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Rotation and translation covariant match kernels for image retrieval

Giorgos Tolias*, Andrei Bursuc, Teddy Furon, Hervé Jégou

Inria, Rennes

Abstract

Most image encodings achieve orientation invariance by aligning the patches to their dominant orientations and translation
invariance by completely ignoring patch position or by max-pooling. Albeit successful, such choices introduce too much
invariance because they do not guarantee that the patches are rotated or translated consistently. In this paper, we propose a
geometric-aware aggregation strategy, which jointly encodes the local descriptors together with their patch dominant angle
or location. The geometric attributes are encoded in a continuous manner by leveraging explicit feature maps. Our technique
is compatible with generic match kernel formulation and can be employed along with several popular encoding methods,
in particular Bag-of-Words, VLAD and the Fisher vector. The method is further combined with an efficient monomial
embedding to provide a codebook-free method aggregating local descriptors into a single vector representation. Invariance is
achieved by efficient similarity estimation of multiple rotations or translations, offered by a simple trigonometric polynomial.
This strategy is effective for image search, as shown by experiments performed on standard benchmarks for image and

particular object retrieval, namely Holidays and Oxford buildings.

Keywords: image retrieval, geometry aware aggregation, match kernels, monomial embedding

1. Introduction

THIS paper considers the problem of particular image or
particular object retrieval. This subject has received a
sustained attention over the last decade. Many of the re-
cent works employ local descriptors such as SIFT [1]] or
variants [2, 3] for the low-level description of the images.
In particular, approaches derived from the Bag-of-Words
framework [4] are especially successful to solve problems
like recognizing buildings. They are typically combined
with spatial verification [3} 6] or other re-ranking strategies
such as query expansion [[7} [8]].

Our objective is to improve the quality of the first re-
trieval stage, before any re-ranking is performed. This is
critical when considering large datasets, as re-ranking meth-
ods depend on the quality of the initial short-list, which typ-
ically consists of a few hundred images. The initial stage is
improved by better matching rules, for instance with Ham-
ming embedding [9]], by learning a fine vocabulary [10], or
weighting the distances [[L1, [12]]. Moreover, it is useful to
employ some geometrical information associated with the
region of interest [9]]. All these approaches rely on match-
ing individual descriptors and therefore store some data on
a per descriptor basis. Moreover, the quantization of the
query’s descriptors on a large vocabulary causes delays.
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Recently, very short yet effective representations have
been proposed based on alternative encoding strategies,
such as local linear coding [[13]], the Fisher vector [14] or
VLAD [15]. Most of these representations have been pro-
posed first for image classification, yet also offer very effec-
tive properties in the context of extremely large-scale im-
age search. A feature of utmost importance is that they
offer vector representations compatible with cosine sim-
ilarity. The representation can then be effectively bina-
rized [16] with cosine sketches, such as those proposed by
Charikar [17] (a.k.a. LSH), or aggressively compressed to
very short vectors with principal component dimensional-
ity reduction (PCA). Product quantization [18] is another
example achieving a very compact representation of a few
dozens to hundreds of bytes as well as an efficient search
because the comparison is done in the compressed domain.

This paper focuses on such short- and mid-sized vector
representations of images. Our objective is to exploit some
geometrical information associated with the regions of in-
terest. A popular work in this context is the spatial pyramid
kernel [19]], which is widely adopted for image classifica-
tion. However, it is ineffective for particular image retrieval
as the grid is too rigid and the resulting representation is not
invariant enough, as shown by Douze et al. [20].

Here, we aim at incorporating some relative angle infor-
mation to ensure that the patches are consistently rotated. In
other terms, we want to achieve a covariant property similar
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to that offered by Weak Geometry Consistency (WGC) [9]],
but directly implemented into the coding stage of image
vector representations like Fisher, or VLAD. We achieve
that by jointly encoding the local descriptor with the domi-
nant angle in a continuous way. Some recent works in clas-
sification [21] and image search [22] consider a similar ob-
jective and proceed by rotation quantization. Encoding of
such a rough approximation is not straightforwardly com-
patible with generic match kernels.

In contrast, we achieve the covariant property for any
method provided that it can be written as a match kernel.
This holds for the Fisher vector, LLC, Bag-of-Words and
efficient match kernels listed in [23]]. Our method initially
assumes aligned objects and image similarity is computed
efficiently for multiple rotations thanks to simple trigono-
metric identities. Finally, the same methodology yields a
continuous alternative to spatial pyramid match kernel by
encoding patch positions.

This work is the continuation of our previous work [24].
The new contribution consists of the extension to the trans-
lation covariant match kernel and the exploitation of a
trigonometric polynomial for efficient similarity computa-
tion. The latter was only discussed in our previous work,
but not exploited.

This paper is organized as follows. Section [2| dis-
cusses related works, while Section [3] introduces notation
for generic match kernels. Our approach is presented in
Section[dand Section [5|describes the extension to position-
translation. Evaluation is presented in Section [6] on sev-
eral popular benchmarks for image search, namely Ox-
ford5k [15], Oxford105k and Inria Holidays [25]. These ex-
periments show that our approach gives a significant im-
provement over the state of the art on image search with
vector representations. Interestingly, we further achieve
competitive results by combining our approach with mono-
mial embeddings, i.e., with a codebook-free approach, as
opposed to coding approaches like VLAD

2. Related work

Our method is inspired by the kernel descriptor of Bo et
al. [26] but it departs from this in several ways. First, we are
interested in aggregating local descriptors to produce a vec-
tor image representation, whereas they construct new local
descriptors. Our objective is not to encode the pixel gradient
orientation but to achieve the property that the patch repre-
sentation is covariant. Therefore, we encode the dominant
orientation or the spatial coordinates of the region of inter-
est jointly with the corresponding SIFT descriptor. Finally,
we rely on explicit feature maps [27] to encode the angle,

1 Code is available online https://gforge.inria.fr/frs/download.
php/latestzip/4895/PkgAngularmodulation-latest.zip

which provides a much better approximation than efficient
match kernel [23] for a given number of components.

The well known aggregated representations, such as
Bag-of-Words, VLAD and Fisher vectors, only encode ap-
pearance and completely discard spatial information. The
most popular attempt surpassing this limitation is the Spa-
tial Pyramid Match [[19] (SPM). Patch position is quantized
and used as a pooling variable. In this fashion, invariance to
any geometric transformation is lost, and only a restricted
amount of tolerance is attained.

Regarding position encoding, Arandjelovic and Zisser-
man [28] extract multiple VLAD descriptors per image
from horizontal and vertical tiles, aiming at localizing the
searched object in the image. This approach is effective for
retrieving small objects, but does not solve the afore men-
tioned shortcomings of image level aggregated descriptors.
Recent works in image classification [29, 30, 31] provide
lower-dimensional alternatives for SPM via different en-
codings of spatial information. Krapac et al. [29] define
a Fisher Kernel integrating location prior. Both appearance
and spatial layout of patches are encoded. Spatial Coordi-
nate Coding [30] augments the SIFT descriptors with the
corresponding spatial coordinates. Quantization, encoding
and pooling take place in the augmented feature space. In
a similar work [31]], feature scale is encoded in addition to
position, leading to encouraging results on PASCAL VOC
and ImageNet fine-grained classification benchmarks [32].

The hierarchical kernel descriptor of Bo ef al. [33] en-
codes position information at multiple levels. Patch loca-
tion proximity is evaluated via a Gaussian kernel. In order
to keep the representation compact, the positions are ex-
pressed as projections on 25 basis vectors uniformly sam-
pled from a 5x5 grid. In contrast, we encode positions in
a continuous manner, leading to a richer representation and
to reduced quantization artifacts.

Following a similar principle to that of SPM but at a sin-
gle level, the dominant angle is quantized and considered as
a pooling variable in recent works [21}, 22]]. CVLAD [22]
in particular, shifts the sub-vectors corresponding to each
angular cell in order to mimic query image rotation and
provides some rotation invariance. This strategy increases
complexity proportionally to the number of rotations taken
into account. In contrast, along with our method we pro-
pose a very efficient way to compute similarity for multiple
image rotations.

WGC applies geometric constraints on the whole
database of images, and not only on a short-list [3} 6]. We
achieve the same property with aggregated representations,
thus individual descriptors are not indexed. Moreover, we
do not need to explicitly form patch correspondences and
compute relative angles for each.
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3. Background: match kernels and embeddings

We consider the context of match kernels. An image
is typically described by a set of local descriptors X =
{X1,..,%4,... }, x; € R4 ||x;]| = 1. Similar to other
works [34, [23] 9], two images described by X and ) are
compared with a match kernel K of the form

VYD kxy), D

xeX yey

K(X,¥) =

where £ is referred to as the local kernel and where the pro-
portionality factor 3 ensures that K(X,X) = K(Y,Y) =
1. A convenient way to obtain such a kernel is to map
the vectors x to a higher-dimensional space with a func-
tion ¢ : R? — RP, such that the inner product similarity
evaluates the local kernel k(x,y) = (p(x)|¢(y)). This ap-
proach then represents a set of local descriptors by a single
vector

X =B(X) Y ox),

xeX

(such that | X||=1) (2)

because the match kernel is computed with a simple inner
product as

K(X,Y) =

MDIPME

xeX ye)Y

= (X[Y).

(3)
This kernelized view encompasses many approaches
for aggregating local image descriptors such as Bag-of-
Words [4,135], LLC [13]], Fisher vector [14]], VLAD [15]], or
VLAT [36]]. A desirable property of k is to have k(x,y) ~ 0
for unrelated features, so that they do not interfere with the
measurements between the true matches. It is somehow
satisfied with the classical inner product k(x,y) = (x|y).
Several authors [34, 136112, |3"7]] propose to increase the con-
trast between related and unrelated features with a mono-
mial match kernel of degree p of the form

DDy @

xeEX ye)Y

K(X,Y) =

All monomial (and polynomial) embeddings admit ex-
act finite-dimensional feature maps whose length rapidly
increases with degree p (in O(d?/p!)). The order p = 2
has already demonstrated some benefit, for instance in se-
mantic segmentation [38] or in image classification [36].
In this case, the kernel is equivalent to comparing the set
of features based on their covariance matrix [36]. Equiva-
lently, by observing that some components are identical, we
can define the embedding @y : R¢ — R¥4+1)/2 mapping
X = [r1,...,74)" to
xﬁ,xlxgx/i cee

Po(x) = [21,.. ., za_124V2] . (5)

Similarly, the simplified exact monomial embedding associ-
ated with p = 3 is the function 3 : RY — R(4°+3d°+2d)/6
defined as

3(x) =[x3, ... 23, 2229V/3, . . .,

argxd_lx/g, .’1?1I2$3\/6, ey

TqoTq124V6]"

(6)

4. Covariant aggregation of local descriptors

The core idea of the proposed method is to exploit jointly
the SIFT descriptors and the dominant orientation ¢, asso-
ciated with a region of interest. For this purpose, we now
assume that an image is represented by a set X* of tuples,
each of the form (x, 6,), where x is a SIFT descriptor and
0, € [—m, x| is the dominant orientation. Our objective is
to obtain an approximation of a match kernel of the form

KXV = BB D k(xy) ke(02,0,)
(x,0,)EX™
(¥,04)€Y™

()

= (X*[Y™), (8)

where £ is a local kernel identical to that considered in Sec-
tion 2] and kg reflects the similarity between angles. The
interest of enriching this match kernel with orientation is il-
lustrated by Figure [I] where we show that several incorrect
matches are downweighted thanks to this information.

The kernel in (7) resembles that implemented in
WGC [9] with a voting approach. In contrast, we intend to
approximate this kernel with an inner product between two
vectors as in (@), similar to the linear match kernel simpli-
fication in (3). Our work is inspired by the kernel descrip-
tors [26] of Bo et al., who also consider a kernel of a similar
form, but at the patch level, to construct a local descriptor
from pixel attributes, such as gradient and position.

In our case, we consider the coding stage and employ
a better approximation technique, namely explicit feature
maps [27], to encode X*. This section first explains the
feature map of the angle, then described how the descriptors
and angles are jointly represented, and finally discusses the
match kernel design and properties.

4.1. A feature map for the angle

The first step is to find a mapping & : [—m, 7] — RM
from an angle 6 to a vector () such that a(6;) T ax(63) =
kg (61 —62). The function kg : R — [0, 1] is a shift invariant
kernel which should be symmetric (kg(A0) = ko(—A0)),
pseudo-periodic with period of 27 and monotonically de-
creasing over [0, 7]. The function ky is scalar and it allows
us to model the behaviour of the match kernel and to de-
sign the feature map accordingly. In the work of Vedaldi



Figure 1: Similarities between regions of interest, based on SIFT kernel k (left), angle consistency kernel kg (middle) and both (right). For each local region,
we visualize the values k(x,y), ko (A0) and their product by the colors of the link (red=1).

and Zisserman it is termed as kernel signature. We
consider in particular the following function:

exp(k cos(Af)) — exp(—k) .

hvm(A0) = 2sinh(k)

9

It is derived from Von Mises distribution f(A#; k), which
is often considered as the probability density distribution
of the noise of the measure of an angle, and therefore re-
garded as the equivalent Gaussian distribution for angles.
Our function kyy is a shifted and scaled variant of Von
Mises, designed such that its range is [0, 1], which ensures
that kv (7‘() =0.

The periodic function kyy can be expressed as a Fourier
series whose coefficients are (see [39][Eq. (9.6.19)]):

Io(k) —e ™+ 23> | In(k) cos(nAf)
2sinh(k)

kvm(A0) = , (10)
where I,, () is the modified Bessel function of the first kind
of order n. We now consider the truncation k\J,VM of the series
to the first NV terms:

N
kD (A0) = Z Y cos(nA6) (11)
n=0
L WR) e L)
with v = 2 sinh(r) and v, = Sinh(x) if n > 0.
12)

We design the feature map a(6), mappping an angle 6 to
a vector, as follows:

a(0) = (/3o VAT os(0), T sin(0), ..
VAN cos(NO), /ynsin(NO) . (13)

This vector has 2N + 1 components. Moreover

a() af) =70 +
N
Z Y (cos(nbi) cos(nbz2) + sin(nb) sin(nbs))

n=1

N
= Z n cos(n(61 — 62))
n=0
= kdu(61 — 62) ~ kym (61 — 62) (14)

The design of a feature map is explained in full details by
Vedaldi and Zisserman [27]]. This feature map gives an ap-
proximation of the target function kv, which is more ac-
curate as [V is bigger.

Figure |Z| illustrates the function kv for several values
of the parameter x and its approximation IEO’M for differ-
ent values of N. First note that ]_C\]yM may not fulfill the
original requirements: its range might be wider than [0, 1]
and it might not be monotonically decreasing over [0, ].
Larger values of x produce a more “selective” function of
the angle, yet require more components (larger value of V)
to obtain an accurate estimation. Importantly, the approxi-
mation stemming from this explicit angle mapping is better
than that based on efficient match kernels [23]], which con-
verges slowly with the number of components. Efficient
match kernels are more intended to approximate kernels on
vectors than on scalar values. As a trade-off between selec-
tivity and the number of components, we set k=8 and N=3
(see Section EI) Accordingly, we use kg, as kg in the se-
quel. The corresponding embedding o : R — R” maps any
angle to a 7-dimensional vector.

Exact estimation of kernel signature. Instead of approxi-
mating a kernel on angles with finite Fourier series, one may
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Figure 2: Function ky) for different values of « and its approximation E\]/VM

mapping o : [7r, 7] — R2V+HL

rather consider directly designing a function satisfying our
initial requirements (pseudo-period, symmetric, decreasing
over [0, 7]), such as

kp(AB) = cos(A0/2)F with P even. (15)

Thanks to power reduction trigonometric identities, for even
P this function is re-written as

P/2
AG) =", cos(pAf) (16)

p=0

with
1/ P 1 P
= = 0 < P/2.
=g ()=o) O<r e
(17

Now, applying leads to a feature map « () with P + 1
components such that a(01) " a(62) = kp(6; — 65). For
this function, the interesting property is that the scalar prod-
uct is exactly equal to the target kernel value kp (6 — 65),
and that the original requirements now hold. From our
experiments, this function gives reasonable results, but re-
quires more components than kyy to achieve a shape nar-
row around Af = 0 and close to 0 otherwise. The results
for our image search application task using this function are
slightly below our Von Mises variant for a given dimension-
ality. So, despite its theoretical interest we do not use it in
our experiments. Ultimately, one would rather directly learn
a Fourier embedding for a targeted task (e.g. an embedding
per classifier), in the spirit of Fourier kernel learning [40].

4.2. Modulation and covariant match kernel

The vector a encoding the angle 6 “modulates’ﬂ any
vector x (or pre-mapped descriptor ¢(x)) with a function
m : R2VHL x RP — REN+DD Thanks to classical prop-
erties of the Kronecker product ®, we have

m(x, a(f)) = x® o(6)
(z10(0) ",

zoc(0)" ... zaa(0) )T

(18)

2By analogy to communications, where modulation refers to the pro-
cess of encoding information over periodic waveforms.

using 1, 3 and 10 frequencies, as implicitly defined by the corresponding

We now consider two pairs of vectors and angle, (x,6,)
and (y,d,), and their modulated descriptors m(x, o (6))
and m(y,a(f,)). In the inner product space R(ZN+1P
the following holds:

m(x, a(0,)) ' m(y, a(6,) =

(x® a(bs))' (v ® a(by))
(
= (
(

® a(l:) ")y © a(8,))
y) ® (a(f) " ex(6y))
= (x y)ko(0z — 0y). (19)

>

T
T
T

Figure |3| shows the distribution of the similarities be-
tween regions of interest before and after modulation, as
a function of the difference of angles. Interestingly, there is
no obvious correlation between the difference of angle and
the SIFT: the similarity distribution based on SIFT is sim-
ilar for all angles. This suggests that the modulation with
angle provides complementary information.

Combination with coding/pooling techniques. Consider
any coding method ¢ that can be written as match kernel
(Fisher, LLC, Bag-of-Words, VLAD, etc). The match ker-
nel in , with our kg approximation, is re-written as

KX (X" V) o Y mlex), ) me(y), a,))

(x,0x)eX™
(Y79y)€y*

o > mp(x),a(0.) Y m(e(y), c(by),
(x,04) (y,04)

(20)

where we observe that the image can be represented as the
summation X* of the embedded descriptors modulated by
their corresponding dominant orientation, as

X* = B(X*) Z

(x,04)EX*

m(p(x),a(b)).  (21)

This representation encodes the relative angles and is al-
ready more discriminative than an aggregation that does
not consider them. However, at this stage, the compari-
son assumes that the images have the same global orien-
tation. This is the case on benchmarks like Oxford5k build-
ing, where all images are orientated upright, but this is not
true in general for particular object recognition.
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Figure 3: Distribution of patch similarity for different values of orientation difference. In this figure, we split the angular space into 8 equally-sized bins
and present the similarity distribution separately for each of these bins. Horizontal axis represents the similarity value between matching features. Top:
distribution of similarities with kernel on SIFTs. Bottom: Distribution after modulation with c.

4.3. Rotation invariance

So far our image representation is rotation covariant.
Herein we propose how to achieve rotation invariance via
efficient similarity computation for multiple image rota-
tions. Up to now we have assumed that objects are aligned
with respect to orientation or, more particularly, that objects
are up-right. This implies that true corresponding patches
should have similar orientation. We now describe how to
produce a similarity score when the orientations of related
images may be different. We represent the image vector
X* as the concatenation of 2N + 1 D-dimensional sub-
vectors associated to one term of the finite Fourier series:
X = X5, X5 XL Xy X, (T The
vector X is associated with the constant term in the Fourier
expansion, X:L,c and X;ys, 1 < n < N, correspond to the
cosine and sine terms, respectively.

Imagine now that this image undergoes a global rotation
of angle #. Denote X* the new set of pairs (x, 0,). Since,
descriptor x is by nature rotation invariant, we obtain X+ by
simply shifting all dominant angles by 6, that is 0, = 0, —0.
Denote X* the new image vector derived from these local
descriptors. It occurs that X5 = X7 because this term does
not depend on the angle, and that, for a given frequency bin
n, elementary trigonometry identities lead to

X; . =X} cosnf + X} sinnd (22)
Xfl’s = —X, .sinnf + X7, cosnd. (23)

Therefore, we do not need to recompute the image repre-
sentation of the rotated image. It is efficiently derived by
component wise multiplications of the vector describing the
original image. It also turns out that ||X*|| = ||X*||, mean-
ing that rotation has no effect on the global normalization
factor B(X*).

When comparing two images with such vectors, the lin-

earity of the inner product ensures that

(XHY") =(X5Y5)

N
+ Y cosnd (X5 Y5 )+ (X5 ,[Y7))
n=1

N
+ Z sinnf <7<X':L7('|Y:L,9> + <X:L,S"Y:L,('>> .
n=1

(24)

Here, we stress that the similarity between two images
is a real trigonometric polynomial in 6 (image rotation an-
gle) of degree N. Its 2N + 1 components are fully deter-
mined by computing (X§|Y) and the inner products be-
tween the subvectors associated with each frequency, i.e.,
(X5 Y5 o), (X5 Y5, (X5 IY5) and (X5,[Y3).
Finding the maximum of this polynomial amounts to find-
ing the rotation maximizing the image similarity.

Computing the coefficients of this polynomial requires a
total of D x (1 + 4N) elementary operations for a vector
representation of dimensionality D x (14 2N), that is, less
than twice the cost of the inner product between X* and Y*.
Once these components are obtained, the cost of finding the
maximum value achieved by this polynomial is negligible
for large values of D, for instance by simply sampling a few
values of 8. Therefore, if we offer the orientation invariant
property, the complexity of similarity computation is typi-
cally twice the cost of that of a regular vector representation
(whose complexity is equal to the number of dimensions).

Our trigonometric polynomial of similarity scores can be
rewritten as:

N N
K*(X*, Y%, 0) = c+2an COSﬂ9+an sinnf, (25)
n=1 n=1

with coefficients c, a,,, b,, given by (24). Note that in our
experiment it turns out that retrieval performance already
saturates at N = 3.
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Figure 4: Matching example of two images and similarity estimation for all possible image rotations. The image on the left undergoes rotation. Image
similarity versus rotation is shown in polar coordinates, with the angular direction corresponding to the image rotation, and the radial to the image similarity
score. This example is computed with angular modulation of VLAD, while using 3, 5 or 10 frequencies.

This strategy for computing the scores for all possible
orientations of the query is not directly compatible with
non-linear post-processing of X* such as component-wise
power-law normalization [41]], except for the subvector X§.
We adapt the power-law normalization to become compati-
ble with our strategy: we compute the modulus of the com-
plex number represented by two components (sin and cos)
associated with the same frequency n and the same orig-
inal component in ¢(x). These two components are then
divided by the square-root (or any power) of this modulus.

In detail, let X* and X* _ . be the i-th component

n,c,t n,s,t
of subvectors X7 . and X7 ., respectively. The modified
scheme considers the modulus of those components. The

power-law normalized version of the former turns out to be
*

Xn c,i

equal to -
(X*i,c,i—i_x*?m,s,i
law exponent. The counterpart sine component is obtained
similarly, and now the representation of the rotated image is

factorized equivalently to (22) and (23).

R where [ € [0, 1] is the power-
2

In our experiments we reduce the dimensionality of the
modulated image vector by PCA, as typically done with ag-
gregated representations. It is then not possible to use the
efficient polynomial of scores. In this case, we follow the
naive strategy, which is to compute the query representation
for several hypothesis of angle rotation, typically 8. In the-
ory, this multiplies the query complexity by the same factor
8. However, in practice, it is faster to perform the matrix-
matrix multiplication, with the right matrix representing
8 queries, than computing separately the corresponding 8
matrix-vector multiplications. In our former work [24]], the
naive approach was used in all cases, while now we explore
the proposed polynomial on the full vectors.

Figure [ presents the evaluation of (23)) for a pair of im-
ages. More frequencies improve the approximation. How-
ever, maximum similarity value is observed at a similar
point in all cases.

5. Translation covariant aggregation

5.1. Encoding the position

Following the objective of jointly encoding local de-
scription and geometry, we now deal with the location of
local features. We assume that an image is represented by a
set X' of triples of the form (x, u,, v, ). Local descriptor x
is now accompanied by position coordinates u, and v,.

Depending on the use-case and on the desired invariance,
u, and v, can be cartesian or polar coordinates. What-
ever the coordinate system is, our position encoding is per-
formed in a continuous manner, unlike SPM and visual
phrases [42]], where positions, respectively position differ-
ences, are quantized to a uniform grid. In the following we
consider cartesian coordinates.

We employ once more the angular embedding proposed
in Section[4.I] by mapping a spatial coordinate to an angle.
The kernel function ky defined for angles is periodic, while
the spatial coordinates of a local feature are not. Mapping
positions directly to [—, 7] would practically convert the
position domain into a torus. In such a case, patches lo-
cated at opposite edges of the image would be considered
close to each other. We simply handle this by mapping to
[—7/2,7/2]. Still, when employing multiple translations
this undesired effect emerges, but it does not seem to harm
the effectiveness of the method in our experiments. There-
fore, we convert the position coordinates to angles by

u— b v—w

2 2 (26)

YT max{hw) 0T max{h,w}
where h and w are the height and width of the image.

We now employ the procedure of Section ] We map
local coordinates u, and v, to (i) and a(d,), respec-
tively. Then, each one of them, can be encoded jointly with
descriptor x by m(x, a(t,)) and m(x, a(0,)). We ob-
tain two new match kernels K, (X°, V°) and K, (X°, )°),



Kym(Au) X Ky (Av)

Rum(AU) X Kip(Av), N=2

Rom(Au) x Ry (Av), N=3

Figure 5: Function kym(A0y) X kym(A6y) for & = 8 and its approximation k), (A0y) x k{},(A0,) using 2 and 3 frequencies, as implicitly defined
by the corresponding mapping e : [, 7] — R2V+1, The higher the number of frequencies, the better the approximation of the signature.

down-weighting or up-weighting matches by the consis-
tency of their u or v coordinate respectively.

We are not limited to modulation only by w or v (sin-
gle modulation), we can further encode both coordinates
by a double modulation. This is achieved by modulat-
ing descriptor x by both a(i,) and a(?,) with a function
My : REVFL 5 R2ZVHL 5 RD 5y RENHD?D yhere

My (X, 0(ly), (D)) =X @ a(ly) @ ady).  (27)

The match kernel for two sets of local descriptors can be
then written as

Kuo(X°, V%) o Y
(%, U, ) EX®
(Y7uy77)y)6yo

o (XY°), (28)

k(X, Y)ke(az, ﬂy)k/’e(@m ﬁy)

where each image is represented by vector X°. This is the
vector of aggregated double modulated local descriptors:

D mu(x, i), obs)). (29)

(%, ua,va ) EX®

X = p(x°)

Figure [5] illustrates the function kym(Ad) X kym(AD)
along with it approximation for 2 and 3 frequencies. We
want a “selective” kernel function in order to weight up
pairs of similar patches placed at similar locations. The
double modulation increases dimensionality too fast with
respect to the number of frequencies. As a trade-off be-
tween selectivity and the number of components we set k=8
and N=2. In this case, coordinates (u,v) are mapped to a 25
dimensional vector.

5.2. Translation invariance

We have assumed, up to now, that objects are aligned.
Next, we follow the same approach proposed for dominant
orientation, in order to offer translation invariance. Note
that rotation and scale invariance are lost in this case, but
there is some tolerance introduced by the continuous en-
coding and by the employed similarity function.

In the case of single modulation of u or v, we are able
to efficiently evaluate for multiple 1D translations with the

same trigonometric polynomial introduced before (23)). De-
tecting maximum similarity aligns objects with respect to u
or v, independently. An example is shown in Figure[6] An-
other choice is to maximize independently and to keep best
alignment of both. This is achieved by simply keeping the
maximum similarity score of the two.

One step further, we allow for 2D translation along with
the double modulation by w and v. Factorization similar
to that of (22)-(23) is still possible, resulting into another
trigonometric polynomial for efficient 2D translation

N N
Kuo(X8, V% 0,0) = a’ + g al cosni + g a? sinnd
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The image translation is denoted by (@, 9). Coefficients
a’...a® are given by inner products of particular sub-
vectors of the two image representation vectors. We skip
the details which are in analogy to those of (24).

Its computational cost is, once more, very small compar-
ing to performing the translations in a naive way. Compati-
bility with power-law normalization is achieved in a similar
fashion to that of Section ] but with groups of 4 compo-
nents in this case.

Our achievement of fast similarity computation for
multiple translations resembles the work of Henriques et
al. [43] who speed-up learning with multiple shifted ver-
sions of negative samples. They do this instead of perform-
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Figure 6: Matching example of two images and similarity estimation for all possible image translations. Image on the left undergoes translation indepen-
dently to the horizontal and the vertical direction. Modulated VLAD is used for the example.

ing costly sliding window based hard negative mining. In
our case, we obtain the translated models through latent
variables, i.e. translation on a given direction, parameter-
izing a trigonometric polynomial of similarity scores.

6. Experiments

Datasets. We evaluate the performance of the proposed ap-
proaches and compare with state-of-the-art methods on two
publicly available datasets for image and particular object
retrieval, namely Inria Holidays [25] and Oxford Buildings
5k [5]]. We also combine the latter with 100k distractor im-
ages to measure the performance on a larger scale. The
merged dataset is referred to as Oxford105k. Performance
is measured with mean Average Precision (mAP) [35].

We further employ the rotated Holidays dataset [44],
with images rotated to their natural orientation, in order to
evaluate our position covariant kernels. This is necessary
since this method is not rotation invariant. It is therefore
not applicable when object rotations exist. Note that the ro-
tation covariant kernel does not have such limitations. We
refer to the upright oriented Holidays dataset as Holidays”.

Our approach modulates any coding/pooling technique
operating as a match kernel. Therefore, we evaluate the
benefit of our approach combined with several coding tech-
niques, namely

o VLAD [15], which encodes a SIFT descriptor by con-
sidering the residual vector to the centroid.

o The Fisher vector [14, 41} 145]. For image classifica-
tion, Chatfield et al. [46] show that it outperforms con-
current coding techniques, in particular LLC [13]. We

adopt the standard choice for image retrieval and use
only the gradient with respect to the mean [15].

o Monomomial embeddings of order 2 and 3 applied on
local descriptors (See below for pre-processing), i.e.,
the functions ¢, in (3 and ¢3 in (6). For the sake of
consistency, we also denote by (; the function ¢ :
T — x.

We refer to these methods combined with single modula-
tion with the symbol “®”: VLAD®, Fisher®, ¢1®, p2®
and p3® for the angle modulation. Single position modu-
lations are denoted by VLAD®,, and VLAD®,, and double
modulation by VLAD®,, ,,. The particular case for which
we independently encode u and v and keep the maximum
score of both is referred as VLAD®,, /,,. The same notation
is followed for the Fisher and monomial embeddings.

In addition, we compare against the most related work,
namely the recent CVLAD [22] method, which also aims
at producing an image vector representation integrating the
dominant orientations of the patches. Whenever the prior
work is not referenced, results are produced using our own
implementations of VLAD, Fisher and CVLAD, so that the
results are directly comparable with the same features.

6.1. Implementation Details

Local descriptors. We use the Hessian-Affine detector [47]]
to extract the regions of interest, that are subsequently de-
scribed by SIFT descriptors [[1] post-processed with Root-
SIFT [48]]. Then, we apply PCA and the resulting vector is
subsequently /5-normalized. Following the typical proce-
dure for the Fisher vector [14} 41} [15], when applying PCA



we reduce the vector to 80 components. The same stands
for monomial embeddings. An exception is done for VLAD
and CVLAD with which we only use the PCA basis to cen-
ter and rotate descriptors as suggested by Delhumeau [49],
without dimensionality reduction.

The optimized Hessian-Affine detector of Perdoch et
al. [44] improves the retrieval performance. However, it is
not compatible with our angular encoding (rotation covari-
ant kernel) by discarding rotations and enforcing the gravity
vector assumption (up-right features). For the needs of the
angular modulation we use the original Hessian-Affine de-
tector [47], but modify it so that it has similar parameters
(enlarged measurement region by a factor of 2) and use a
lower detector threshold. In addition, we use the detector of
Perdoch et al. [44] for evaluating the position encoding. The
translation covariant kernel can benefit from the advantages
of up-right features when all depicted objects are aligned
with respect to rotation. The use of the latter is explicitly
stated in each case.

Codebook. For all methods based on codebooks, we only
consider distinct datasets for learning. More precisely and
following common practice, the k-means and GMM (for
VLAD and Fisher, respectively) are learned on Flickr60k
for Inria Holidays and Paris6k [50] for Oxford buildings.
We rely on the Yael library [51]] for codebook construction
and VLAD and Fisher encoding.

Post-processing. The final image vector obtained by each
method is power-law normalized [L1} 41} [15]. This pro-
cessing improves the performance by efficiently handling
the burstiness phenomenon. Exploiting the dominant orien-
tation in our covariant match kernel provides a complemen-
tary way to further handle the same problem. We mention
that using the dominant orientation is shown effective in a
recent work by Torii et al. [52]]. This post-processing, when
applied to the modulated vectors, inherently captures and
down weights patches with similar orientation or position.

In addition to power-law normalization, we rotate the ag-
gregated vector representation with a learned PCA rotation
matrix [53,54]. This aims at capturing the co-occurrences
to down-weight them either by whitening [53]] or a second
power-law normalization [54]. We adopt the latter choice
(with exponent 0.5) to avoid the sensitivity to eigenvalues
(in whitening) when learning PCA with few input data. We
refer to this Rotation and Normalization [55]] as RN.

Optionally, to produce compact representations, we keep
only the first few components (the most energetic ones) and
{>-normalize the shortened vector.

Query rotation. In order to obtain rotation invariance
jointly with power-law normalization we exploit the
trigonometric polynomial presented in Section[d} along with
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Figure 8: Performance on Holidays dataset of modulated VLAD for differ-
ent values of « and for different approximations. Results shown with RN.
A codebook of 32 visual words is used.

our modified scheme for power-law normalization. Image
similarity is evaluated for multiple query image rotations.

Since the aforementioned technique is not compatible
with RN or dimensionality reduction, in that case, we follow
the naive approach and apply rotations of the query image
and perform individual queries.

We apply 8 query rotations on Holidays dataset. On Ox-
ford5k, we rather adopt the common choice of not consid-
ering other possible orientations, since images are up-right.

Query translation. Our methods for position encoding are
evaluated on the upright Holidays" dataset. On Ox-
ford5k we follow the standard protocol and use the cropped
queries. However, we also consider the position of the
bonding box in the image as known, in order to properly
normalize the patch coordinates.

Once more, we use the trigonometric polynomial for
computation of the image similarity score. In the case of 1D
translations, we evaluate 25 possible translations on each
direction and a step of 10 pixels, that is 1 + 25 x 2 trans-
lations in total. While for 2D translations, we evaluate 20
translations per direction leading to a total of (20 +20+1)?
translations. The chosen step is also set to 10 pixels.

6.2. Impact of power-law normalization

In Figure [7] we present performance for power-law nor-
malization of different exponents. The non-modulated rep-
resentations appear to have optimal performance around
I = 0.2, which is in accordance with previous results [49]
in the case that the local descriptors are rotated with PCA.
The behavior is different for the modulated vectors, where
optimal performance appears for [ = 0. Note that in con-
trast to the standard power-law normalization scheme, the
modified scheme proposed in Section [4.3]does not produce
binary vectors for such a choice.

In the rest of our experiments we adopt an exponent
equal to 0 and 0.2 for the modulated and non-modulated
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Figure 7: Impact of powerlaw for modulated and non-modulated image representations. Results on Holidays dataset with a codebook of 32 visual words for
VLAD and Fisher vectors. We follow the modified power-law normalization for the modulated vectors.
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Figure 9: Performance comparison of modulated VLAD for increasing
number of components of the angle feature map. Zero corresponds to orig-
inal VLAD (not modulated). A codebook of 32 visual words is used.

vectors correspondingly. Such choices are not optimal
while learning the PCA rotation matrix for RN or for dimen-
sionality reduction, where we apply square-rooting. Any
difference observed in the reported performance compared
to our previous work [24]] is attributed to an optimal power-
law value used in this work and to the modified power-law
normalization scheme.

6.3. Impact of the parameters

The impact of the angle modulation is controlled by the
function kg parametrized by x and N. As shown in Fig-
ure 2] the value « typically controls the “bandwidth”, i.e.,
the range of A# values with non-zero response. The pa-
rameter N controls the quality of the approximation, and
implicitly constrains the achievable bandwidth. It also de-
termines the dimensionality of the output vector.

Figure[§]shows the impact of the selectivity of the kernel
signature on the performance. As to be expected, there is
a trade-off between defining too narrow or too large. The
optimal performance is achieved with « in the range [2, 8].

Figure [0] shows the performance for increasing number
of frequencies, which rapidly converges to a fixed mAP.
This is the mAP of the exact evaluation of (7). We set
N = 3 as a compromise between dimensionality expan-
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Figure 10: Impact of modulation on VLAD and Fisher: Performance ver-
sus dimensionality of the final vector for VLAD (top) and Fisher (bottom)
compared to their modulated counterparts. Codebook size is shown with
text labels. Results for Holidays dataset.

sion and performance. Therefore the modulation multiplies
the input dimensionality by 7.

6.4. Benefit of angular modulation

Table [T shows the benefit of modulation when applied
to the monomial embeddings 1, w2 and 3. The results
are on par with the recent coding techniques like VLAD or
Fisher improved with modulation. We consider the obtained
performance as one of our main achievements, because the
representation is codebook-free and requires no learning. In
addition, we further show the benefit of combining mono-
mial embeddings with RN. This significantly boosts perfor-
mance with the same vector dimensionality and negligible



Method | 1 P1® P2 P28 3 P3®
RN X X X
N - 1 3 6 - - 1 3 1 3 - 1
#dim 80| 240 560 1,040| 3,240 3,240| 9,720 22,680 9,720 22,680| 88,560| 265,680
mAP 35.4| 472 585 625 59.7 743 68.7 739 763 79.7 60.0 70.8
Table 1: Impact of modulation on monomial embeddings of order 1, 2 and 3. The performance is reported for Holidays dataset. RN = Rotation and
Normalization.
% Holidays [ Method | #C  #dim [ RN [ Holidays Oxf5k Oxf105k |
VLAD [15] 64 4,096 55.6 37.8 -
80 Fisher [15] 64 4,096 59.5 41.8 -
8 VLAD [15] 256 16,384 58.7 - -
a 70 it - Fisher [15] 256 16,384 62.5 - -
< 4- Arandjelovic [28] | 256 32,536 65.3 55.8 -
= 60 Delhumeau [49] 64 8,192 65.8 51.7 45.6
CVLAD e Zhao [22] 32 32,768 68.8 427 -
50 VLADII, N=3 wew VLAD® 32 28,672 77.8 56.2 514
o0 s VLAD® 32 28,672 | x 80.8 62.1 53.8
40103 104 165 F?sher@ 32 17,920 77.7 52.3 47.3
#dim Fisher® 32 17,920 x 81.3 61.3 52.6
Fisher® 64 35,840 x 83.6 65.1 -
20 OxfordSk 028 na 22,680 739 518 457
P2 n/a 22,680 | X 79.7 60.9 51.8
60 34 " 3@ n/a 265,680 70.8 55.0 -
— 128
o 16 Lo . soni
<50 e Tz}ble 2: Performance comparison Wlth.state of the. art approaches. Res1.11ts
I with the use of full vector representation. #C: size of codebook. #dim:
Number of components of each vector. Modulation is performed with N =
40 CVLAD e 3 for all cases, except to 3, where N = 1. We do not use any re-ranking
VLADO, N=3 e or spatial verification in any experiment. Results followed by a citation are
30 ¢2|:| ks the ones reported in the original publication.
10° 10 10°
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Figure 11: Comparison to CVLAD. We measure performance on Holidays
and OxfordSk for CVLAD and our proposed methods for increasing code-
book size. The codebook cardinality is shown with text labels for CVLAD
and modulated VLAD, while for 2 it is the dimensionality of the input
vectors after PCA reduction that we vary.

computational overhead.

To demonstrate the benefit of the proposed method, we
compare VLAD, Fisher and monomial embeddings to their
modulated counterparts. Figure [10[ shows that modulation
significantly improves the performance for the same code-
book size. Given that the modulated vector is 7 times larger
(with N = 3), the comparison focuses on the performance
obtained with the same dimensionality. Even in this case,
modulated VLAD® and Fisher® offer a significant im-
provement. We can conclude that it is better to increase the
dimensionality by modulation than using a larger codebook.

6.5. Comparison to other methods

We compare our approach, in particular, to CVLAD, as
this work also intends to integrate the dominant orientation
into a vector representation. We consistently apply 8 query
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rotations for both CVLAD and our method on Holidays
dataset. Figure [TT]shows the respective performance mea-
sured for different codebooks. The proposed methods ap-
pear to consistently outperform CVLAD, both for the same
codebook and for the same dimensionality. Noticeably, the
modulated embedded monomial ¢5® is on par with or bet-
ter than CVLAD.

We also compare to other prior works and present results
in Table E] for Holidays, Oxford5k and Oxford105k. We
outperform by a large margin the state of the art with full
vector representations. Further, our approach is arguably

Method #dim | full dim dim—1024 dim—128
VLAD 4,096 40.3 37.3 26.0
VLAD® | 28,672 53.8 40.7 +3.4) 28.7 +2.7)
Fisher 2,560 39.6 34.6 24.8
Fisher® | 17,920 52.6 40.3 +5.7) 27.6 (+2.8)
P2 3,240 37.2 324 21.3

Pa® 22,680 | 51.8  40.0 +7.6) 26.8 (+5.5)

Table 3: Oxford105k: Performance comparison (mAP) after dimensional-
ity reduction with PCA into 128 and 1024 components. The results with
the full vector representation are with RN. Observe the consistent gain (in
parentheses) brought by our approach for a fixed output dimensionality of
1,024 or 128 components.



[Method | N #C #dim|  Holidays [ Oxf5k ]
VLAD |n/a 128 16,384 67.5 53.3
VLAD |n/a 256 32,768 70.1 56.7
Fisher n/a 128 10,240 734 54.7
Fisher n/a 256 20,480 73.7 57.6

[x= [ [ u v ufvlu v ufvl
VLAD®,| 2 3220,480(68.8 72.5 72.4/49.3 50.9 50.8
VLAD®,| 3 3228,672(69.8 743 74.4/50.4 52.5 53.2
Fisher®, | 2 32 12,800|71.6 75.8 75.7|/49.8 51.0 51.5
Fisher®, | 3 3217,920(71.5 76.6 76.5/50.9 52.1 53.3
X= U, v

VLAD®,| 2 16 51,200 66.4 47.2
VLAD®y| 3 850,176 68.5 46.9
Fisher®, | 2 16 32,000 75.7 52.1
Fisher®, | 3 8 31,360 73.1 51.2

Table 4: Comparison of the translation covariant match kernel and baseline
VLAD and Fisher vectors. Results are reported using the feature detector
with the gravity vector assumption by Perdoch et al. [44]. Note that these
results are not directly comparable to the ones of Table 2] due to different
features and different versions of Holidays dataset (rotated vs original).

compatible with these concurrent approaches, which may
bring further improvement. Note that RN also boosts per-
formance for VLAD and Fisher. In particular with a code-
book of size 32, they achieve 50.4 and 49.8 respectively
on OxfordSk. Our scores on Holidays with Fisher® and
RN are also competitive to those reported by state-of-the-art
methods based on large codebooks [[12]. To our knowledge,
this is the first time that a vector representation compatible
with inner product attains such image search performance.

On Oxford5k and Oxford105k we do not evaluate multi-
ple query rotations for our method. A simple way to en-
force up-right objects for our baseline methods is to use
up-right features. Performance on Oxford5k achieved by
VLAD with codebook of size 256 and with up-right fea-
tures of the same detector is 53.4, while the corresponding
score with rotation invariant features is 52.4. Even though
switching off rotation when all objects are aligned seems
to slightly increase performance, our method appears to be
more effective (VLAD® achieves 56.2 with a codebook of
size 32). Moreover, note that up-right features are not ap-
plicable when object rotation exists, while our rotation co-
variant match kernel is.

Table [3|reports the performance after dimensionality re-
duction to 128 or 1024 components. The same set of local
features and codebooks are used for all methods. We ob-
serve a consistent improvement over the original encoding.

6.6. Position encoding

The selectivity parameter & is set equal to 8, similarly to
the case of dominant orientation. We evaluate the influence
of multiple translations applied to the query image in order
to identify the best alignment. In Figure [I2] we present the
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Figure 12: Impact of multiple translations to the performance of our trans-
lation covariant match kernel. Results reported on upright Holidays” and
Oxford5k. A codebook of 32 (8) visual words is used for single (double)
modulation. Results are reported using the feature detector with the gravity
vector assumption Perdoch et al. [44].

impact of the translation on the performance. Performance
improves as we evaluate multiple translations and saturates
around 250 pixels. In the rest of our experiments we set the
maximum translation value to 250 pixels.

Interestingly, on Holidays” the vertical coordinate is sig-
nificantly more informative than the horizontal one. This
might be due to the nature of this dataset; images depict-
ing the same landmark have been shot by the same per-
son. Therefore, the objects/scenes have been photographed
roughly at the same height, but with horizontal slides in a
panoramic manner. On OxfordSk this is not the case.

We evaluate the position encoding for single and double
modulation for comparable dimensionality (approximately
30K). The performance increases by taking into account
more translations for both methods. Single modulation per-
forms better than the double counterpart for the given di-
mensionality. The increase of dimensionality for the latter
is high, but it uses a much smaller codebook.

In Table 4] we show results for the baseline VLAD, and
Fisher vector, and their modulated counterparts with respect
to position. By considering 2 instead of 3 frequencies the
dimensionality of the modulated descriptor is reduced by
30% with just a small loss (1-2%). We note that, once more,
comparing to the baseline the advantage relies on the fact



that the visual codebook is smaller and the assignment to
that is faster to compute. Recall that now scale invariance
is lost, leading to lower performance on Oxford5k. In the
case of scale changes the dominant orientation is more dis-
tinctive and reliable. Overall, the orientation information
brings higher improvement compared to the spatial one.

In order to provide a direct comparison between the
two proposed methods we evaluate the translation covari-
ant match kernel on Oxford5k and with the same features
as those of the experiments reported in Table 2] VLAD®,,
and VLAD®,, achieve 47.1 and 50.1 respectively by com-
puting similarity for 25 translations on each direction with
a codebook of size 32. Concerning the position modulated
Fisher vectors the corresponding scores are 43.0 and 45.7.
It appears that encoding rotation is more effective for this
use-case. However, the translation covariant match ker-
nel opens other possible directions, such as application on
image classification, as a continuous alternative to spatial
pyramid match.

6.7. Timings

The image representation created by modulating the
monomial embedding ¢» using N = 3 takes on average
68 ms for a typical image with 3,000 SIFT descriptors. The
resulting aggregated vector representation has 22,680 com-
ponents. The average query time with such a representation
on Holidays is 5.8 ms, assuming no query rotation. Em-
ploying the trigonometric polynomial of scores results in
5.9 ms (6.1 ms) for 8 (64) possible fixed rotations. The cor-
responding timings for Oxford105k and vectors reduced to
128 dimensions are 55 ms (no rotations) and 134 ms (8 fixed
rotations). In the case of reduced vectors, the query rota-
tions are computed with the naive way. Note, these timings
are better than those achieved by a Bag-of-Words represen-
tation with a large vocabulary, for which the quantization
typically takes about 1 second with an approximate nearest
neighbor search algorithm like FLANN [56]]. Our timings
are measured with a single threaded implementation on an
Intel Xeon E5-4640@2.40GHz.

7. Conclusion

Our modulation strategy integrates geometric informa-
tion directly in the coding stage. Dominant orientation of
local features or their position is jointly encoded with the
local descriptor, in a continuous manner. Our method is in-
spired by and builds upon recent works on explicit feature
maps and kernel descriptors. Thanks to a generic formula-
tion provided by match kernels, it is compatible with coding
strategies such as Fisher vector or VLAD.

Invariance is offered by estimating maximum similarity
for multiple image rotations or translations. The nature of
our representation enables this very efficiently with a sim-
ple trigonometric polynomial. Our context (datasets) sim-
ply demands just a few sampling points on the rotation or
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translation domain. However, note that our methodology
provides high efficiency even for denser search.

Our experiments demonstrate a consistent gain com-
pared to the original coding in all cases. Angular modula-
tion appears to be more promising than that of position for
the task that we examine. Interestingly, our method is also
very effective with a simple monomial kernel, offering com-
petitive performance for image search with a coding stage
not requiring any quantization.

Whatever the coding stage that we use with our ap-
proach, the resulting representation is compared with inner
product, which suggests that it is compliant with linear clas-
sifiers such as those considered in image classification.
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