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Abstract.  This paper presents an approach for action recognition performed by 
human using the joint angles from skeleton information. Unlike classical ap-
proaches that focus on the body silhouette, our approach uses body joint angles 
estimated directly from time-series skeleton sequences captured by depth sen-
sor. In this context, 3D joint locations of skeletal data are initially processed. 
Furthermore, the 3D locations computed from the sequences of actions are de-
scribed as the angles features. In order to generate prototypes of actions poses, 
joint features are quantized into posture visual words. The temporal transitions 
of the visual words are encoded as symbols for a Hidden Markov Model 
(HMM). Each action is trained through the HMM using the visual words sym-
bols, following, all the trained HMM are used for action recognition.  

Keywords: Key words: 3D-joint locations, Action recognition, Hidden Markov 
Model, Skeleton angle  

1 Introduction  

Action recognition from video is considered as one of the most active research area in 
the field of computer vision, especially in the field of video analysis, surveillance 
system, and human-computer interaction. There is rich literature in action recognition 
in a wide range of applications, including computer vision, machine learning, and 
pattern recognition [22,23]. In the past years, efforts have focused on recognizing 
actions from video sequences with single camera. Among the different approaches, 
spatial-temporal interest points (STIP) and 2D binary silhouettes are the most popular 
representations of the human activity and action [8,14,17,18]. In the past decade, sev-
eral silhouette-based methods for action recognition were mainly categorized into two 
subsets. One is designed to handle the sequences of silhouettes in order to extract 
action descriptors. Then conventional classification strategies are frequently used for 



 

recognition [1,2,3,4]. The other category models the dynamics of the action explicitly 
based on the features extracted from each silhouette [5,6,7,16]. 

However, particular challenges in the human action recognition can alter the per-
formance of actions descriptor from 2D image sequences: intra-class variation, inter-
class dependence of action, different contexts of the same action and occlusions are 
the major challenges in action recognition. The use of several cameras significantly 
alleviates the challenges such as, occlusion, cluttered background, and viewpoints 
changes, which are the major low-level difficulties that reduce the recognition per-
formance from traditional 2D imagery. Furthermore, using multiple cameras provided 
stable information of actions from certain viewpoints. For example, taking account a 
direction of the camera makes possible to distinguish object pointing from reaching 
from depth map rather than in RGB space. However, earlier range sensors were either 
difficult to use on human subjects, or may provide poor measurement. To overcome 
the limitations of range sensors, depth has to be inferred from stereoscopic using low-
cost visible light cameras. Furthermore, 3D body configurations can be captured by 
multiple cameras in a predefined environment [25]. 

Skeleton is an articulated system, which consists of limbs segments and the joints 
between segments. Joints connect rigid segments and articulated motion can be con-
sidered as a continuous evolution of local poses configuration [10]. Therefore, for a 
given sequences of 3D maps, if we can get the stream of the 3D joints location, then 
reliably action recognition can be achieved by using the tracked joints locations, 
which significantly improves human action recognition that is under-recognized by 
traditional techniques. 

 Recently 3D information has been interpreted using special release of the Mi-
crosoft Kinect®, which provides both depth and RGB image streams. Although main-
ly targeted for commercial purpose, this device has brought considerable interest to 
the research in computer vision, and hand gesture control.  

In this article, we recommend a method for posture-based human action recogni-
tion. In the proposed work, 3D locations of joints from skeleton configurations are 
considered as inputs. Skeletal joints positions are extracted and simple relation be-
tween coordinates vector is used to describe the 3D human poses. We perform first 
the representation of human postures by selecting 7 primitive joints positions. The 
collection of joint-angle features is quantized through unsupervised clustering into k 
pose vocabularies. Then encoding temporal joint-angle features into discrete symbols 
is performed to generate Hidden Markov Model HMM (HMM) for each action. We 
recognize individual human action using generated HMM. The proposed method is 
evaluated with public 3D dataset.  

The contribution parts in this work consist of two parts: First, we use joint-
angle positions to describe posture representation as human action recognition system. 
Second, our method presents low computational cost since only 7 joints are adopted, 
and includes representation of poses that is view-invariant.  

The organization of this paper is as follows. We introduce the related works in sec-
tion 2. Section3 describes the method we used to elaborate the architecture of pro-
posed system from postures representation to features extraction. Section 4 addresses 



action recognition by an HMM. Section 5 explains experimental results. Section 6 
concludes the paper. 

2 Related work 

Efforts have been reported for the problem of human action recognition, by exploring 
different kind of visual information. Review on the categories of visual features can 
be found in [8,22,25]. However, only few attempts on action recognition using depth 
maps have been recently proposed. Therefore, we present a review of works based on 
3D poses action recognition since they are related to our work.  

The recent trends in the field of action recognition that use depth maps have in-
duced further progress. Uddin et al. [13] reported a novel method of action recogni-
tion using body joint angles estimated from a pair of stereo images from stereo cam-
eras. Thang et al. [21] developed a method for estimating body joint angles from 
time-series of paired stereo images recreded with a single stereo camera. Yu and Ag-
garwal [11] adopted an approach for action recognition where body parts are consid-
ered as a semantic representation of postures. Weinland et al. [26] proposed a model 
action involving 3D sequences of prototypes, which are represented as visual struc-
tures captured by a system of 5 cameras. The work proposed by Li et al.[9]  suggested 
to map the dynamic actions as a graph, and sample a set of 3D points from the depth 
maps to describe a set of salient postures, that correspond to the nodes in the graph. 
However, the challenge in the sampling technique is view dependent. Xai et al. [12] 
presented a method of action recognition based on 3D skeleton joints location. They 
proposed a compact representation of postures by characterizing human poses as his-
togram of 3D joints locations sampled inside spherical coordinates system.  

3 Body Parts Representation 

In this section we describe the human poses representation and joints position estima-
tion from skeleton model. This kind of representation involves 3D joints coordinates 
to describe a basic body structure reduced to 20 skeletal joints. Recent release of Ki-
nect® system offers better solution for the estimation of the 3D joint positions. Figure  
1 demonstrates the result of  the application of depth map and the 3D skeletal joints 
extraction according to algorithm of Shotton et al [24] who proposed to extract 3D 
body joint locations from a depth map.  

This algorithm is used to estimate pose locations of skeletal joints. Starting with a 
set of 20 joints coordinates in a 3D space, we compute a set of features to form the 
representation of postures. Among the 20 joints, 7 primitive joints coordinates are 
selected to describe geometrical relations between body parts. The category of primi-
tive joints offers redundancy reduction to the resulting representation. Most im-
portantly, primitive joints achieve view invariance to the resulting pose representa-
tion, by aligning the cartesian coordinates with the reference direction of the person. 
Moreover, we propose an efficient and view-invariant representation of postures using 
7 skeletal joints, including L/R hand, L/R feet, L/R hip, and hip center.    



 

 
Fig. 1. (a) Depth map image. (b) Skeletal joints positions proposed by [15] 
 
 

The hip center is considered as the center of coordinate system, and the horizontal 
direction is defined according to left hip and right hip junction. The remaining 4 skel-
etal locations are used for poses joint angles descriptor. 

3.1  Action Coordinates Description for Skeletal Joints 

View invariance is a challenging problem in action recognition. With the use of 3D 
body skeleton, we can capture the 3D positions of the human body. We propose a 
viewpoint-invariant representation of body poses by using 3D joint angles from skele-
tal data. In our approach of poses features inference, we achieve the view-invariant by 
aligning the Kinect® cartesian system with the direction of human body as shown in 
the Fig 2. We consider the hip center joint as the center of the new orthogonal coordi-
nates. We define the horizontal offset vector γ to represent the vector from left to right 
of the hip center, the reference vertical vector ρ as the vector that is perpendicular to 
the horizontal reference vector computed by rotating the vector γ by 90°.  The depth 
reference vector β is obtained by cross product operation between γ and ρ. The next 
steps demonstrate the procedure of aligning the orthogonal coordinates with the spe-
cific reference direction of the body. 

Let the system Landmark be defined as Rs (Ο,i,j,k), and  the actions landmark as 
Ra( Ó, γ, ρ, β). If we define the hip center as origin of the action coordinates, then the 
action horizontal direction γ is written as: 

 

𝛾 =   
ℎ𝑖𝑝𝑐𝑒𝑛𝑡𝑒𝑟! + 𝜆!
ℎ𝑖𝑝𝑐𝑒𝑛𝑡𝑒𝑟! + 𝜆!
ℎ𝑖𝑝𝑐𝑒𝑛𝑡𝑒𝑟! + 𝜆!

=
𝛾!
𝛾!
𝛾!

.                                                                                                          (1) 

Where    𝜆 = !
|!|
  , is the normal unit vector, and  u is defined as: 



𝒖   =
𝒍𝒉𝒙 − 𝒓𝒉𝒙
𝒍𝒉𝒚 − 𝒓𝒉𝒚
𝒍𝒉𝒛 − 𝒓𝒉𝒛

=
𝒖𝒙
𝒖𝒚
𝒖𝒛

.                                                            (2) 

where  lh , rh are left hip and right hip. 
By performing some vector manipulations, the reference vector ρ is defined as the 

vertical vector that is perpendicular to the horizontal plane, and the vector β is calcu-
lated from the cross product operation between γ and ρ vectors.  

For the point in the 3D coordinate system M(x,y,z), the unit vector translation from 
ΟM to ÓM is defined as: 

 

  𝒪𝑀 =   𝒪𝒪 +   𝒪𝑀 

  =   𝒪𝑀 + 𝒪𝒪   

=   𝑀!𝚤 +𝑀!  𝚥 +𝑀!𝑘 − ℎ𝑐!𝚤 − ℎ𝑐!𝚥 − ℎ𝑐!𝑘.                      (3) 

  
where hc, is the hip center, and i,j,k are the unit direction vectors of coordinates 

system. 
In order to express the ÓM as a function of skeletal landmarks, we first specify the 

system unit vectors i,j,k in terms of the action system coordinates as: 

                𝚤 = 𝑖!𝛾 + 𝑗!𝜌 + 𝑘!𝛽 

𝚥   = 𝑖!𝛾 + 𝑗!𝜌 + 𝑘!𝛽   

                                                    𝑘 =    𝑖!𝛾 + 𝑗!𝜌 + 𝑘!𝛽.                                      (4) 

 Substituting eq. 4 into eq. 3, we get the  final formula for the vector ÓM as: 
   

𝑂𝑀 = 𝑀!𝛾 +𝑀!𝜌 +𝑀!𝛽.                                                                     (5) 

 
 
 
 
 
 
 
 
 
 

Fig. 2. Coordinates system description of skeletal joints  



 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Joints angles features.(a) XY plane. (b) ZY plane 

3.2   Features Description 

In our approach human poses are distinguished by the idea of angles groups estimated  
from the four junctions, which are mentioned above. The joints angles groups are 
sampled from two planes, XY plane and ZY plane. In the XY plane, four angles rep-
resent the angles between hand left-foot left, hand left-hand right, hand right-foot 
right, and foot right-foot left respectively. Same joints angles are also defined from 
the plane ZY. The final features vector includes eight joints angles 
Ft={θ1,θ2,……θ8}at each pose instant t.  Fig. 3 shows the joint angles of two planes, 
where each angle is defined according to the corresponding four junctions which were  
illustrated in section 3. 

4 HMM for Action Recognition 

To apply HMMs to the problem of human action recognition, video frames 
V={I1,I2,…IT}are transformed into symbols sequences O. The transformation is done 
during the learning and recognition phases. From each video frames, a feature vector 
fi ϵ R,{ (i=1,2,….T),T is the number of the frames} is extracted, and fi is assigned to a 
symbol vj chosen from the set of symbols V. In order to specify observation symbols, 
we perform the clustering of features vector into k clusters using K-means. Then each 
posture is represented as a single number of a visual word. In this way, each action is 
a time series of visual words. The obtained symbol sequences are used to train HMMs 
to learn the correct model for each action. For the recognition of a test action, the 
obtained observation symbol sequence O = {O1,O2,….ON} is used to  determine 
across all trained  HMMs  which is the most accurate for  the tested human action.   
HMMs, which have been recently applied with particular success to speech recogni-
tion, are a kind of stochastic state transit model [20]. HMMs use observation sequence 
to determine the hidden states. We suppose O = {O1,O2,….ON} as the observation of 
the stochastic sequence. HMM with N state is specified by three groups of parame-
ters: β={A,B,π},where A={aij,=pr(qt=sj|qt-1=si)} denotes the state transition probabil-
ity matrix, used to describe the state transition between probability, where, aij is the 



probability of transiting from state qi to state qj, and B={bj(k)=pr(vk|qt=sj)}, is the 
matrix of observation probabilities, used to describe the state j, the probability of the 
output corresponding to the observed values bj(k)  of output symbol vk at state qj, and 
π=π{πi=pr(q1=si )} the initial state probability used to describe the observed sequence 
of probability when t=1. 

Each state of the HMM stochastically outputs a symbol. In state si, symbol vk is 
output with a probability of bi(k). If there are M kinds of observation symbols, bj(k) 
becomes an N x M  matrix, where N is the number of states in the model. The HMM 
outputs the symbol sequence O = O1,O2,. . . , OY from time 1 to T. The initial state of 
the HMM is also stochastically determined by the initial state probability π. 

To recognize the observed symbol sequences, we create a single HMM for each ac-
tion. For a classifier of C actions, we choose the model which best matches the obser-
vations from C HMMs (βi={Ai, Bj, πi}), i = 1 . . . C. This means that when a sequence 
of unknown category is given, we calculate Pr(βi |O) for each HMM βi, and select 
βc˜. For instance, given the observation sequence O = O1,. . . OT and the HMM βi, 
according to the Bayes’s rule, the problem is how to evaluate Pr(O|βi), the probability 
that the sequence was generated by HMM βi, which can be solved using the forward 
algorithm.  Then we classify the action as the one that presents the largest posterior 
probability 

 c˜=argmaxi(Pr(βi|O)).                                           (6) 

where i indicates the likelihood of test sequence for the ith HMM.  

5 Experiments  

We evaluate the performance of our algorithm with the public G 3D dataset collected 
by Bloom et al.[19]. In addition, we evaluated the algorithm with the MSR Action 3D 
dataset collected by Li et al.[9] and we compared our results with results reported in 
[9].  
 

Table 1. The subsets of actions used with the MSR Action 3D dataset 

 

Action Set 1 (AS1) Action Set2 (AS2) Action set3 (AS3) 

Horizontal arm wave  
Hammer 
Forward punch  
High throw  
Hand clap 
Bend 
Tennis serve 
Pickup & throw 

High arm wave 
Hand catch 
Draw x 
Draw tick 
Draw circle 
Two hand wave 
Forward kick 
Side boxing 

High throw 
Forward kick  
Side kick 
Jogging  
Tennis swing  
Tennis serve 
Golf swing  
Pickup & throw 



 

Table 2. Recognition rates of our method on the G3D action dataset. Results are compared with 
Bloom et al. [19]. 

 
 
 
 
 
 
 
 

Table 3. Recognition rates of our method on the MSR Action 3D dataset. Results are compared 
result with Li et al. [9].  

 
 
 
 
 
 
 

5.1 Experimental Results 

The results of our approach with the G3D dataset collected by Bloom et al.[19], con-
taining 22 types of human actions are summarized in table 2. Each action was per-
formed by 10 individuals for 3 times. Note that we only used the information from the 
skeleton for action recognition in our algorithm. The experiment was repeated 20 
times, and the averaged performance is reported in Table 2. The set of clusters was 
fixed to K=80, and the number of states to N=6. Half of the subjects were used for 
training and the rest of the subjects were used for testing.  Across experiments, the 
overall mean accuracy is 80.55% demonstrating that our method performs better 
recognition than Bloom et al [19]. 

We also tested our algorithm on the public MSR Action3D database that contains 
20 actions. We divided the actions into three subsets (similar to [9]), each comprising 
8 actions (see table 1). We used the same parameter settings as previously described. 
In this test, half of the subjects were used for training and the rest of the subjects were 
used for testing. Each test was repeated 20 times, and the averaged performance is 
given in Table3. We compared our performance with Li et al[9]: our algorithm 
achieves considerably better recognition rates than Li et al. 

Action Category Bloom et al. Our method 
Fighting  70.46% 79.84% 
Golf 83.37% 100% 
Tennis  56.44% 78.66% 
FPS 53.57% 54.10% 
Driving a car 84.24 81.34% 
Misc. 78.21% 89.40% 
Overall  71.04% 80.55% 

Action subset Li et al. Our method 
AS1 72.9% 86.30% 
AS2 71.9% 65.40% 
AS3 79.2% 77.70% 

Overall 74.7% 76.46% 



6 Conclusion  

This paper presents a framework to recognize human action from sequences of skele-
ton data. We use 3D joints positions inferred from skeleton data as input. We propose 
a method for postures representation that involves joint angles in xy and zy planes 
within a modified action coordinates system as description of postures. In order to 
classify action types, we model sequential postures with HMMs. Experimental results 
illustrate the performance of the proposed method, and also refer to a promising ap-
proach to perform recognition tasks using 3D points.   
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