N

N

Double Path Interference and Magnetic Oscillations in
Cooper Pair Transport through a Single Nanowire
Sergei V. Mironov, Alexandre S. Mel’Nikov, Alexandre I. Buzdin

» To cite this version:

Sergei V. Mironov, Alexandre S. Mel’Nikov, Alexandre I. Buzdin. Double Path Interference and
Magnetic Oscillations in Cooper Pair Transport through a Single Nanowire. Physical Review Letters,
2015, 114 (22), pp.227001 (1-5). 10.1103/PhysRevLett.114.227001 . hal-01168418

HAL Id: hal-01168418
https://hal.science/hal-01168418

Submitted on 25 Jun 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01168418
https://hal.archives-ouvertes.fr

PRL 114, 227001 (2015)

PHYSICAL REVIEW LETTERS

week ending
5 JUNE 2015

Double Path Interference and Magnetic Oscillations
in Cooper Pair Transport through a Single Nanowire

S. V. Mironov,"* A.S. Mel’nikov,> and A.I. Buzdin'
'University Bordeaux, LOMA UMR-CNRS 5798, F-33405 Talence Cedex, France
Institute for Physics of Microstructures, Russian Academy of Sciences, 603950 Nizhny Novgorod GSP-105, Russia
3L()bachevsky State University of Nizhny Novgorod, 23 Gagarina, 603950 Nizhny Novgorod, Russia
(Received 6 November 2014; published 2 June 2015)

We show that the critical current of the Josephson junction consisting of superconducting electrodes
coupled through a nanowire with two conductive channels can reveal the multiperiodic magnetic
oscillations. The multiperiodicity originates from the quantum mechanical interference between the
channels affected by both the strong spin-orbit coupling and the Zeeman interaction. This minimal two-
channel model is shown to explain the complicated interference phenomena observed recently in Josephson

transport through Bi nanowires.
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The systems with a few conductive channels provide a
unique possibility for constructing nanoelectronic devices
with tunable transport properties at the quantum length
scale. One of the promising realizations of these devices is
based on the localized electronic states appearing, for
example, at the surface of topological insulators [1], at
the edges of graphene nanoribbons [2], and in InAs, InSb,
and Bi nanowires [3—6]. The physics of the charge transport
through these states appears to be extremely rich due to
strong spin-orbit coupling, large anisotropic g-factors, etc.
The unique normal state properties naturally also cause
unusual proximity phenomena revealing themselves for the
edge states coupled to the bulk superconducting leads [1,3].
Such a coupling provides a possibility for constructing new
types of Josephson devices where an external magnetic
field H can effectively control the current-phase relation
[7,8] and provide favorable conditions for the appearance
of Majorana fermions [9—11].

In this Letter we provide a theoretical description of the
magnetotransport phenomena in a Josephson system con-
taining a few conductive channels which model the edge
states localized, e.g., at the surface of a single nanowire (see
Fig. 1). Specifically, we propose a generic model account-
ing for only two interfering electron paths or conductive
channels and strong spin-orbit and Zeeman interactions.
This model allows us to describe both orbital and spin
mechanisms of the magnetic field effect and to uncover the
microscopical mechanisms responsible for the formation of
the nontrivial ground state of the Josephson junction with a
nonzero superconducting phase difference. The Zeeman
interaction produces the spatial oscillation of the Cooper
pair wave function at the scale Avy/gugH (similar to the
ones in superconductor-ferromagnet structures [7]) which
results in the magnetic oscillations of the critical current with
the period Avg/gugL, where L is the channel length. The
orbital effect causes a standard phase gain ~27zHS/®,
(®y = mhc/|e] is the flux quantum) in the electronic wave
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function similar to the one appearing in the Aharonov-Bohm
(AB) effect. Here S is the area enclosed by the pair of
interfering paths projected on the plane perpendicular to the
magnetic field. The interfering quantum mechanical ampli-
tudes in this case cause the magnetic oscillations in the total
transmission amplitude with the period 2®,,/S. The Andreev
reflection at the superconducting boundaries can double the
effective charge in the oscillation period [12], and we show
that, in the general case, the resulting critical current
oscillates with the competing periods 29,/S and ®,/S.
The above physical picture should, of course, be modi-
fied in the presence of the spin-orbit coupling which can
produce the spontaneous Josephson phase difference ¢,
[8]. Despite the fact that this anomalous Josephson effect
was found within several different theoretical models
[13—19], its microscopical origin still remains disputable.
We clarify this question and show that the key ingredient
for the ¢g-junction formation is the nonparabolicity of the
electron energy spectrum, which in the presence of spin-
orbit coupling gives rise to the dependence of the Fermi
velocity on momentum direction. Under the influence of
the Zeeman field, such specific dependence results in the
spontaneous Josephson ground state phase ¢, and in the
renormalization of the above magnetic oscillation periods.
Turning to the existing experimental data, we must note
that the multiperiodic magnetic oscillations have recently
been observed in measurements of the Josephson critical

nanowire

|z

| substrate

FIG. 1 (color online). A model Josephson junction with a
two-channel nanowire in an external magnetic field.
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current through the Bi nanowires [20]. Such wires are
known to reveal the unusual combination of properties
mentioned above: (i) strong Rashba spin-orbit coupling
with the energy comparable to the Fermi energy [21,22],
(i) large g-factor ~10? for certain directions of the
magnetic field [23], (iii) large Fermi wavelength Ay ~
50 nm [24], which makes it easy to create nearly one-
dimensional wires. As we show below, our model can
provide a simple fit of the oscillatory behavior discovered
in Ref. [20], being, thus, a promising candidate for the
description of the interference physics in such systems.

Our calculation of the critical current of the two-channel
nanowire is based on the Bogoliubov—de Gennes (BdG)
approach, and the setup is shown in Fig. 1. The current-
phase relation of the Josephson junction is defined by the
dependence of the quasiparticle excitation energies € on the
Josephson phase ¢ (we put 2 = 1) [25]:

)=-2¢ > —tanh< ) (1)

e€(0;00)

where e should be found from the BdG equations

(& )00y e

The electron- and holelike parts of the quasiparticle
wave function u and v are multicomponent: u =
(uyp, gy uyp up)) and v = (vy4, 094,01, 0p)), Where
the first indices enumerate the conductive channels and
arrows indicate the z-axis spin projections. In Eq. (2) A is
the superconducting proximity induced gap and H is the
single-electron (4 x 4)-matrix Hamiltonian of the isolated
wire, which for zero magnetic field takes the form

A

H=1[¢(p)

Here p = —id, is the momentum along the x axis, &(p) is
the electron energy in the isolated wire, y is the chemical
potential, the term apé, describes the Rashba spin-orbit
coupling due to the broken inversion symmetry in the y
direction [26], T is a 2 x 2 unit matrix in the channel sub-
space, and the potential V(x) describes the scattering at the
S-nanowire interfaces. Applying the magnetic field we
should include the Zeeman term gupHé, into Eq. (3) and
replace p with (p + |e|A,/c), where A,(y) = —Hy. We
intentionally choose the direction of the magnetic field
which assumes the absence of the mixing of spin bands and
the resulting Majorana states [27-29] to focus on the study
of interference effects relevant to the experiment [20].
Our strategy is to find the quasiclassical solutions of
Eq. (2) inside the nanowire where both A and V are zero
and to match the solutions at the ends of the wire using
phenomenological scattering matrices. As a first step we
derive the quasiclassical version of Eq. (2) inside the wire.
Taking, e.g., the functions Uiy and U4, One can separate the

—p+aps] @1+ V(x). (3)

~+ ilp}x

fast oscillating exponential factor: u,y = u € , where

the Fermi momenta pj. and py for p > 0 and p <0 are
different in the presence of the spin-orbit coupling. Then,
from the BdG equation (2) with A= 0, V= 0,and H =0,
we find

E(p7) — u + apFlih, Fil (pF) £ dlo,iir, = ey, (4)

where & (p) = 0&/0p. The Fermi momenta are defined by
the equatlons E(pfF) = uFapr. Assuming a to be small,
we find pF ~ [1Fa/& (p%)] p%, with £(p%) = u, and obtain

FivpOyity, = ity (5)
The derivation of equations for ”niy vniT, and v,i [30]

is straightforward. Using the expansion & (pF) =
E(pY)Fap%e’ (p%)/€ (p%), we find the Fermi velocities:

vE =&(pY) £all = po&"(ph) /& (PY)].  (6)

Clearly the spin-orbit coupling results in the difference
between the Fermi velocities v} and vy of quasiparticles
with opposite momenta. This renormalization (6) is absent
only for the exactly quadratic spectrum. It is the difference
between v} and v which is responsible for the so-called
@o-junction formation (see Ref. [8] and the discussion
below). Thus, the above derivation explains the results of
Ref. [31], where no ¢y-junction was found for the £(p) «
p? spectrum, and the subsequent misinterpretation for the
conditions of the ¢(-junction emergence in Ref. [32]. Note
that another possibility to get the ¢,-junction even for the
quadratic electron spectrum is to consider nonballistic two-
dimensional quasiparticle motion [19].

Introducmg the four-component envelope wave func-
tions W \/Eulo" \/EMZG’ \/EET—G’ \/E{);:—a)
and neglectmg the spin flip at the wire ends, we can write
the matching conditions, e.g., for w? wi(£L/2) =

(:|:L/2) and w T(£L/2) = (iL/Z)
L is the wire length, the umtary matnces 7% and OF
describe the quasiparticle transmission along the wire, and
there is both normal and Andreev scattering at the wire
ends. The solvability condition det [0~ T~ QT+ — T] =0
[25,33] for the above matching equations defines the
quasiparticle energy spectrum e. Replacing a and g by
—a and —g, one finds ¢ for the opposite spin component.

The general form of the matrices 7+ and OF is

where

. < eiPEL 0 ) Qi_(i%ei A,T) 7
0 e irrLjF A¥ RT

The 2 x 2 matrices M* are defined from the solution of
Eq. (5) under the assumption of different g-factors g, and g,
in different channels: M, = exp [igTLF(=1)"ing/2]6,,,
where ¢p = HLD/®,, is the dimensionless magnetic flux
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(the channels pass along the plane y = +D/2),
gt = (e — g,upH)/v¥, and §,; is the Kronecker delta.
The phenomenological 2 x 2 matrices fizc(h) and Af(h)

describe the normal and Andreev reflection from the S
leads, respectively [34].

First, we consider the limit when the quasiparticles
experience full Andreev reflection in each channel sepa-
rately. We assume that such an Andreev reflection is caused
by the superconducting gap A, induced in the n-th channel
due to the proximity effect on the S leads. In the case when
the S leads cover the ending parts of the nanowire, the
asymmetry in the relative position between the channels
and the superconductor can result in A; # A,. The specific
values for A, strongly depend on the microscopical
properties of S-nanowire interfaces and hereafter we con-
sider A, to be the phenomenological parameters [35-39].
The above assumption of the full Andreev reflection means
that the size d of the induced gap regions (see Fig. 1) well
exceeds the relevant coherence length. In this limiting
case, the normal scattering vanishes (R = Rj" = 0) while
the Andreev scattering is described by the matrices
(AE),,; = 8, exp [Fip/2 — iarccos(e/A,)]. Note that for
high tunneling rates between the S leads and the conductive
channels, the quasiparticles reveal Andreev reflection
inside the bulk S leads. In our model this situation
corresponds to A = A, = A, (A, is the gap in the S leads).

In the short junction limit (eL/vF < 1), only the subgap
Andreev states contribute to the Josephson current. Taking
into account all of the spin projections, we obtain four
positive subgap energy levels:

e=A,|cos[p/2 = (=1)"n¢p/2 £ gupHL/vF]

. (8)

where n enumerates the channels. For large temperatures
T > A, the current-phase relation (1) takes the form

1= I,sinlp+,H + (~1)'xd] cos (r,H).  (9)
n=1,2

Here I, = |e|A2/4T is the critical current of the nth
channel at H = 0, the flux ¢ produces the oscillations of
I. similar to the ones in the superconducting quantum
interference device (SQUID), and the cosine term depend-
ing on the constants y,, = g,ugL(1/v} + 1/v5) describes
the oscillatory behavior of /.. due to the Zeeman interaction
similar to the one in superconductor-ferromagnet-super-
conductor structures [7]. The term 8,H = g,upLH(1/v}:—
1/v5) describes the ¢y-junction formation due to the spin-

orbit coupling [8]. The critical current corresponding to
Eq. (9) reads

I% = Iicos*(y H) + I5cos* (y, H)
+ 21,1, cos (yH) cos (y,H) cos 2np + (B1 — f-)H].
(10)

Interestingly, if g; # g, the spin-orbit coupling influences
the period of the SQUID-like orbital oscillations in I.(H),

i.e., renormalizes the effective quantization area enclosed
by the channels, S.;; = LD + ®(f, — f,)/2x. Choosing
the parameters relevant to the experimental situation in
Ref. [20], we obtain a variety of /.(H) dependencies shown
in Fig. 2. These dependencies reproduce not only multi-
periodic oscillations due to the interplay of the orbital
and Zeeman interactions observed in Ref. [20], but also
asymmetry in the form of the upper and lower envelopes. In
Figs. 2(a) and 2(b), one can clearly see two periods of oscil-
lations: 6H oy, = g/ Serr and 6H yeen=27/y,=27/y,. The
slow drift of the average current in Fig. 2(d) should be
considered, in fact, as a fragment of the large-period
oscillations caused by the difference between y; and y,.
Note that the period §H;, should be sensitive to the tilt of
magnetic field in the yz plane, which allows us to
distinguish it experimentally from the period 0H ...
Now let us study the crossover between the limits of
large and small Andreev reflection which occurs with the
decrease in the induced gap value. For simplicity we
neglect the spin-orbit and Zeeman interactions as well as
the difference between the induced gaps (A; = A, = A).
We assume the interchannel electron transfer to be the only
normal scattering mechanism at the wire ends (in the
opposite limit of the vanishing interchannel transfer, the
current-phase relation should be similar to the one for a
quantum box studied in Ref. [40]). Thus, we take

(Rg:.h)nl = t(l - 5111) and (Azt,h)nl = aénle$i¢/2’ where
a = —ilgsinh(qd,)/Z, q=+\/Ai—&/vp, t=qug/Z,
and Z = quvy cosh(gqd,) + iesinh(qd,) [41]. The inter-
channel hopping with the amplitude ¢ allows the formation
of closed electron orbits of nonzero area and, thus, can
strongly affect the electron transfer through the nanowire
due to the interference between the channels. Such a model
provides the simplest way to clarify whether these closed
orbits can cause the interplay between the 2®( and @, flux
periodicities in the critical current corresponding to the AB
interference of electrons and Cooper pairs.

In Fig. 3 we present the results of the critical current
calculations for the energy spectrum (see Ref. [42] for

800 IC (nA) (@) ;zz Ic (nA) : 8 HZeem : (b)
650

400 600 e H :
200 : ob___

0 1 2 H( 0 01 02 03 04 H(
800
200 I, (nA) e
60 WWWWWWWWMMWWWWVWWNMNWWWWWM
500 ‘ ‘

0 05 1 H(T)

FIG. 2 (color online). The critical current /. vs the magnetic
field H. We choose T=0.1K, A =75K, A, =1K,
vp =3 X 10° m/s, L =2 um, and (a) D =15 nm and (b),
(¢) D =50 nm. We also take (a) gy =g, = 1.5, (b) gl =0
and g, = 10, (¢c) gl =1 and g, = 10.
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FIG. 3 (color online). (a) The temperature crossover from the
2®-periodic to the ®(-periodic oscillation of the critical current
I.. The curves correspond to ® =0 and & = ¢,. We take
L=d,=0.0lvg/Ay and ppLy = n/4 + 2zm (m is an integer
number). (b) Dependencies [.(®) for T/Ay=35 and
prLo = n+ 2zm, where the values # are shown near the curves.

details). The period of I.(H) oscillations strongly depends
on both temperature 7 and the parameter pplLy =
2pr(L + 2d,). This parameter can be different in different
samples, resulting in the quasiparticle energy spectrum and
Josephson current which fluctuate from sample to sample
(mesoscopic fluctuations). In the limit d, > vy /A, we get
the case of independent channels considered above and
restore the ®, periodicity of the I.(H) oscillations. A
substantial difference between the curves /.(7) for ® =0
and ® = ®,, appears only for d; < vp/A, (this limit is
easily achievable since the induced gap A, can be much
smaller than the gap A, in the bulk of the S leads). In this
regime the Andreev reflection is weak and one can clearly
see the &) —2P, crossover. For low temperatures
T < vg/Ly, the curves in Fig. 3 are strongly different
since the system transparency and the corresponding
critical current oscillate with the electron AB period
2®,. For higher temperatures, the normal metal coherence
length v;/T can become less than the length L, of the
closed electron path and the 2®(-periodic interference of
electrons cannot contribute to the superflow through the
junction. Thus, with the temperature increase (' > vp/Ly),
the difference between curves in Fig. 3 vanishes and I,
oscillates with the AB period of the Cooper pairs (®). Note
that for ppL, = n/2, the energy spectrum reveals the
symmetry (P + @y, ¢ + ) = (P, @) [42] and, thus, the
I.(H) oscillations have the period ® for all temperatures.

At temperatures close to 7', it is natural to expect that the
system behavior can be described by the Ginzburg-Landau
model modified to include the Zeeman and spin-orbit
interactions. Keeping only the terms of the order O(¥?),
we consider the free energy F in the form [43,44]

F=Y / (a0, 4+ |Do, [+ pID2T, 2
n=1,2

_VH[\IIn(Dx\I]n)* +\IIZ(Dx\IIn)]}dx7 (11)
where ¥, is the superconducting order parameter in the n-

th channel, a(x) ~ [T — T.(x)], and, inside the wire a > 0,
D, = —id, +27A,/®, and the constant v ~ ag describes

the strength of the spin-orbit coupling. The oscillatory
behavior of ¥, due to the Zeeman interaction reveals only
for the magnetic fields above the tricritical Lifshitz point,
i.e., for y < 0 [7]. Accounting for the higher order gradient
term with >0 in Eq. (11), one finds an additional
characteristic length scale & = /f/|y| corresponding to
the period of the gap function oscillation in the Fulde-
Ferrell-Larkin-Ovchinnikov phase. The Josephson current
for y = 0 has previously been calculated in Ref. [45]. Here
we analyze the case of an arbitrary negative y restricting
ourselves by the condition &, < £ = /|y|/a, meaning the
absence of the intrinsic superconductivity in the wire. For
simplicity, we also assume that (i) the spin-orbit coupling is

weak and can be treated perturbatively, (i) L > , /&> + £eé,

(iii) inside the S leads the Zeeman interaction is negligible,
(iv) the conductivity of the S leads well exceeds the one in
the wire, so the inverse proximity effect can be neglected,
(v) at the S-nanowire interfaces there is no barrier and, thus,
the order parameter is continuous at x = +L/2:
U, (+£L/2) = A, exp (+ip/2). Using the boundary con-
ditions, we find the supercurrent j, = —cdF /A, in the
n-th channel [42]: j, = jS.”) sin[p + (=1)"7®/ Py + ¢o),
where sin ¢, = sinh(sL) cos y/+/sin® y + sinh?(sL),

(n) 16|€|ﬂA%k_ e_ka
C () Pk

sin(y —k*L)=k"(&;=2&)\/é/&p, s = vH/(4PkT k™), and
k=g /(E/g £ 1)/2.

Summing up the contributions from both channels, we
find the magnetic field dependence of the critical current
demonstrating the multiperiodic magnetic oscillations. The
period of the fast oscillations is again equal to ®,/LD,
while the slow oscillations caused by the Zeeman inter-
action are determined by the dependence of the coefficient
y on H. For long junctions with L ~ s~!, the term sinh?(sL)
can result in an increase in /, with increasing H. Obviously,
this effect can be suppressed because of a damping of the
superconductivity inside the S leads due to the magnetic
field. However, for the Pb films and LaAlO;/SrTiO;
heterostructures with strong spin-orbit coupling in rather
small magnetic fields, the increasing dependencies T'.(H)
were observed [46]. In this case, as follows from Eq. (12),
the dependencies /.(H) should reveal the increasing trend
due to the spin-orbit coupling.

To sum up, we have suggested phenomenological
models describing the distinctive features of the very rich
interference physics in nanowires coupled to the super-
conducting leads. These generic models allowed us to
demonstrate the crucial role of electron spectrum non-
parabolicity for the ¢q-junction formation, to explain the
multiperiodic magnetic oscillations in the Josephson trans-
port through Bi nanowires [20], and also to predict the
fundamental period doubling for the SQUID-like critical
current oscillations. The discovered phenomena are of

\/sinz;( +sinh?(sL),  (12)

227001-4



PRL 114, 227001 (2015)

PHYSICAL REVIEW LETTERS

week ending
5 JUNE 2015

current importance for the superconducting electronics
since they may open a way for the new generation of
Josephson z- and ¢(-junctions in which the current-phase
relation can be tuned by the magnetic field.

The authors thank H. Bouchiat, S. Guéron, A. Murani,
and J. Cayssol for the stimulating discussions. This work
was supported by the French ANR “MASH,” NanoSC
COST Action MP1201, the Russian Foundation for Basic
Research, the Russian Presidential Foundation (Grant
No. SP-6340.2013.5), the Russian Ministry of Science
and Education Grant No. 02.B.49.21.0003, and Russian
Science Foundation (Grant No. 15-12-10020).

[1] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[2] A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S.
Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

[3] J.-C. Charlier, X. Blase, and S. Roche, Rev. Mod. Phys. 79,
677 (2007).

[4] V. Mourik, K. Zuo, S. M. Frolov, S.R. Plissard, E. P. A. M.
Bakkers, and L. P. Kouwenhoven, Science 336, 1003 (2012).

[5] A. Nikolaeva, D. Gitsu, L. Konopko, M. J. Graf, and T. E.
Huber, Phys. Rev. B 77, 075332 (2008).

[6] H. O. H. Churchill, V. Fatemi, K. Grove-Rasmussen, M. T.
Deng, P. Caroff, H. Q. Xu, and C. M. Marcus, Phys. Rev. B
87, 241401(R) (2013).

[7]1 A. L. Buzdin, Rev. Mod. Phys. 77, 935 (2005).

[8] A. Buzdin, Phys. Rev. Lett. 101, 107005 (2008).

[9] J. Alicea, Rep. Prog. Phys. 75, 076501 (2012).

[10] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H.
Shtrikman, Nat. Phys. 8, 887 (2012).

[11] E.J. H. Lee, X. Jiang, R. Aguado, G. Katsaros, C. M. Lieber,
and S. De Franceschi, Phys. Rev. Lett. 109, 186802 (2012).

[12] J. Cayssol, T. Kontos, and G. Montambaux, Phys. Rev. B
67, 184508 (2003).

[13] A. A. Reynoso, G. Usaj, C. A. Balseiro, D. Feinberg, and
M. Avignon, Phys. Rev. Lett. 101, 107001 (2008).

[14] 1. V. Krive, A.M. Kadigrobov, R.I. Shekhter, and M.
Jonson, Phys. Rev. B 71, 214516 (2005).

[15] Y. Tanaka, T. Yokoyama, and N. Nagaosa, Phys. Rev. Lett.
103, 107002 (2009).

[16] J.-F. Liu and K. S. Chan, Phys. Rev. B 82, 125305 (2010).

[17] M.Chengand R. M. Lutchyn, Phys. Rev. B 86, 134522 (2012).

[18] A. Brunetti, A. Zazunov, A. Kundu, and R. Egger, Phys.
Rev. B 88, 144515 (2013).

[19] T. Yokoyama, M. Eto, and Yu. V. Nazarov, Phys. Rev. B 89,
195407 (2014); T. Yokoyama, M. Eto, and Yu. V. Nazarov,
arXiv:1408.0194.

[20] C. Li, A. Kasumov, A. Murani, S. Sengupta, F. Fortuna, K.
Napolskii, D. Koshkodaev, G. Tsirlina, Y. Kasumov, I.
Khodos, R. Deblock, M. Ferrier, S. Guéron, and H.
Bouchiat, Phys. Rev. B 90, 245427 (2014).

[21] Yu.M. Koroteev, G. Bihlmayer, J.E. Gayone, E.V.
Chulkov, S. Blugel, P. M. Echenique, and Ph. Hofmann,
Phys. Rev. Lett. 93, 046403 (2004).

[22] T. Hirahara, K. Miyamoto, I. Matsuda, T. Kadono, A.
Kimura, T. Nagao, G. Bihlmayer, E. V. Chulkov, S. Qiao,

K. Shimada, H. Namatame, M. Taniguchi, and S. Hasegawa,
Phys. Rev. B 76, 153305 (2007).

[23] B. Seradjeh, J. Wu, and P. Phillips, Phys. Rev. Lett. 103,
136803 (2009).

[24] P. Hofmann, Prog. Surf. Sci. 81, 191 (2006).

[25] C. W.J. Beenakker, Phys. Rev. Lett. 67, 3836 (1991).

[26] E. 1. Rashba, Fiz. Tverd. Tela (Leningrad) 2, 1224 (1960)
[Sov. Phys. Solid State 2, 1109 (1960)]; Yu. A. Bychkov and
E.I. Rashba, Pis’ma Zh. Eksp. Teor. Fiz. 39, 66 (1984)
[JETP Lett. 39, 78 (1984)].

[27] R.M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev.
Lett. 105, 077001 (2010).

[28] Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105,
177002 (2010).

[29] T.D. Stanescu, R. M. Lutchyn, and S. Das Sarma, Phys.
Rev. B 84, 144522 (2011).

[30] The straightforward denvatlon of Eq. (5) for un 1 nT’ and

Up) glves Fivy 0, = eily|, Fivg0ib,, = —¢b,,, and
FivEo, vF = evi.

[31] E. V. Bezuglyi, A. S. Rozhavsky, L. D. Vagner, and P. Wyder,
Phys. Rev. B 66, 052508 (2002); L. DellAnna, A. Zazunov,
R. Egger, and T. Martin, Phys. Rev. B 75, 085305 (2007).

[32] A. Zazunov, R. Egger, T. Jonckheere, and T. Martin, Phys.
Rev. Lett. 103, 147004 (2009).

[33] T. Schépers, Superconductor/Semiconductor Junctions,
Springer Tracts on Modern Physics Vol. 174 (Springer-
Verlag, Berlin, 2001).

[34] The unitarity condition requires the matrices Ri and

A7 to satisfy the relations RiRi' +ATAT = 1 and
RjiAjﬂ +ATRFT =0, where j,k € {e, h} and j # k.

[35] The accurate microscopical calculations of the induced gap
values A, can be performed in the spirit of Refs. [36-39].
However, such calculations cannot influence the results of
our paper since, for small tunneling rates between the
conductive channels and the § leads, the exact gap functions
A,, are just some energy-independent constants.

[36] A.F. Volkov, P. H. C. Magnée, B.J. van Wees, and T. M.
Klapwijk, Physica C (Amsterdam) 242, 261 (1995).

[37] G. Fagas, G. Tkachov, A. Pfund, and K. Richter, Phys. Rev.
B 71, 224510 (2005).

[38] J.D. Sau, R.M. Lutchyn, S. Tewari, and S. Das Sarma,
Phys. Rev. B 82, 094522 (2010).

[39] N. B. Kopnin and A. S. Melnikov, Phys. Rev. B 84, 064524
(2011).

[40] N.B. Kopnin, A.S. Melnikov, V.I. Pozdnyakova, D. A.
Ryzhov, I. A. Shereshevskii, and V. M. Vinokur, Phys. Rev.
Lett. 95, 197002 (2005).

[41] J. Demers and A. Griffin, Can. J. Phys. 49, 285 (1971).

[42] See  Supplemental Material at http:/link.aps.org/
supplemental/10.1103/PhysRevLett.114.227001 for a de-
tailed calculation of the critical current within the BdG
and Ginzburg-Landau formalisms.

[43] K. V. Samokhin, Phys. Rev. B 70, 104521 (2004).

[44] R.P. Kaur, D. F. Agterberg, and M. Sigrist, Phys. Rev. Lett.
94, 137002 (2005).

[45] A.I Buzdin and M. L. Kuli¢, J. Low Temp. Phys. 54, 203
(1984).

[46] H.J. Gardner, A. Kumar, L. Yu, P. Xiong, M.P.
Warusawithana, L. Wang, O. Vafek, and D.G. Schlom,
Nat. Phys. 7, 895 (2011).

227001-5


http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/RevModPhys.79.677
http://dx.doi.org/10.1103/RevModPhys.79.677
http://dx.doi.org/10.1126/science.1222360
http://dx.doi.org/10.1103/PhysRevB.77.075332
http://dx.doi.org/10.1103/PhysRevB.87.241401
http://dx.doi.org/10.1103/PhysRevB.87.241401
http://dx.doi.org/10.1103/RevModPhys.77.935
http://dx.doi.org/10.1103/PhysRevLett.101.107005
http://dx.doi.org/10.1088/0034-4885/75/7/076501
http://dx.doi.org/10.1038/nphys2479
http://dx.doi.org/10.1103/PhysRevLett.109.186802
http://dx.doi.org/10.1103/PhysRevB.67.184508
http://dx.doi.org/10.1103/PhysRevB.67.184508
http://dx.doi.org/10.1103/PhysRevLett.101.107001
http://dx.doi.org/10.1103/PhysRevB.71.214516
http://dx.doi.org/10.1103/PhysRevLett.103.107002
http://dx.doi.org/10.1103/PhysRevLett.103.107002
http://dx.doi.org/10.1103/PhysRevB.82.125305
http://dx.doi.org/10.1103/PhysRevB.86.134522
http://dx.doi.org/10.1103/PhysRevB.88.144515
http://dx.doi.org/10.1103/PhysRevB.88.144515
http://dx.doi.org/10.1103/PhysRevB.89.195407
http://dx.doi.org/10.1103/PhysRevB.89.195407
http://arXiv.org/abs/1408.0194
http://dx.doi.org/10.1103/PhysRevB.90.245427
http://dx.doi.org/10.1103/PhysRevLett.93.046403
http://dx.doi.org/10.1103/PhysRevB.76.153305
http://dx.doi.org/10.1103/PhysRevLett.103.136803
http://dx.doi.org/10.1103/PhysRevLett.103.136803
http://dx.doi.org/10.1016/j.progsurf.2006.03.001
http://dx.doi.org/10.1103/PhysRevLett.67.3836
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevB.84.144522
http://dx.doi.org/10.1103/PhysRevB.84.144522
http://dx.doi.org/10.1103/PhysRevB.66.052508
http://dx.doi.org/10.1103/PhysRevB.75.085305
http://dx.doi.org/10.1103/PhysRevLett.103.147004
http://dx.doi.org/10.1103/PhysRevLett.103.147004
http://dx.doi.org/10.1016/0921-4534(94)02429-4
http://dx.doi.org/10.1103/PhysRevB.71.224510
http://dx.doi.org/10.1103/PhysRevB.71.224510
http://dx.doi.org/10.1103/PhysRevB.82.094522
http://dx.doi.org/10.1103/PhysRevB.84.064524
http://dx.doi.org/10.1103/PhysRevB.84.064524
http://dx.doi.org/10.1103/PhysRevLett.95.197002
http://dx.doi.org/10.1103/PhysRevLett.95.197002
http://dx.doi.org/10.1139/p71-033
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.227001
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.227001
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.227001
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.227001
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.227001
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.227001
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.227001
http://dx.doi.org/10.1103/PhysRevB.70.104521
http://dx.doi.org/10.1103/PhysRevLett.94.137002
http://dx.doi.org/10.1103/PhysRevLett.94.137002
http://dx.doi.org/10.1007/BF00683274
http://dx.doi.org/10.1007/BF00683274
http://dx.doi.org/10.1038/nphys2075

