How to Make nD Functions Digitally Well-Composed in a Self-dual Way
Résumé
Latecki et al. introduced the notion of 2D and 3D well-composed images, i.e., a class of images free from the " connectivities paradox " of digital topology. Unfortunately natural and synthetic images are not a priori well-composed. In this paper we extend the notion of " digital well-composedness " to nD sets, integer-valued functions (gray-level images), and interval-valued maps. We also prove that the digital well-composedness implies the equivalence of connectivities of the level set components in nD. Contrasting with a previous result stating that it is not possible to obtain a discrete nD self-dual digitally well-composed function with a local interpolation, we then propose and prove a self-dual discrete (non-local) interpolation method whose result is always a digitally well-composed function. This method is based on a sub-part of a quasi-linear algorithm that computes the morphological tree of shapes.
Domaines
Mathématique discrète [cs.DM]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...