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Abstract: MultiDisciplinary Optimization (MDO) problems represent one of the hardest and broadest domains of con-

tinuous optimization, often too complex to be tackled by classical optimization methods.

We propose an original approach for taking into account this complexity using a self-adaptive multi-agent

system where each elements of the problem become an agent in charge of a small part of the problem.

1 INTRODUCTION

Multidisciplinary optimization (MDO) problems

are a specific class of optimization problem where the

number of variables and disciplines involved is to im-

portant to directly apply classical optimization meth-

ods. Most of the existing approaches concentrate on

separating the problem in distinct subproblems and

using standard optimization methods on these sub-

problems while trying to maintain consistency among

the variables shared by the subproblems. Basically

these methods try to help the user to find an opti-

mization process which reduces the complexity of the

problem. However, a shortcoming of these MDO

methods is that they require a strong expert knowl-

edge of both the problem to be solved and the method

which is applied, in order to obtain interesting results.
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Figure 1: Mathematical formulation of an optimization
problem.

We propose a radically different approach where

one only requires to express the problem, and the sys-

tem tries to automatically solve the problem without
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Figure 2: Equivalent graph representation.

trying to determine in advance a specific process. On

figure 1, we can see the classical, analytic formula-

tion of an optimization problem. However, it is also

possible to express such a problem as a relationship

graph, as represented on figure 2. Our approach is

to create for each entity of this graph an autonomous

intelligent agent, whose behavior is defined by local

cooperatives rules and goals. The global optimization

process can be said to emerge from these local inter-

actions between agents. The user can let the system

try to optimize the problem on its own, or he can in-

teract with the system during the solving in order to

guide it toward a new search point or to change the

problem to be solved. The system is able to integrate

and adapt at runtime to these changes. We call this

vision of MDO Integrative and Interactive Design.
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Figure 3: Class diagram of MDO problems

2 PROBLEM MODELING

The first step is to obtain an explicit and coher-

ent representation of what are the different elements

present in a MDO problem. To this end we worked

with engineers to provide a consensual MDO model

and to extract the important entities which always

arise in these types of problem. As an example, a

MDO problem usually occurs in a generic domain

(aeronautics, engine, ...) which can be represented

through several models. So the entity model will be

used to import and to use different models of a do-

main. These entities and the relations between them

are represented by the class diagram in figure 3. We

will now examine them briefly.

Models In the most general case, a model can be

seen as a black box which takes input values (which

can be design variables or output variables) and pro-

duces output values. A model represents a technical

knowledge of the relations between different parts of

a problem and can be as simple as a linear function

or a much more complex algorithm requiring sev-

eral hours of calculation. Often some properties are

known (or can be deduced) about a model and spe-

cialized optimization techniques can exploit this in-

formation.

In the context of an aircraft design, an example of

model could be the one calculating the total weight of

the aircraft from the weight of the different parts.

Design Variables These are the inputs of the prob-

lem and can be adjusted freely (within their defining

boundaries). The engineer’s goal is to find the set(s)

of values for these variables that maximize the objec-

tives while satisfying the constraints.

Design Variables are used by models to calculate

their outputs and by constraints and objectives to cal-

culate their current value. A variable can be shared

among several models, objectives and constraints.

Some very simple examples of design variables

could be, for the design of an aircraft, the length of

the wings, the mass of the cockpit, the fuel tank ca-

pacity.

Output Variables These values are produced by a

model, and consequently cannot be changed freely.

As for the Design Variables, the Output Variables

are used by models to calculate their outputs and by

constraints and objectives to calculate their current

value.

Using the example above, the total weight of the

aircraft is an output variable of our model. It is worth

to notice that output variables of a model, as well as

design variables, can be taken as input of other mod-

els.

Constraints These are strict restrictions on parts of

the problem, represented as functional constraints de-

fined by equalities and/or inequalities. These can be

the expression of a physical constraint, or a require-

ment concerning the problem. For example, the total

weight of an aircraft must be lower than the total lift-

ing capacity of the engines and greater than zero.

Objectives The goals to be optimized. In the gen-

eral case, different objectives are often contradictory.

Constraints and objectives are usually regrouped

under the more general term of optimization criteria.

Existing Approaches

A major part of the research in the field focuses on

providing strategies for reformulating the problem, in

a way that makes possible to optimize different sub-

parts while trying to keep them consistent among each

other. To this end, a variety of techniques has been

developed, such as Multi-Disciplinary Feasible De-

sign [Dennis Jr et al., 1993], Collaborative optimiza-

tion [Kroo et al., 1994], Bi-Level Integrated System



Synthesis [Sobieszczanski-Sobieski et al., 1998] for

example.

One of the major shortcomings of these methods

is that they require a lot of work and expertise from

the engineer to be put in practice. To actually perform

the optimization process, one must have a deep un-

derstanding of the involved models as well as of the

chosen method. This is required to be able to correctly

reformulate the models accordingly to the formalism

the method requires, as well as to work out what is

the most efficient way to organize the models in re-

gard to the method. Since by definition MDO involve

disciplines of different natures, it is often impossible

for one person to possess all the required knowledge,

needing the involvement of a whole team in the pro-

cess. Moreover, answering all these requirements im-

plies a lot of work before even starting the optimiza-

tion process.

This is to answer these shortcomings that we pro-

pose a completely generic approach, which requires

only from the user to express the problem in the way

which is the most natural to him. Instead of relying

on a predefined strategy to reduce the complexity of

the problem, our novel approach uses a multi-agent

system where the agents collectively solve it.

While multi-agent systems have already been used

to solve optimization problems, the existing works

concern their application to Combinatorial Optimiza-

tion, mainly in the context of the DCOP (Distributed

Constraint Optimization Problem) framework, where

the definition domains of the variables are discrete

and finite. MDO problems, by contrast, are inherently

continuous problems.

Moreover, the existing agent-based optimization

techniques for DCOP present similar shortcomings to

MDO methods, in the sense that they require a strong

expertise to be efficiently applied [Kaddoum, 2011].

3 A MULTI-AGENT SYSTEM FOR

MDO

Each variable, each objective, each constraint,

each model is associated with its own representative

agent and thus the multi-agent system is the represen-

tation of the problem to be solved with the links and

communication between agents reflecting the natural

structure of the problem. It is worth to underline the

fact that this transformation is completely automatic.

When the user has expressed the problem in the terms

described before there is no extra work on his part to

build the multi-agent system, which is fully derived

from the expression of the problem.

The most important point is that each agent only

has a local strategy. No agent is in charge of the opti-

mization of the system as a whole, or even of a subset

of the other agents. Contrary to the classical MDO

methods we presented earlier, the solving of the prob-

lem is not directed by a predefined methodology, but

by the structure of the problem itself. The emerging

global strategy is unique and adapted to the problem.

Model Agent A model agent takes charge of a

model of the problem. It interacts with the agents

handling its inputs (which can be variable or output

agents) and the output agents handling its outputs. Its

individual goal is to maintain consistency between its

inputs and its outputs. To this end, when it receives a

message from one of its inputs informing it of a value

change, a model agent recalculates the outputs val-

ues of its model and informs its output agents of their

new value. On the other part, when a model agent

receives a message from one of its output agents it

should translate and transmit the request to its inputs.

To find the input values corresponding to a spe-

cific output value, the model agent can use an external

optimizer. This optimizer can be provided by the en-

gineer based on expert knowledge regarding the struc-

ture of the model. If it is not the case, the model agent

still can make some estimations by observing the out-

put variations when the inputs change. Doing so, the

agent is able to estimate a local correlation coefficient

between each input and output. Using these coeffi-

cients, the agent can then make a rough estimation of

some input values corresponding to a specific output

value. While this method is less precise and efficient

than calling a specialized optimizer it is always avail-

able, even in the case where the engineer knows no

adequate specific optimization technique to apply to

the model.

Variable Agent This agent represents a design vari-

able of the problem and is responsible for giving a

value to its variable. Its individual goal is to find a

value which will be the best equilibrium among the

requests of the models and criteria which are using

it as an input. The agents to which it is linked can

request it to change its value to another one. When

its value changes (because it received a request or by

a manual change of the engineer), this agent informs

all the agents which are linked to it (its neighbors) of

its new value.

One limit of this simple mechanism is that, if the

search space of the problem is large, the system can

take a long time to converge towards the solution. To

mitigate this we use an exploration strategy based on

Adaptive Value Trackers (AVT). The AVT is a tool in-

troduced in the work of [Lemouzy et al., 2011] and



can be seen as an adaptation of dichotomous search

for dynamic values. The main idea is to change value

according not to the requested new value but to the

direction which is requested and the direction of the

past requests. While the value varies in the same di-

rection, the variation delta is increased so the value

varies more and more. As soon as the requested vari-

ation changes, it means that the variable went past the

good value, so the variation delta is reduced.

By adjusting the variation by a factor of 2, we can

find a correct value with comparable efficiency to the

one of dichotomous search.

While changing value based not on the value re-

quested but on the direction can seem paradoxical, it

must be recalled that, since no agent has a global view

of the system, the requests made by the agents will of-

ten be approximate, so the agents need to iterate many

times. If the search space in large, the system could

take time to converge towards the solution. By using a

near-dichotomous strategy, we greatly accelerate this

convergence.

This capability to take into account a dynamic

value is of utmost importance here since during solv-

ing, agents can aim for a value which, while appar-

ently good, will be revealed as inadequate later when

another part of the system will have converged to a

different solution. On another part, this capability is

also a requirement for the system to be able to adapt

to changes made by the engineer during the solving

process.

Output Agent The output agent takes charge of an

output of a model. This role is similar to the one of

a variable agent, except it cannot directly change its

value, but must instead send a request to the model

agent handling the model from which its output de-

pends. In this regard, the output agent will act as a fil-

ter for the model agent it depends on, selecting among

the different requests the ones it will transmit.

Constraint Agent The constraint agent has the re-

sponsibility for handling a constraint of the problem.

When receiving a message from an agent handling

one of its inputs, the agent recalculates its constraint

and checks its satisfaction. If the constraint is not sat-

isfied anymore, the agent sends requests to its inputs

asking them to take values with whom the constrain

will be satisfied again.

It should be noted that, to estimate the input values

required to satisfy the constraint, this agent employs

the same technique than the model agent, using an

external optimizer if available, or basing itself on the

estimated correlations of the inputs to the value of the

constraint.

Objective Agent The objective agent is in charge of

the improvement of one of the objectives of the prob-

lem. This agent sends requests to its inputs aiming to

improve its objective, and recalculates the objective

when receiving messages from its inputs informing it

of some changes.

As the model and constraint agent, to estimate in-

put values which would improve the objective, this

agent uses an external optimizer or the observed cor-

relations of the inputs to the objective.

4 APPLICATIONS

This Multi-Agent System has be developed in the

context of the ID4CS1 project, involving 9 academic

and industrial partners, including among others Air-

bus and Snecma (Safran Group), and is integrated into

a proof-of-concept user interface based on the Eclipse

Modeling Framework. While the system and inter-

face are still in development. Some demos of the tool

are availables at www.irit.fr/id4cs/index.php?

page=demonstration.
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