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Combinaison linéaire optimale de métriques pour la colorisation d'images

Cet article propose une approche originale pour construire une métrique optimale. La méthode décrite calcule une combinaison linéaire de métriques, afin de créer une nouvelle distance capable de mieux comparer des patchs. L'utilisateur fournit un ensemble d'images d'apprentissage, ainsi que les métriques de base. Le cadre théorique et un algorithme efficace sont décrits pour résoudre ce problème. Des expériences numériques en colorisation d'images, sont réalisées pour démontrer l'efficacité de cette nouvelle approche.

Introduction.

La comparaison de textures est un problème toujours ouvert en vision par ordinateur. Bien que de nombreux descripteurs aient été proposés dans la littérature, ( [START_REF] Bay | Surf : Speeded up robust features[END_REF], [START_REF] Mäenpää | The local binary pattern approach to texture analysis -extensions and applications[END_REF], etc), le descripteur universel parfait n'existe pas. En trouver un bon est une tâche difficile, même avec une vérité terrain [START_REF] Herold | Spatial metrics and image texture for mapping urban land use[END_REF]. En général, les approches classiques combinent différents types de descripteurs de textures. On cherche alors à comparer ces descripteurs avec des métriques.

Plusieurs types d'approches non-expérimentales permettent d'établir une méthode optimale pour la comparaison de descripteurs. Un premier type d'approche modifie la distance utilisée pour trouver les k plus proches voisins lors de la classification par vote k-NN. La métrique originelle proposée pour mesurer la distance entre ces voisins est la norme Euclidienne [START_REF] Cover | Nearest neighbor pattern classification[END_REF]. [START_REF] Weinberger | Distance metric learning for large margin nearest neighbor classification[END_REF] propose de remplacer cette distance par celle de Mahanalobis dont les paramètres sont appris via la minimisation d'un critère. Ce dernier permet de limiter les erreurs de classification possibles. Un deuxième type d'approche se base sur la théorie des probabilités et de l'information [START_REF] Mahamud | The optimal distance measure for object detection[END_REF]. Il repose sur un modèle probabiliste pour fournir une métrique optimale définie comme combinaison linéaire de diverses distances de base. Un troisième type d'approche, proposée par [START_REF] Frome | Image Retrieval and Classification Using Local Distance Functions[END_REF], consiste à calculer une combinaison linéaire optimale de métriques. Cette dernière est utilisée afin de résoudre le problème suivant : étant donné une image test et deux de référence, on détermine l'image de référence la plus proche de celle de test. Notre approche a pour but de calculer une combinaison linéaire de métriques, mais sans modélisation probabiliste des données.

La colorisation d'images consiste à transformer une image en niveau de gris en une image en couleur. Elle nécessite un a priori afin de produire un résultat réaliste. Celui-ci peut être fourni sous forme manuelle, par exemple [START_REF] Levin | Colorization using optimization[END_REF][START_REF] Yatziv | Fast image and video colorization using chrominance blending[END_REF], ou sous la forme d'une image de référence, de sémantique proche [START_REF] Welsh | Transferring color to greyscale images[END_REF][START_REF] Gupta | Image colorization using similar images[END_REF]. Cette dernière approche est connue sous le nom de colorisation basée-exemple. Sa principale difficulté est de trouver un bon descripteur de texture. En général, plusieurs sont combinés. Par exemple, les méthodes de [START_REF] Welsh | Transferring color to greyscale images[END_REF] et [START_REF] Gupta | Image colorization using similar images[END_REF] utilisent une pondération de métriques, pour comparer des morceaux d'image. Afin d'éviter cette pondération (choisie expérimentalement, en pratique), les auteurs de [START_REF] Pierre | Luminance-chrominance model for image colorization[END_REF] utilisent un modèle variationnel pour combiner les résultats obtenus par plusieurs métriques entre patchs. Les colorisations obtenues séparément avec plusieurs métriques différentes sont localement sélectionnées en fonction de la régularité souhaitée.

Dans ce papier, nous montrons que l'utilisation de métriques isolées peut échouer, tandis que leur combinaison linéaire peut donner un bon résultat. Nous proposons une méthode permettant de créer une nouvelle mé- (d
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Figure 1 -Formation des nuages de points dans le cas de deux classes et de deux métriques. (d i,j 1 , d i,j 2 ) représente le point de coordonnées d 1 (P i, P j) et d 2 (P i, P j).

trique en calculant une combinaison linéaire d'une liste de distances existantes. Notre méthode s'inspire des Support Vector Machine (SVM) [START_REF] Boser | A training algorithm for optimal margin classifiers[END_REF] qui sont utilisés pour séparer des nuages de points par un hyperplan, afin de discriminer des données. Cette séparation de l'espace permet de classer une nouvelle entrée en calculant de quel côté de l'hyperplan celle-ci se situe. La méthode soft margin de [START_REF] Cortes | Support-vector networks[END_REF] est une extension permettant de trouver un hyperplan optimal lorsque les deux nuages de points ne se séparent pas parfaitement.

Dans la suite, nous commençons par modéliser le problème sous forme de séparation de nuages de points, puis nous proposons un modèle pour calculer effectivement la métrique optimale. Enfin, nous décrivons une application à la colorisation d'images, afin de démontrer l'intérêt de cette méthode innovante.

La distance optimale.

Dans cette section, nous proposons une modélisation du problème du choix de la métrique optimale.

Modélisation du problème.

Dans la plupart des problèmes de vision par ordinateur, les algorithmes doivent distinguer des objets avec la même sensibilité que le système visuel humain. On considère, dans la suite, des morceaux d'image carrés, d'une taille prédéfinie, que l'on appellera patch. L'utilisation de ces descripteurs est établie par une distance entre eux qui est faible quand le système visuel humain considère que le contenu lui semble proche. Au contraire, cette distance doit être élevée si le système visuel humain perçoit ces éléments comme étant différents. Cette hypothèse est le point de départ de notre méthode qui requiert l'utilisation d'une vérité terrain fournie par l'utilisateur.
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Dans la suite, nous proposons un modèle permettant de calculer une métrique qui est adaptée à ces donnés. Pour apprendre cette métrique, on suppose que l'utilisateur fournit des ensembles de patch, par exemple sous forme de morceaux d'image plus gros. Il faut que la distance minimale, pour la métrique retenue, entre un patch et tous les autres, soit atteinte idéalement avec un autre patch de sa classe.

On considère N patchs {p i } répartis en C classes. Les patchs de la classe c sont indexés par l'ensemble d'indices I c . Supposons que l'on dispose d'une métrique entre patchs notée d. Pour chaque patch p i tel que i ∈ I c on considère l'indice j I i tel que :

j I i = argmin j∈Ic, j =i d(p i , p j ). (1) 
On appelle distance intra du patch p i et on note dI i la valeur d(p i , p j I i ). Considérons également l'indice j * tel que : R +K de la manière suivante : Pour avoir un bon appariement il faut que, quelque soit i ∈ I c , l'indice j * tel que :

j E i = argmin j ∈Ic d(p i , p j ). (2) 
C I = {(d 1 (p i , p j ), . . . , d K (p i , p j ))} i∈1..N , j∈I k , k∈1..K , ( 3 
) C E = {(d 1 (p i , p j ), . . . , d K (p i , p j ))} i∈1..N , j∈E k , k∈1..K . ( 4 
j * = argmin j∈1..N , j =i d(p i , p j ), (5) 
appartienne à I c . Ainsi il faut :

∀i ∈ 1..N , dE i > dI i . ( 6 
)
Lorsque l'on dispose de C métriques, on peut les combiner de manière linéaire avec des coefficients positifs pour obtenir une nouvelle métrique. Pour que la combinaison soit pertinente, il faut que les projections des nuages Kdimensionnels sur une droite soient séparées. La recherche d'une métrique optimale revient à séparer les nuages de points C E et C i par un hyperplan.

La Dans la section suivante, nous présentons sur une façon optimale de séparer les nuages intra et extra.

SVM contraint.

Dans cette section, nous proposons de séparer les nuages de points par un hyperplan.

Une technique, largement utilisée pour séparer des nuages de points, est la méthode des SVM introduite dans [START_REF] Boser | A training algorithm for optimal margin classifiers[END_REF]. Cette technique repose sur la minimisation d'un critère quadratique. Dans le cas de nuages non-séparés, les auteurs de [START_REF] Cortes | Support-vector networks[END_REF] introduisent la méthode de soft margin hyperplane. Puisque le problème de construction d'un hyperplan qui minimise le nombre d'erreurs d'appariement est NP-complet, les auteurs considèrent un problème relaxé.

Remarquons maintenant que la définition de la métrique optimale nécessite que les coefficient de l'hyperplan soient positifs afin qu'elle respecte l'inégalité triangulaire. Cette nouvelle contrainte est ajoutée au problème d'optimisation quadratique du SVM : Une méthode, basée sur des patchs, a été développée par les auteurs de [START_REF] Welsh | Transferring color to greyscale images[END_REF]. La méthode fonctionne comme suit : pour chaque pixel de l'image à coloriser, le patch centré en ce pixel est comparé à un sous-ensemble de patchs sous-échantillonné, de manière aléatoire, dans une image en couleur de référence, fournie par l'utilisateur, et préalablement convertie en niveau de gris. La couleur du pixel central correspondant au patch le plus proche est retenue. Le problème essentiel de cette méthode est de trouver une métrique pertinente pour comparer les patchs.

min α,b,ξ α 2 2 + β k i=1 ξ i t.q. y i (α t x i + b) ≥ 1 + ξ i ξ i ≥ 0, α j ≥ 0. ( 7 
La Figure 3 montre le résultat d'une colorisation utilisant pour référence un ensemble de morceaux d'images. Les morceaux d'images sont également utilisés pour calculer la métrique optimale. Ils sont prélevés manuellement de plusieurs images en couleur, différentes de l'image ellemême, et répartis en classes. Par exemple, pour la colorisation du zèbre, on a extrait une classe contenant des morceaux de zèbre et une autre des morceaux d'herbe. Ainsi, la métrique optimale est capable de discerner le zèbre de l'arrière-plan, et produit un résultat pertinent. Pour l'image de paysage, trois classes sont utilisées, une pour le ciel, une pour les arbres et une pour la paille. Cela explique le fait que le ciel est bien colorisé avec la métrique optimale. On remarque qu'aucune des métriques de base ne fournit de résultat acceptable. La colorisation du zèbre par les métriques de base donne des résultats contenant des artefacts. Par exemple, l'herbe contient des taches bleues. L'image de paysage contient également des erreurs, par exemple, la présence de bleu sur les arbres, ou d'orange dans le ciel. La métrique optimale fournit un résultat pertinent et réaliste.

Conclusion.

Dans cet article, nous avons proposé un cadre pour combiner des métriques de manière optimale par rapport à une vérité terrain donnée. La métrique optimale ainsi calculée démontre une capacité accrue pour comparer des patchs et fournir une colorisation d'images, pertinente et réaliste. Les applications possibles de cette méthode sont nombreuses, par exemple l'inpainting, la segmentation, la classification.
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Figure 2 -

 2 Figure 2 -Exemple de représentation de nuages de distances intra et extra patch. Ni la métrique d 1 ni la d 2 ne sont capables de séparer les nuages, mais la combinaison d 1 + 0.25d 2 en est capable. Les traits rouges et verts représentent les nuages intra et extra patch monodimensionnels pour chaque métrique séparée.

( a )

 a Valeur absolue entre les histogrammes cumulés de patchs 7×7 (b) Valeur absolue entre les tenseurs de structure de patchs 7×7 (c) Valeur absolue entre les tenseurs de structure de patchs 9×9 (d) Métrique optimale. (e) Valeur absolue entre les écarttypes de patchs 11×11. (f) Valeur absolue entre les histogrammes cumulés de patchs 7×7 (g) Valeur absolue entre les histogrammes cumulés de patchs 11×11 (h) Métrique optimale.

Figure 3 -

 3 Figure 3 -Colorisation basée-exemple avec plusieurs types de métriques, comparés à la métrique optimale. La métrique optimale donne un résultat plus réaliste.

  ) La formation de ces nuages dans le cas de deux classes est résumé dans la Figure 1. Pour chaque patch et chaque métrique, on calcule la distance minimale avec les patchs de la même classe et ceux des autres classe. Par exemple, pour P 1, la distance minimale intra classe pour la distance d 1 est réalisée avec P 3.

Figure 2

 2 montre deux nuages extra C E et intra C I séparés en dimension 2 par une droite. Les nuages intra et extra des deux métriques de départ (segments de couleur sur les axes principaux) ne sont pas séparés. Puisqu'il existe une droite séparant les nuages, alors il existe une combinaison linéaire pertinente (dans notre exemple d 1 + 0.25d 2 ) telle que les nuages intra et extra pour cette métrique soient séparés (segments de couleur sur l'axe d 1 + 0.25d 2 ).

  On appelle distance extra du patch p i et on note dE i la valeur d(p i , p j E i ). En calculant les distances intra et extra pour chaque patch, on obtient deux ensembles de valeurs que l'on appelle nuages de points intra et extra dans la suite. Si l'on considère K distances, on peut alors former des nuages de points de dimension K. Pour chaque métrique d k et chaque patch p i on calcule les indices j I

i et j E i que l'on regroupe dans des ensembles d'indices I k et E k . On compose ensuite les nuages de points dans l'ensemble

  ) α est le vecteur des coefficients de l'hyperplan, b est le biais. y i est un scalaire égal à -1 si x i est dans le premier nuage et 1 s'il est dans le second. β est une constante. Il s'agit d'un problème d'optimisation quadratique contraint. Dans cette section, nous appliquons notre méthode pour construire une métrique optimale, dédiée à la colorisation d'images.
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