF] Xu | Morphological Filtering in Shape Spaces: Applications using Tree-Based Image Representations[END_REF][START_REF] Xu | Tree-based shape spaces: Definition and applications in image processing and computer vision[END_REF]. Examples of object detection using the context-based energy estimator [START_REF] Xu | Context-based energy estimator : Application to object segmentation on the tree of shapes[END_REF] relying on contour and context information. An evolution of this attribute along a branch starting from the yellow point to the root is depicted on the right side of (a).

There exist many applications in image processing and computer vision that rely on tree-based image representations (see [START_REF] Xu | Tree-based shape spaces: Definition and applications in image processing and computer vision[END_REF] for a short review). All these applications share a common scheme: one computes a tree representation and an attribute function upon which the tree analysis is performed. The choice of tree representation and the adequacy of attribute function mainly determine the success of the corresponding applications.

Many algorithms for computing different trees have been proposed (see Section 2.2 for a short review). In this paper, we focus on attribute computation, which is also an important step for the tree-based applications. To the best of our knowledge, only the algorithms for information computed on region have been presented [START_REF] Wilkinson | Concurrent computation of attribute filters on shared memory parallel machines[END_REF] so far, none of the existing papers gives explicitly the algorithms computing the other attribute information employed in tree-based applications. In this paper, firstly, we detail explicitly how to incrementally compute some information on region, contour, and context. These informations form the basis for many classical attribute functions (e.g., area, compactness, elongation). Let us remark that contextual information is very adequate for object detection, such as the context-based energy estimator [START_REF] Xu | Context-based energy estimator : Application to object segmentation on the tree of shapes[END_REF] that relies on information computed on contour and context. Two examples of object detection using this attribute are shown in Fig. 1. Another type of interesting information is extremal information along the contour (e.g., the minimal gradient's magnitude along the boundary). An example employing this information is the number of false alarms (NFA) for meaningful level lines extraction [START_REF] Desolneux | Edge detection by helmholtz principle[END_REF][START_REF] Cao | Extracting meaningful curves from images[END_REF]. Here we propose an efficient algorithm that does not require much memory to compute this kind (a) Extinction-based saliency map using color tree of shapes [START_REF] Carlinet | A color tree of shapes with illustrations on filtering, simplification, and segmentation[END_REF]. of information. Lastly, we depict an algorithm computing the extinction-based saliency map [START_REF] Xu | Tree-based shape spaces: Definition and applications in image processing and computer vision[END_REF] representing a hierarchical morphological segmentation using tree-based image representations (two examples are illustrated in Fig. 2). These algorithms form the main contribution of this paper.

The rest of the paper is organized as follows: A short review of some treebased image representations and their computations using immersion algorithm are provided in Section 2. Our proposed algorithms to compute some attribute information and saliency maps are detailed in Section 3, and we analyze in Section 4 the complexity and the memory cost of the proposed algorithms. Finally, we conclude and give some perspectives in Section 5.

Review of Morphological Trees and their Computations

Region-based image representations are composed of a set of regions of the original image. Those regions are either disjoint or nested, and they are organized into a tree structure thanks to the inclusion relationship. There are two types of such representations: fine to coarse hierarchical segmentations and threshold decomposition-based trees. In this paper, we only consider the threshold decomposition-based trees.

Tree-based Image Representations

Let f be an image defined on domain Ω and with values on ordered set V (typically R or Z). For any λ ∈ V , the upper level sets X λ and lower level sets X λ of an image f are respectively defined by

X λ (f) = {p ∈ Ω | f (p) ≥ λ} and X λ (f) = {p ∈ Ω | f (p) ≤ λ}.
Both the upper and lower level sets have a natural inclusion structure: ∀ λ 1 ≤ λ 2 , X λ1 ⊇ X λ2 and X λ1 ⊆ X λ2 , which leads to two distinct and dual representations of the image: Max-tree and Mintree [START_REF] Salembier | Antiextensive connected operators for image and sequence processing[END_REF]. The tree of shapes is a fusion of the Max-tree and Min-tree via the

A O F B C D E > 2 > 2 > 2 > 2 > 0 > 2 > 1 > 4
(d) Tree of shapes. notion of shapes [START_REF] Monasse | Fast computation of a contrast-invariant image representation[END_REF]. A shape is defined as a connected component of an upper or lower level set with its holes filled in. Thanks to the inclusion relationship of both kinds of level sets, the set of shapes can be structured into a tree structure, called the tree of shapes. An example of these trees is depicted in Fig. 3.

Tree Computation and Representation

There exist three types of algorithms to compute the Min/Max-tree (see [START_REF] Carlinet | A comparative review of component tree computation algorithms[END_REF] for a complete review): flooding algorithms [START_REF] Salembier | Antiextensive connected operators for image and sequence processing[END_REF][START_REF] Wilkinson | A fast component-tree algorithm for high dynamic-range images and second generation connectivity[END_REF][START_REF] Nistér | Linear time maximally stable extremal regions[END_REF], merge-based algorithms [START_REF] Wilkinson | Concurrent computation of attribute filters on shared memory parallel machines[END_REF][START_REF] Ouzounis | A parallel implementation of the dual-input max-tree algorithm for attribute filtering[END_REF], and immersion algorithms [START_REF] Berger | Effective component tree computation with application to pattern recognition in astronomical imaging[END_REF][START_REF] Najman | Building the component tree in quasi-linear time[END_REF]. In this paper, we employ the immersion algorithm to construct the Min/Max-tree. Concerning the tree of shapes [START_REF] Monasse | Fast computation of a contrast-invariant image representation[END_REF], there are four different algorithms [START_REF] Monasse | Fast computation of a contrast-invariant image representation[END_REF][START_REF] Song | A topdown algorithm for computation of level line trees[END_REF][START_REF] Caselles | Geometric Description of Images as Topographic Maps[END_REF][START_REF] Géraud | A quasi-linear algorithm to compute the tree of shapes of nd images[END_REF]. We use the one proposed by Géraud et al. [START_REF] Géraud | A quasi-linear algorithm to compute the tree of shapes of nd images[END_REF]. It is similar to the immersion algorithms used for the Min/Max-tree computation. All these trees feature a common scheme of process: they start with considering each pixel as a singleton and sorting the pixels in decreasing tree order (i.e., root to leaves order), followed by an union-find process (in reverse order) to merge disjoint sets to form a tree structure.

Let R be the vector of the N sorted pixels, and N (p) be neighbors (e.g., 4-or 8-connectivity) of the pixel p. The union-find process is then depicted in Fig. 4 (a), where parent and zpar are respectively the parenthood image and the root path compression image. The whole process of tree computation is given in Fig. 4 (b), where SORT PIXELS is a decreasing tree order sorting. The algorithms for computing the Min/Max-tree and the tree of shapes differ in this pixel sorting step. For the Min/Max-tree, they are either sorted in decreasing order (Min-tree) or increasing order (Max-tree). If the image f is low quantized, we can use the Bucket sort algorithm to sort the pixels. Concerning the tree of shapes, the sorting step is more complicated. It first interpolates the scalar image to an image of range using a simplicial version of the 2D discrete grid: the Khalimsky grid as shown in Fig. 5. We note K Ω , the domain Ω immersed on this grid. In Fig. 5 (a), the original points of the image are the 2-faces, the boundaries are materialized with 0-faces and 1-faces. The algorithm in [START_REF] Géraud | A quasi-linear algorithm to compute the tree of shapes of nd images[END_REF] ensures that shapes are open connected sets (e.g., the purple shape in Fig. 5 (a)) and that shapes' borders are composed of 0-faces and 1-faces only (e.g., the dark curve in Fig. 5 (a)). We refer the interested reader to the work of Géraud et al. [START_REF] Géraud | A quasi-linear algorithm to compute the tree of shapes of nd images[END_REF] for more details on this pixel sorting step.

The tree structure is encoded through the image parent : Ω → Ω or K Ω → K Ω that states the parenthood relationship between nodes. In parent, a node is represented by a single pixel (a 2-face of the Khalimsky grid in the case of the tree of shapes) called the canonical element, and each non-canonical element is attached to the canonical element representing the node it belongs to. In the following, we denote by getCanonical : Ω → Ω or K Ω → K Ω , the routine that returns the canonical element of each point in the image.

1 FIND ROOT(zpar, x) 2 if zpar(x) = x then return x 3 else 4 zpar(x) ← FIND ROOT(zpar, zpar(x)); 5 return zpar(x) 6 UNION FIND(R) 7 for all p do zpar(p) ← undef; 8 for i ← N -1 to 0 do 9 p ← R[i], parent(p) ← p, zpar(p) ← p; 10 for all n ∈ N (p) if zpar(n) = undef do 11 r ← FIND ROOT(zpar, n); 12 if r = p then 13 parent(r) ← p, zpar(r) ← p; 14 return parent (a) Union-find process. 1 CANONIZE T(f, R, parent) 2 for i ← 0 to N -1 do 3 p ← R[i]; 4 q ← parent(p); 5 if f (parent(q)) = f (q) then 6 parent(p) ← parent(q); 7 return parent 8 COMPUTE TREE(f) 9 R ← SORT PIXELS(f); 10 parent ← UNION FIND(R); 11 parent ← CANONIZE T(f, R, parent); 12 return parent (b) Complete tree construction.

Proposed Algorithms

In this section, we detail several algorithms related to some applications using tree-based image representations, including computation of some classical information used in many attribute functions (accumulated information in Section 3.1, and extremal information along the contour in Section 3.2), and computation of extinction-based saliency maps [START_REF] Xu | Tree-based shape spaces: Definition and applications in image processing and computer vision[END_REF] in Section 3.3. For the sake of simplicity, we consider the Min-tree or Max-tree representation. The algorithms for the tree of shapes construction share the same principle.

Incremental Computation of Some Accumulated Information

There are three main types of accumulated information: computed on region A (e.g., area), on contour L (e.g., length), and on context X (interior context X i or exterior context X e).

Attributes computed on regions. During the tree construction process, the algorithm starts with the pixels lying on the leaves, and the union-find acts as a region merging process. The connected components in the tree are built during this region growing process. We are able to handle information computed on region efficiently, such as its size, the sum of gray level or sum of square of (c) Regional context. (c): The approximated interior and exterior regional context of the red level line is respectively the dark gray region and the light gray region.

gray level that can be used to compute the mean and the variance inside each region, the moments of each region based on which we can compute some shape attribute that measures how much a node fits a specific pattern. The algorithm for computing these information is depicted in Fig. 6 by adding some additional operations (red lines) to the union-find process during the tree construction, where i A encodes information on pixels (i.e., 2-faces). For example if A is the size or the sum of gray level, then i A would be 1 (size of a pixel) or the pixel value. The operator + is a binary commutative and associative operator having a neutral element 0 [START_REF] Wilkinson | Concurrent computation of attribute filters on shared memory parallel machines[END_REF]. For example, if A is the size, then the operator + and 0 would be the classical operator + and 0 for the initialization.

Attributes computed on contours. Attribute functions relying on contourrelated information are also very common, such as average of gradient's magnitude along the contour. Information accumulated on contour can be managed in the same way as information computed on region. The basic idea is that during the union-find process, every time a pixel p is added to the current region to form a parent region, process the four 1-faces which are the four neighbors (4connectivity) of the current pixel (i.e., 2-face in the Khalimsky grid in Fig. 5 (a)).

If a 1-face e is already added to the current region (i.e., belongs to its boundary), then remove e after adding p, since that 1-face e will be inside the parent region, consequently it is no longer on the boundary. Otherwise, add this 1-face e. This process is illustrated in Fig. 5 (b). It relies on an image is boundary defined on the 1-faces that indicates if the 1-face belongs to the boundary of some region. Information on contour is computed by adding some supplementary process (green and gray lines in Fig. 6) to the union-find process, where i L encodes information defined on 1-faces. For example if L is the contour length or the sum of gradient's magnitude, then i L would be 1 (size of a 1-face) or the gradient's magnitude on the 1-faces. The operator -is the inverse of the operator +.

Attributes computed on contexts. In [START_REF] Xu | Context-based energy estimator : Application to object segmentation on the tree of shapes[END_REF], we have presented a contextbased energy estimator that is adequate for object detection (see Fig. 1 for some 1 UNION FIND(R) 2 for all p do Na ← parent(Na); 40 return parent Fig. 6. Incremental computation of information on region (in red), contour (in green), and context (in blue). The computation of extremal information is in magenta. The black lines represent the original union-find process, and the gray lines are used for the computation of contour, context, and extremal information.

L(p) ← L(p) + L(r); 18 X i (p) ← X i (p) + X i (r), X e (p) ← X e (p) + X e (
examples). It relies on regional context information. The interior and exterior contextual region of a given region S (e.g., a shape) is defined as the set of pixels respectively inside and outside the region with a distance to the boundary less than a given threshold ε. More formally, given a ball B ε of radius ε, the exterior and interior of the shape S are defined as Ext B (S) = δ B (S) \ S and Int B (S) = S \ B (S) where δ and denote the dilation and erosion.

An approximated interior and exterior contextual region is illustrated in Fig. 5 (c) with ε = 2. As shown in this figure, we approximate the interior region and the exterior region of each level line by only taking into account the pixels which are aligned perpendicularly to each 1-face of the level line. Note that some pixels may be counted several times. Information on context can be computed in the same way as information on contour. But one has to attend closely to interior and exterior information while doing the update operation. The algorithm for computing interior (resp. exterior) contextual information X i (resp. X e) is shown in Fig. 6 by adding the gray and blue lines to the union-find process. This algorithm relies on two pre-computed images defined on 1-faces: i tr X and i dl X that encode information of ε pixels above (horizontal 1-face) or on the right side (vertical 1-face) of e, and respectively below (horizontal 1-face) or on the left side (vertical 1-face) of e.

Contextual information can be retrieved exactly at cost of a higher computation complexity. For every point p, we aim at finding all the shapes for which p is in the interior or the exterior. Given two points p and q such that q ∈ B(p), we note S p and S q their respective shapes (nodes). We also note Anc = LCA(S p , S q) where LCA stands for the least common ancestor of the two nodes and finally, let [A B) = {S | A ⊆ S ⊂ B} denotes the path from A to B in the tree. For all shapes S ∈ [S p LCA(S p , S q)), we have p ∈ S, but q / ∈ S, thus p ∈ Int B (S) and q ∈ Ext B (S) (see Fig. 7). The algorithms in Fig. 8 use the above-mentioned idea to compute contextual information, where i X stands for information on pixels. A set of nodes DjVu is used to track the shapes for which the current point has already been considered. If for neighbors q 1 and q 2 , [S p LCA(S p , S q1)) and [S p LCA(S p , S q2)) have shapes in common, they will not be processed twice. The red path denotes the nodes in [Sp LCA(Sp, Sq)) for which p is in the interior and q in the exterior. Left: case Sp ⊂ Sq, middle: case Sp and Sq are in different paths, right: case Sq ⊂ Sp.

Sp

1 EXTERNAL CONTEXT(parent) 2 foreach node x do X e (x) ← 0; 3 foreach point q in Ω do Np ← parent(Np); 14 return X i Fig. 8. Algorithms for exact computation of contextual information X i and X e .

Computation of Extremal Information along the Contour

Apart from those attributes based on accumulated information, the number of false alarms (NFA) [START_REF] Desolneux | Edge detection by helmholtz principle[END_REF][START_REF] Cao | Extracting meaningful curves from images[END_REF] (see [START_REF] Cao | Extracting meaningful curves from images[END_REF] for several examples of meaningful level lines selection using NFA) requires to compute the minimal gradient's magnitude along the boundary of each region. Here we propose an efficient algorithm that requires low memory to handle this extremal information along the contour V L . It relies on two images appear and vanish defined on the 1-faces. appear(e) encodes the smallest region N a in the tree for which the 1-face e lies on its boundary, while appear(e) stands for the smallest region N v for which e is inside it. Note that N a and N v might be equal, e.g., in the case of 1-faces in the interior of a flat zone. The computation of extremal information along the contour V L is depicted in Fig. 6 by adding the gray and magenta lines to the union-find process, where M in the initialization step is the maximal (resp. minimal) value for minimal (resp. maximal) information computation, and the operator "update" is a "min" (resp. "max") operator for the minimal (resp. the maximal) information.

Computation of the Saliency Map

As shown in [START_REF] Xu | Two applications of shape-based morphology: Blood vessels segmentation and a generalization of constrained connectivity[END_REF][START_REF] Xu | Tree-based shape spaces: Definition and applications in image processing and computer vision[END_REF], the saliency map introduced in the framework of shape-based morphology relies on the extinction values E defined on the local minima [START_REF] Vachier | Extinction values: A new measurement of persistence[END_REF].

Once the extinction values computed for all the minima (see [START_REF] Vachier | Extinction values: A new measurement of persistence[END_REF] for details about the computation of the extinction values COMPUTE EXTINCTION), we can weigh the extinction values on the region boundaries corresponding to the minima. Each 1-face takes the maximal extinction value of those minima for which this 1-face is on their boundaries. This can be achieved via two images appear and vanish that have been used in the computation of extremal information along the contour (as shown in Fig. 6). For each 0-face o, it takes the

Complexity Analysis

We use the algorithms based on the Tarjan's Union-Find process to construct the Min-tree and Max-tree [START_REF] Najman | Building the component tree in quasi-linear time[END_REF][START_REF] Berger | Effective component tree computation with application to pattern recognition in astronomical imaging[END_REF][START_REF] Carlinet | A comparative review of component tree computation algorithms[END_REF] and the tree of shapes [START_REF] Géraud | A quasi-linear algorithm to compute the tree of shapes of nd images[END_REF]. These approaches would take O(n log(n)) time, where n is the number of pixels of the image f . For low quantized images (typically 12-bit images or less), the complexity of the computation of these trees is O(n α(n)), where α is a very slow-growing diagonal inverse of the Ackermann's function. In this section, we analyze the additional complexity and the memory usage of the algorithms proposed in Section 3.

Accumulated Information on Region, Contour, and Context

As described in Section 3.1 and shown in Fig. 6, information computed on regions, contours, and contexts (the approximated version) are computed incrementally during the union-find process. Consequently, they have the same complexity as the union-find which is O(n α(n)). Besides, the pre-computed images (e.g., i L or i tr X) can be obtained in linear time, so the O(n α(n)) complexity is maintained. To compute exactly contextual information as described in Fig. 8, for each pixel p, we have to compute the least common ancestor Anc of p and any q ∈ B ε (p) and propagate from N p to Anc. The computation of the least common ancestor has a O(h) complexity if a depth image is employed, where h is the height of the tree. Consequently, the total complexity is O(nε 2 h).

Apart from the necessary memory of the union-find process, the computation of information on regions does not require auxiliary memory. For information computed on contours and contexts (approximated), the auxiliary memory usage is 4n for the intermediate image is boundary (defined on the Khalimsky grid). For the exact computation of contextual information, we need the depth image (n pixels) used by the least common ancestor algorithm and the intermediate set DjVu (O(h) elements). The total auxiliary memory cost is thus n + h.

Extremal Information along the Contour

The algorithm computing extremal information along the contour relies on two auxiliary images appear and vanish. As described in Section 3.2 and shown in Fig. 6, these two images are computed incrementally during the union-find process. The complexity of this step is O(n α(n)). Then, to compute the final extremal information, for each 1-face e, we have to propagate the value to a set of node (from appear(e) to vanish(e)). In the worst case, we have to traverse the whole branch of the tree. Consequently, the complexity would be O(nh). In terms of auxiliary memory cost, it would take 4n for each intermediate image appear, vanish, and is boundary. So the total additional memory cost would be 12n. Such extra cost is acceptable for 2D cases, but become prohibitive for very large or 3D images. Actually, we could avoid the extra-memory used for the storage of appear and vanish as the information they provide could be computed on the fly in each algorithm. Nevertheless, for the purpose of clarification, we have chosen to compute these information one for all to avoid code redoundancy in the algorithms we have proposed.

Saliency Map

The computation of extinction-based saliency map given in Section 3.3 and depicted in Fig. 9 also relies on the two temporary images appear and vanish. Suppose that we have the extinction values E for all the local minima. In the same way as the computation of extremal information along the contour, for each 1-face e, we have to propagate from appear(e) to vanish(e). The worst time complexity would be O(nh). The computation of extinction values E relies on a Max-tree computation process, which is quasi-linear. The auxiliary memory cost would be 12n (4n for each temporary image appear, vanish, and is boundary). Yet, the remark about the memory usage given in Section 4.2 holds for this complexity analysis.

Conclusion

In this paper, we have pesented several algorithms related to some applications using tree-based image representations. First of all, we have shown how to incrementally compute information on region, contour, and context which forms the basis of many widely used attribute functions. Then we have proposed an algorithm in order to compute extremal information along the contour (required for some attribute functions, such as the number of false alarms (NFA)), which requires few extra memory. Finally, we have depicted how to compute extinctionbased saliency maps from tree-based image representations. The time complexity and the memory cost of these algorithms are also analyzed. To the best of our knowledge, this is the first time that these algorithms (except for information computed on region) are explicitly depicted, which allows reproducible research and facilitates the development of some novel interesting attribute functions. In the future, extension of these algorithms to 3D images will be studied. And we would like to study some more attribute functions: learning attribute functions in particular would be one interesting future work.

 Illustration on a synthetical image. Green: exterior region; Blue: interior region. (b) Illustration of cerebrospinal fluid detection on MRI images of a newborn's brain.

Fig. 1 .

 1 Fig.1. Examples of object detection using the context-based energy estimator[START_REF] Xu | Context-based energy estimator : Application to object segmentation on the tree of shapes[END_REF] relying on contour and context information. An evolution of this attribute along a branch starting from the yellow point to the root is depicted on the right side of (a).

 (b) Circular object oriented extinction-based saliency map.

Fig. 2 .

 2 Fig. 2. Illustrations of extinction-based saliency maps from the tree of shapes.

Fig. 3 .

 3 Fig. 3. Tree-based image representations relying on threshold decompositions.

Fig. 4 .

 4 Fig. 4. Tree construction relying on union-find process.

(a)

 a Khalimsky grid. union and update (b) Updating contour.

Fig. 5 .

 5 Fig. 5. (a): A point in a 2D image is materialized with 0-faces (blue disks), 1-faces (green strips), and 2-faces (red squares). (b): Updating contour information when an union between two components (yellow and blue) occurs thanks to a pixel (gray).(c): The approximated interior and exterior regional context of the red level line is respectively the dark gray region and the light gray region.

3 zpar(p) ← undef; 4 A 5 L 6 X 11 A

 345611 (p) ← 0; //information computed on region (e.g., area, sum of gray level) (p) ← 0; //information computed on contour (e.g., contour length) i (p) ← 0, X e (p) ← 0; //information computed on context 7 VL(p) ← M ; //extremal information along the contour 8 for all e do is boundary(e) ← false; 9 for i ← N -1 to 0 do 10 p ← R[i], parent(p) ← p, zpar(p) ← p; (p) ← A(p) + iA(p); //iA: information on pixels (i.e., 2-faces) 12 for all n ∈ N (p) such as zpar(n) = undef do 13 r ← FIND ROOT(zpar, n); 14 if r = p then 15 parent(r) ← p, zpar(r) ← p; 16 A(p) ← A(p) + A(r);

17

 17

Fig. 7 .

 7 Fig. 7. Three cases for contextual computation. p and q are two neighbors (w.r.t. B). The red path denotes the nodes in [Sp LCA(Sp, Sq)) for which p is in the interior and q in the exterior. Left: case Sp ⊂ Sq, middle: case Sp and Sq are in different paths, right: case Sq ⊂ Sp.

4 DjVu ← ∅; 5 foreach 7 Nq 9 while Np = Anc do 10 if 4 DjVu ← ∅; 5 foreach 7 Nq 9 while Np = Anc do 10 if

 457910457910 point p in Bε(q) do 6 Np ← getCanonical(p); ← getCanonical(q); 8 Anc ← LCA(Np, Nq); Np ∈ DjVu then 11 X e (Np) ← X e (Np) + iX (q); 12 DjVu ← DjVu ∪ {Np}; 13 Np ← parent(Np); 14 return X e 1 INTERNAL CONTEXT(parent) 2 foreach node x do X i (x) ← 0; 3 foreach point p in Ω do point q in Bε(p) do 6 Np ← getCanonical(p); ← getCanonical(q); 8 Anc ← LCA(Np, Nq); Np ∈ DjVu then 11 X i (Np) ← X i (Np) + iX (p); 12 DjVu ← DjVu ∪ {Np};

13

 13

1 7 while Na = Nv do 8 MEFig. 9 .

 789 Fig. 9. Computation of extinction-based saliency map ME .