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Abstract. We propose a unified approach to propagate knowledge into a high-dimensional space from a small
informative set, in this case, scale invariant feature transform (SIFT) features. Our contribution lies in three
aspects. First, we propose a spectral graph embedding of the SIFT points for dimensionality reduction,
which provides efficient keypoints transcription into a Euclidean manifold. We use iterative deflation to
speed up the eigendecomposition of the underlying Laplacian matrix of the embedded graph. Then, we describe
a variational framework for manifold denoising based on p-Laplacian to enhance keypoints classification,
thereby lessening the negative impact of outliers onto our variational shape framework and achieving higher
classification accuracy through agglomerative categorization. Finally, we describe our algorithm for multilabel
diffusion on graph. Theoretical analysis of the algorithm is developed along with the corresponding connections
with other methods. Tests have been conducted on a collection of images from the Berkeley database.
Performance evaluation results show that our framework allows us to efficiently propagate the prior knowledge.
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1 Introduction
Graph-based learning algorithms have spread in recent years,
where initial information is asked to the user to highlight
critical points of the considered space, subject to exploration.
Consequently, the result is initialization dependent. How to
avoid manual interactions with the user and efficiently propa-
gate initial knowledge will be of a great interest in computer
vision field and its related areas, where identification of
objects in images is a challenging research subject. In this
case, a family of segmentation algorithms have been devel-
oped, where the image is modeled by a graph and the object
to be extracted is one for which a certain form of energy
functional is minimum.1,2 Different forms of energy func-
tional have been developed. In Ref. 3, the authors first
use patches of different shapes and different sizes to extract
different noise-robust features and then information theory-
based measures are computed and minimized. In Ref. 4, the
energy functional to be optimized is defined using the geo-
desic-distance combined with contours information, where
the geodesic-distance region information is reevaluated
according to the color model deduced by seeds introduced
by the user.

On another plan, two main approaches can be distin-
guished, whereas the segmentation process is either done
automatically or guided by information provided by the
user regarding the object of interest. To perform automatic
segmentation, the authors in Ref. 5 use the camera fixation

point on the object of interest to deduce a color model and
a surrounding contour. Iterating this process minimizes the
graph-cut energy and enhances the segmentation result.
In a similar approach, the energy functional to minimize in
Ref. 6 is expressed by an active contour model and the image
is divided into two regions using a graph-cut. The object of
interest is obtained by repeating this process until conver-
gence to a defined threshold.

In the interactive approach, the user supplies initial seeds
to differentiate between the object of interest and the back-
ground, hence, avoiding object/background estimations, and
depending on where the seeds are placed, two types of ini-
tialization are studied: one relying on the definition of parts
of the object and parts of the background,1,7 and the other
one starts with an initial contour,8 which may either enclose
the object, part of the object,9 or delimit the border between
the object and the background.10 However, this approach is
not effective if the segmentation process will be integrated
into an automated framework. Moreover, the result is initial-
ization dependent. Indeed, it is possible that, due to the com-
plexity of the image, among the seeds introduced by the user
to designate parts of the object (respectively, background),
some of them are of the same class of the background (resp.
object), or simply, the seeds are not representative enough.

To avoid manual interactions, we investigate in this paper
the use of the image keypoints as initial seeds to denote the
ground truth. These are automatically extracted and they are
first categorized and then diffused on the image to extract the
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object of interest. Avariety of keypoint descriptors have been
proposed, such as Harris corner detector,11 the scale invariant
feature transform (SIFT),12 gradient location and orientation
histogram,13 and difference of means.14 The SIFT descriptors
are currently most widely used in computer vision applica-
tions due to the fact that they are highly distinctive and
invariant to scale, rotation, and illumination changes. In addi-
tion, they are relatively easy to extract and to match against
a large set of local features. Several improvements of SIFT
features are proposed, including affine scale invariant feature
transform (ASIFT)15 and PCA-SIFT,16 which applies princi-
pal components analysis to the SIFT descriptor in order to
reduce the SIFT feature descriptor dimensionality from
128 to 36.

However, each keypoint is described by a considerable
number of attributes and then distributed in a high-dimen-
sional space. To overcome this constraint, in our approach
we propose to construct a similarity graph over the SIFT
descriptors. The eigendecomposition of the Laplacian
matrix, associated to this graph, allows us to identify the
dimensions that are carrying the relevant information. A
Euclidean distance is then defined on these dimensions as
proposed in Ref. 17, and the keypoints can be, therefore,
classified through agglomerative categorization. However,
if the image reveals a high number of keypoints, which is
often the case, the size of the Laplacian matrix may slow
down the calculation of eigenvalues and their correspondent
eigenvectors and the segmentation algorithm, therefore,
becomes very costly in computation.

Many works in the literature, including the matrix pertur-
bation theory18,19 and the Nyström method,20,21 have been
proposed to accelerate the spectral decomposition via the
approximation of the eigenvalues and their correspondent
eigenvectors. In Ref. 22, the approximation to the leading
eigenvector is based on a linear perturbation analysis of
matrices that are nonsparse, nonnegative, and symmetric.
Huang et al.23 studied the effects of data perturbation on
the performance of spectral clustering and its relation with
the perturbation of the eigenvectors of the Laplacian matrix.
In its turn, the Nyström method has been very successful.
In Ref. 24, the authors show its use to approximate the
eigendecomposition of the Gram matrix in order to speed
up kernel machines. In Ref. 25, Fowlkes et al. present
a technique for the approximate solution of spectral partition-
ing for image and video segmentation based on the Nyström
extension. Other variants of the Nyström method are pre-
sented in Refs. 26 and 27

Practically, one can use the subjective scree-test of Cattell28

to determine the most important k’th dimensions that enclose
the pertinent information. This criterion is based on the analy-
sis of differences between consecutive eigenvalues, where a
breakpoint would be located where there is the biggest change
in the slope of the curve of eigenvalues. The first k’th eigen-
values then correspond to the number of dimensions to retain
(see Ref. 29 for detail). Another simple way is to consider the
first dominant eigenvalues for which their sum is greater than
a defined threshold (e.g., ≥80%).

1.1 Outline
The basic idea of our paper is to show how it is possible to
learn from a restricted data set and propagate the acquired
knowledge to a high-dimensional database. To evaluate

the effectiveness of our approach, in this article we focus
on the case of image segmentation. The proposed framework
operates in two phases. In the first phase, seeds are automati-
cally identified and classified, and in the second phase,
a propagation of these seeds on the graph allows to highlight
the object of interest. The following steps outline our
approach:

• A set of SIFT keypoints is extracted from the image
and used to construct a visual similarity graph. A spec-
tral embedding of this graph is performed to define
a Euclidean reduced space.17 To speed up the spectral
graph embedding, we propose to use the power itera-
tion algorithm combined with the deflation method
to compute the first k’th largest eigenvalues and
their corresponding eigenvectors, which are often well
suited to define the new pose space basis. To help the
categorization process, we perform a discrete regulari-
zation of the graph constructed over the SIFT key-
points expressed in their new coordinates. Thus, the
clustering is done in the inferred regularized Euclidean
manifold.

• At this step, a new graph is constructed over the image.
It will contain labeled vertices and unlabeled ones. By
using our multilabel propagation algorithm, an energy
functional is formulated and minimized. The objects of
interest are then extracted when some conditions are
satisfied.

It is worth mentioning that at each step, we will use a dif-
ferent graph, i.e., a graph over the SIFT descriptors (feature
space) to allow spectral embedding and a graph in the mea-
sure space (the embedded space) to manifold regularization
in order to enhance the accuracy of the keypoints categori-
zation. Once the keypoints are labeled (classified), a final
graph is constructed over the whole image (initial input
data). It will contain labeled vertices and unlabeled ones.
It will be used to propagate the information of the labeled
keypoints in their neighborhoods. A graphical illustration
of our framework is presented in Fig. 1.

The rest of the paper is organized as follows. Section 2
gives an overview of our spectral embedding framework.
In Sec. 3, we explain how to speed up eigendecomposition.
In Sec. 4, we present a discrete regularization on the graph in
the embedded space to enhance data robustness. In Sec. 5,
a multilabel diffusion algorithm is detailed along with con-
nections with other methods. Experimental results are pre-
sented and commented in Sec. 6. In Sec. 7, we conclude
our paper and discuss future extension.

2 Spectral Embedding Framework
The goal of the spectral analysis of the image to be seg-
mented is to find an optimized pose space where relevant
information is captured and similarity between pixels can
be easily expressed. With this intention, a set of SIFT
keys X ¼ fPt1; Pt2; : : : ; Ptng is extracted from an image
through the local invariant feature extraction12 (see Fig. 2).

Each SIFT key Pti ¼ ðXi; Ri; UiÞ is described by its two-
dimensional location in the image Xi ¼ ðxi; yiÞ, its gradient
magnitude and orientation Ri ¼ ðri; aiÞ, and a descriptor
vector Ui ¼ ðui;1; : : : ; ui;128Þ, which represents the local tex-
ture in the image. From the set X ¼ fPt1; Pt2; : : : ; Ptng ∈
Rl, we develop an appropriate Euclidean mapping
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Y ¼ fy1; y2; : : : ; yng ∈ Rm representing the pose space
(m ≪ l). To do this, we build an undirected graph G on
X and we learn a kernel matrix that respects the provided
side-information as well as the local/nonlocal geometry of
the SIFT features. Through the eigendecomposition of the
matrix associated to the random walks on G, we define a
diffusion distance Dðyi; yjÞ.

2.1 Random Walks on Graph
Let G ¼ ðV; E; wÞ be a weighted undirected graph, which is
a finite set of vertices V ¼ fv1; v2; : : : ; vng connected by a
finite set of edges E ⊆V × V. Let fðvÞ be a function defined
on the vertex v in a K-dimension space and represented by
the tuple ff1; f2; : : : ; fKg ∈ RK . We denote by u ∼ v the
fact that the node u belongs to the ε-neighborhood of v
[u ∈ N εðvÞ], which is defined by

N εðvÞ
¼ fu ∈ V; fðuÞ ¼ ðf 0

1; · · · ; f
0
KÞ∕jfi − f 0

i j≤εi;0 < i≤Kg :

(1)

N εðvÞ includes all vertices close and similar to the vertex
v. Also, we define a function F on the patch surrounding the
vertex v as follows:

FðvÞ ¼ ffðuÞ; u ∈ N εðvÞg: (2)

For example, for a sequence of images, fðvÞ may be the
spatiotemporal attributes of a vertex v. FðvÞ can represent
the characteristics of the vertex in its neighborhood: a pattern
projecting a composite element or a visual vocabulary.

We use a Gaussian kernelW to define the weight function
and to give a measure of the similarity between a vertex and
its neighbors. This weight function can incorporate local and
nonlocal features and is defined by

wðu;vÞ

¼

8
<

:
exp

!
−k fðuÞ−fðvÞk 2

h2
1

"
·exp

!
−k FðuÞ−FðvÞk 2

h2
2

"
foreachu∼v

0 otherwise
:

(3)

hi can be estimated using the standard deviation depending
on the variations of jfðuÞ − fðvÞj and k FðuÞ − FðvÞk over
the graph, respectively. So, given the scale parameter
hi > 0, whiðu; vÞ → 0 when k :k ≫ hi and whiðu; vÞ → 1
when k :k ≪ hi.

We recall that the degree dðvÞ of a node v and the volume
VolðGÞ of G are defined, respectively, by

dðvÞ ¼
X

u∼v
wðu; vÞ; and VolðGÞ ¼

X

v∈V
dðvÞ: (4)

The graph G reflects the knowledge of the local/nonlocal
geometry of the data set X and is seen as a Markov chain; a
random walk on this graph is the process that begins at some
vertex u and at each time step, moves to another one vwith a
probability proportional to the weight of the corresponding
edge. Thus, one can define the diffusion on G as the set of
the possible visited vertices starting from a given one, where
a transition is made in one time step from a vertex u toward
another vertex v chosen randomly and uniformly among its
neighborhood with the probability

pð1Þðu; vÞ ¼ PrðXtþ1 ¼ vjXt ¼ uÞ ¼ wðu; vÞ
dðuÞ : (5)

The transition matrix P on G given by P ¼
fpð1Þðu; vÞju; v ∈ V; u ∼ vg explicits all possible one time
step transitions and, therefore, provides the first-order infor-
mation of the graph structure.

Let Pt be the t power of the matrix P, which denotes the
set of all transition probabilities pðtÞðu; vÞ of going from one
vertex u to another one v in t time steps. So, on the graph G,
pðtÞðu; vÞ reflects all paths of length t between the vertex u
and the vertex v. This t-time steps transition probability
satisfies the Chapman–Kolmogorov equation that for any k
such that 0 < k< t,

Fig. 1 Our diffusion framework.
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Fig. 2 Scale invariant feature transform keypoint extraction.
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pðtÞðu; vÞ ¼ PrðXt ¼ vjX0 ¼ uÞ

¼
X

y∈V
pðkÞðu; yÞ · pðt−kÞðy; vÞ: (6)

It has been shown in Ref. 30 that

lim
t→∞

pðtÞðu; vÞ ¼ dðvÞ
VolðGÞ

: (7)

2.2 Diffusion Maps-Based Clustering
For clustering purposes, a connection with the spectral
decomposition of Pt is made (see Ref. 31 for detail) to gen-
erate Euclidean coordinates for the low-dimensional repre-
sentation of the vertices of the graph G at the time t,
where, for each vertex, these coordinates are given by

ΨtðuÞ ¼ ½λt1ψ1ðuÞ; λt2ψ2ðuÞ; : : : ; λtnψnðuÞ&T: (8)

fλti;ψ iðuÞg are the eigenvalues and the eigenvectors associ-
ated with the normalized graph Laplacian of Pt. They cor-
respond to the nonlinear embedding of the vertices of the
graph G onto the new Euclidean pose space. Thus, the dif-
fusion distance D2

t ðu; vÞ between the nodes of the graph G
can be expressed in the embedded space by

D2
t ðu;vÞ¼

X

i≥1
λt2i ½ψ iðuÞ−ψ iðvÞ&2 ¼ k ΨtðuÞ−ΨtðvÞk 2: (9)

We note, in particular, that this new distance depends on
the time parameter t, which is considered here as a precision
parameter, where, for large values, more information on the
structure of the graph are captured. Based on their new coor-
dinates, a classification of the SIFT keypoints can now be
easily performed by using an agglomerative categorization
algorithm based on the Euclidean distance defined in Eq. (9).

3 Eigendecomposition Speed Up
The eigenvalues of the matrix Pt are obtained by solving its
characteristic equation

λn þ cn−1λn−1 þ cn−2λn−2 þ : : : þ c0 ¼ 0: (10)

But for large values of n, this equation is difficult and
time-consuming to solve. An alternative method for approxi-
mating these eigenvalues is to use the power iteration
algorithm and the deflation method to find the dominant
eigenvector and the corresponding eigenvalue, exploiting
the fact that eigendecomposition of the matrix Pt provides
a set of eigenvalues ordered as follows:

1 ¼ jλ0j ≥ jλ1j ≥ jλ2j ≥ : : : jλnj ≥ 0: (11)

Indeed, the power iteration algorithm is a simple method
for computing the largest eigenvector because it accesses to a
matrix only through its multiplication by vectors. This prop-
erty is particularly interesting in the case of large matrices.
And the deflation method allows us to remove at each iter-
ation the largest eigenvalue and rearrange the matrix so that
the largest eigenvalue of the new matrix will be the second
largest eigenvalue of the original matrix. This process can be
repeated to compute the remaining eigenvalues.

3.1 Power Iteration Algorithm
To have a good approximation of the dominant eigenvector
of the matrix Pt, one can choose an initial approximation V0,
which must be a nonzero vector in Rn so that the sequence of
its multiplication by Pt will converge to the leading eigen-
vector. Algorithm 1 summarizes the power iteration method.
In algorithm dividing by α in step 4 is to scale down each
approximation before proceeding to the next iteration in
order to avoid reaching vectors whose components are too
large (or too small). For large powers, k, we will obtain
a good approximation to the dominant eigenvector. Indeed,
since Pt is a symmetric positive-semidefinite matrix, it has
a basis of orthonormal eigenvectors fψ ig, and the initial
approximation V0 can then be written as

V0 ¼
Xn

i¼1

βiψ i; βi ∈ R: (12)

Suppose that ψ1 is the eigenvector corresponding to the
dominant eigenvalue λ1; then we can easily write

Vk¼ Pk
t V0 ¼

Xn

i¼1

βiPk
tψ i ¼

Xn

i¼1

βiλkiψ i

¼ β1λk1

#
ψ1 þ : : : þ

Xn

i¼2

βi
β1

!
λi
λ1

"
k
ψ i

$
:

(13)

Since λ1 is the dominant eigenvalue, it follows that
λi∕λ1 < 1, and ∀ i > 1; limk→ ∞ ðλi∕λ1Þk→ 0. We

then deduce that Pk
t V0 ≈β1λk1ψ1, β1 ≠0, which means

that the direction of Vk stabilizes to that of ψ1, and since
ψ1 is a dominant eigenvector, it follows that any scalar multi-
ple of ψ1 is also a dominant eigenvector. Furthermore, since
the eigenvalues of Pt are ordered like in Eq. (11), the power
method will converge quickly if jλ1j∕jλ2j is small and slowly
if jλ1j∕jλ2j is nearly equal to 1.

3.2 Deflation Method
Once an approximation to the dominant eigenvector ψ i is
computed, the Rayleigh quotient provides a correspondingly
good approximation to the dominant eigenvalue λi, which is
given by

Algorithm 1 The power iteration algorithm.

Require: V0, a nonzero vector in Rn

Ensure: An approximation to the dominant eigenvector

1: whilek Vk − Vk−1k ∕k Vk k ≥ ε do

2: Set Xk ¼ PtVk−1

3: Set αk ¼ the largest element of Xk (in absolute value)

4: Set Vk ¼ Xk∕αk

5: end while

6: return Vk , an approximation to the leading eigenvector of Pt
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λi ¼
ðPt

iψ iÞT · ψ i

ψT
i ψ i

: (14)

To compute the remaining eigenvalues, one can modify
the matrix Pt

i into Pt
iþ1; : : : ; as follows:

Pt
iþ1 ¼ Pt

i − λi
ψ iψT

i

ψT
i ψ i

: (15)

Pt
iþ1 has the same eigenvectors and eigenvalues as Pt

i
except that λi is shifted to 0, leaving the other eigen-
values unchanged. Indeed, for any eigenvector ψ j, j ¼
ðiþ 1; iþ 2; · · · ; nÞ of Pt, Pt

iþ1 satisfies

Pt
iþ1ψ j ¼ Pt

iψ j − λi
ðψ iψT

i Þ · ψ j

ψT
i ψ i

¼ Ptψ j − λi
ψ i · ðψT

i ψ jÞ
ψT
i ψ i

: (16)

Since the set of the eigenvectors fψ ig forms an orthonor-
mal basis (i.e., ψT

i ψ j ¼ 0), Pt
iþ1ψ j ¼ Pt

iψ j. Thus, the eigen-
vectors of Pt

iþ1 are the same as those of Pt
i and its

eigenvalues are λiþ1; · · · ; λn. The power method applied
to Pt

iþ1 will then pick out the next largest eigenvalue λiþ1.
To determine the principal eigenvalues that gather the rel-

evant information, the eigengap heuristic approach computes
the gap between consecutive eigenvalues λk and λkþ1. The
first λk carrying the principal information are those for
which λk≫ λkþ1 (i.e., jλk− λkþ1j is relatively large).
Practically, the 6∕7 first eigenvalues are sufficient to gather
the pertinent information in the reduced space. To verify this
method, we have conducted tests on different matrices of
different sizes. We were limited to the 10th first important
eigenvalues and eigenvectors. For example, in Fig. 3, the
eigengap is well observed between the first and the second
eigenvalue.

As shown in Fig. 4, there is practically no difference
between the eigenvalues using this technique and those
using the singular value decomposition (SVD) method.

However, regarding the computation time (see Fig. 5), it
is clear that the iterative deflation approach is more efficient
since it can compute only the first ones, while the SVD
method has to decompose the whole matrix to extract the
considered eigenvalues and eigenvectors and consequently
consumes more time.

4 Manifold Regularization
Our motivation for this section is to transcribe the variational
methods on a discrete graph. To this end, we propose to
extend the scope of discrete regularization32 to high-dimen-
sional data. We have implemented algorithms for regulariza-
tion on graphs with p-Laplacian, p ∈&0;þ∞½, for denoising
and simplification of data in the embedded space. Readers
can refer to Ref. 33 for further details on this formalism.

Recall that the function f0 is an observation of an original
function f affected by noise n: f0 ¼ f þ n. The discrete
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regularization of f0 ∈ ðVÞ using the weighted p-Laplacian
operator consists of seeking a function f' ∈ ðVÞ, which is
not only smooth enough on G, but also sufficiently close to
f0. Variational models of regulation can be formalized by
the minimization of two terms of energy using either the
isotropic p-Laplacian or the anisotropic p-Laplacian. The
isotropic model gives the following formulation of the min-
imization problem:

f' ¼ min
f∈ ðVÞ

#
1

p

X

v∈V
k ∇fvk p2 þ

λ
2
k f − f0k 2 ðVÞ

$
; (17)

where p ∈ 0;þ∞ is the smoothness degree and λ is the fidel-
ity parameter, called the Lagrange multiplier, which specifies
the trade-off between the two competing terms. ∇f repre-
sents the weighted gradient of the function f over the graph.
The solution of Eq. (17) leads to a family of nonlinear filters
parametrized by the weight function, the degree of smooth-
ness, and the fidelity parameter.

The first energy in Eq. (17) is the smoothness term or reg-
ularizer, whereas the second is the fitting term. To solve
the regularization problem, we use the Gauss-Jacobi iterative
algorithm, where, for all ðu; vÞ in E:
8
>>>><

>>>>:

fð0Þ ¼ f0

γðkÞðu; vÞ ¼ wðu; vÞðk ∇fðkÞðvÞk p−22 þ k ∇fðkÞðuÞk p−22 Þ

fðkþ1ÞðvÞ ¼
pλf0ðvÞþ

P
u∼v

γðkÞðu;vÞfðkÞðuÞ

pλþ
P
u∼v

γðkÞðu;vÞ

;

(18)

where γðkÞ is the function γ at the step k. The weights wðu; vÞ
are computed from f0 or can be given as an input.

At each iteration, the new value fðkþ1Þ at a vertex v
depends on two quantities: the original value f0ðvÞ and a
weighted average of the existing values in a neighborhood
of v. We recall that the weighted gradient of the function
f in a vertex v can be interpreted as the gradient magnitude
at v. It may therefore be interpreted as the regularity of
the function in the neighborhood of this vertex. It is
defined as

k ∇fðuÞk 2 ¼
hX

v∼uwðu; vÞðfv − fuÞ2
i
1∕2

: (19)

Figure 6(a) represents the projection of SIFT keypoints
cloud over its three principal components in the diffusion
space. The graph is built in this space and the new coordi-
nates are classified. As we can see, the parameter p consid-
erably affects the result of the regularization. We observe the
difference between Fig. 6(b) with p ¼ 2 and Fig. 6(c) with
p ¼ 0.5. More simplification of the graph is obtained for
p < 1. In this case, the manifold shape is more clear and
the classification process is improved when p decreases.

5 Multilabel Diffusion Algorithm

5.1 Graph-Based Segmentation Method
Let V be the set of all image points, VL ¼ fvkgmk¼1 be the
set of labeled points (SIFT keypoints), and VU ¼
fvugNu¼mþ1 be the set of unlabeled points. We extend the
function fðvÞ defined on the vertex v (see Sec. 2.1) to

incorporate its label value f0 ¼ l ∈ L ¼ f1; 2; : : : ; cg. So
f will be represented by the tuple ff0; f1; : : : ; fKg. To
make the similarity between the graph vertices insensitive
to hi (see Sec. 2.1), we normalize each wðu; vÞ as follows:
wðu; vÞ ¼ wðu; vÞ∕½maxv∼uwðu; vÞ&.

According to the theory of graph-based semisupervised
learning, the label propagation can be formulated as the

Fig. 6 Manifold denoising with difference p.
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minimization of the energy function expressed in Eq. (17).
Generally, we use p ¼ 2; then our strategy for propagating
the labels can be formulated as an iterative process, where at
every iteration step, only the labels of the unlabeled vertices
are updated and the labels of the labeled ones will be
clamped. For an unlabeled pixel v, its label at iteration t
will be computed by
8
>>><

>>>:

f ¼ ðf0; f1; · · · ; fKÞ

f0 ¼ f0 ∈ L

ftþ1
v ¼ 1

λþ
P

u∼vwðu;vÞ

h
λf0v þ

P
u∼v

wðu; vÞftu
i : (20)

If we set λ ¼ 0 and since pðu; vÞ ¼ wðu; vÞ∕
½
P

v∼uwðu; vÞ& [see Eqs. (4) and (5)], one can define the
propagation process from a vertex u toward another vertex
v by

ftþ1
v ¼ 1P

u∼vwðu; vÞ
X

u∼v
wðu; vÞftu ¼

X

u∼v
pðu; vÞftu:

Then, Eq. (20) can be rewritten as
8
<

:

f0 ¼ f0 ∈ L

ftþ1ðvÞ ¼
P
u∼v

pðu; vÞftðuÞ ∀ v ∈ V : (21)

Then, the multilabel propagation procedure on the graph
G can be seen as a specific classification C on V and con-
sidered as a function that assigns labels for each vertex v.

f0ðvÞ ¼ argmax
l≤c

Cvl: (22)

Initially, let C0vl ¼ 1 if v is labeled as l and C0vl ¼ 0 other-
wise. For unlabeled vertex v, C0vl ¼ 0.

Therefore, Eq. (22) can be reformulated as

f0ðvÞ ¼ argmax
f0ðuÞ≤c

½f0ðvÞ ¼ f0ðuÞ&: (23)

The basic idea of our label propagation method is to con-
sider an iterative algorithm where each node absorbs some
label information from its neighborhood and updates its own
label. This procedure will be repeated until all the nodes of
the graph are labeled and not changed.

5.2 Links with Other Methods
Graph-based segmentation algorithms have been very suc-
cessful in recent years. The modern variants are mainly
built from a small set of basic algorithms: graph-cuts,
random walk, and the shortest path algorithms. Recently,
these three algorithms have been placed in a common frame-
work that allows them to be considered as a special case of
a general semisupervised segmentation algorithm with dif-
ferent choices of parameters p and q.34

X

ðu;vÞ∈E
½wðu; vÞpjfu − fvj&q; (24)

where wðu; vÞ is a function that measures the interactions
between the nodes of the graph and jfu − fvj measures

the distance between them. Thus, our Eq. (21) can be easily
driven from this framework if we pose p ¼ q ¼ 1 and
pðu; vÞftðvÞ ¼ wðu; vÞjfu − fvj. Furthermore, a connection
between Eq. (21) and the energy minimization by Markov
random field (MRF) models can also be established.
Recall that an MRF is often described by a set of V vertices
along with a neighborhood on them. On each vertex v, there
is a random variable fðvÞ, which can take values from a finite
set (e.g., fðvÞ ∈ L ¼ f1; 2; : : : ; cg). The goal is to find f'
that satisfies

f' ¼ argmin

#X

v

ϕ½fðvÞ& þ
X

u∼v
ϕuv½fðuÞ; fðvÞ&

$
: (25)

ϕ½fðvÞ& is a function on the variable fðvÞ and can be
defined as a likelihood energy where

ϕ½fðvÞ& ¼

8
<

:

∞ if ftþ1ðvÞ ≠ftðvÞ
ði:e:; the label ofvwill be changedÞ

0 otherwise
;

(26)

and ϕuv½fðuÞ; fðvÞ& measures the information exchange
between the labeled vertex u and the unlabeled vertex v.
It can, in turn, be defined by referring to Eqs. (21) and
(24) as ϕuv½fðuÞ; fðvÞ& ¼ pðu; vÞjfðuÞ − fðvÞj. pðu; vÞ is
the probability corresponding to the random walk from u
toward v. Since v has to be labeled, fðvÞ ¼ ∞; then the min-
imization of Eq. (25) is equivalent to solving the following
optimization problem:

min
fðuÞ∈L

#X

u∼v
pðu; vÞjfðuÞ − fðvÞj

$
: (27)

Thus, we have shown that our method can be derived
from the framework of energy minimization of MRF.

6 Experiments
We conducted our experiments on a collection of images
issued from the Berkeley database.35 First, SIFT keypoints
are located on each image; then a visual similarity graph
is constructed over these keypoints. Each vertex represents
an SIFT keypoint and a weighed edge measures the similar-
ity between two connected vertices u and v by using
the Gaussian kernel wuv [Eq. (3)]. Fð:Þ is the histogram of
the patch surrounding the considered point expressed in the
LAB color space. Many variations of distances k Fu − Fvk 2
can be used, including the Bhattacharya, Kolmogorov, inter-
section, and correlation distances.36

Once the similarity between keypoints is defined, the
eigendecomposition of the underlying Laplacian matrix
leads to the definition of a new reduced pose space, where
each SIFT keypoint is expressed by new Euclidean coordi-
nates calculated according to its surrounding patch.

Figure 7 shows some classification results on the key-
points cloud projected in the Euclidean pose space and their
projections on the input images. The graphs in Fig. 7(b)
represent the regularized versions of those in Fig. 7(a)
with p ¼ 2. As we can see, this has highly made in evidence
the object of interest class and the foreground class [see
also Fig. 7(c)]. Figure 7(d) shows object/foreground
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segmentation corresponding to the seeded images in
Fig. 7(c). These labels are propagated on the corresponding
image graphs to extract the object of interest and obtained
after 100 iterations using Eq. (21).

The F-measure, recall, and precision computed as
described in Ref. 37 and corresponding to these images are
shown in Table 1 (image1, image2, image3, image4, and
image5 correspond to the images in Fig. 7(c) from left to
right, respectively).

Figure 8 presents another example of multilabel image
segmentation. In Fig. 8(a), SIFT keypoint classes are
identified by using spectral embedding into a Euclidean
manifold. These classes are better separated through mani-
fold denoising with p ¼ 2 [Fig. 8(b)]. The projections of
these classes on the images are presented in Figs. 8(c)
and 8(d).

To assess the performance of our framework, we used two
objective segmentation measures: the Rand index (RI) and
the global consistency error (GCE). The RI measures the
consistency of a labeling between a given segmentation and

its corresponding ground truth by using the ratio of pairs of
pixels having the same labels. The goal is to assign two pix-
els to the same class if and only if they are similar in order to
measure the percentage of similarity. The GCE measures the
extent for which one segmentation can be viewed as a refine-
ment of the other one. It is worth mentioning that the sim-
ilarity measure RI is better when it is higher and the distance
measure GCE is better when it is lower. Often, GCE favors
oversegmentation. Hence, to compare with other methods,

Fig. 7 Keypoints classification and their projections on the reduced space and the input images.

Table 1 F-measure, recall, and precision.

Image1 Image2 Image3 Image4 Image5

F-measure 0.8669 0.9211 0.9743 0.5937 0.9024

Recall 0.9911 0.9718 0.9734 0.4532 0.9996

Precision 0.7703 0.8754 0.9751 0.8606 0.8225
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we have performed the segmentation without considering
regions of an area <2% of the image.

A comparative evaluation of our method with four well-
known ones, namely fuzzy C-means algorithm,38 WaterShed
algorithm,39 normalized cuts,40 and the mean-shift algo-
rithm,41 is implemented by using the library Pandore.42

We recall that the mean shift implementation performs
clustering in a five-dimensional space with two spatial
and three color dimensions. Note that the kernel width

has a very important effect on the algorithm performance.
However, the choice of an appropriate value for the kernel
width is still an open problem. In the present experiments,
the spatial parameter hs is set to 10 and the range (color)
kernel bandwidth was fixed to 20.

Figure 9 shows qualitative results of our algorithm
applied on the same images in Fig. 7. It can be observed
that when the seeds are well dispersed on the image, the seg-
mentations have a closer similarity with the human one.

Fig. 8 Multilabel image segmentation.
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Quantitative results of our experiments are summarized
by the histograms in Figs. 10 and 11. These results clearly
show that the original images and the results obtained by
our approach are very close. Indeed, most of the GCE
values found are <0.19, while a larger number of RI values
are grouped below 0.8. The peaks found for GCE and for
RI are 0.18 and 0.89, respectively. The corresponding seg-
mented images are very similar visually and quantitatively.

It can be seen from the x axis that the poor performance of
segmentation from the GCE and the RI point of view are 0.01
and 0.53, respectively. This includes images that are difficult

to segment. This can be explained by the problem of borders
and by the choice of segmentation parameters.

Table 2 presents the performance evaluation of our
method compared with the state-of-art ones. As it can be
observed, our method produces better results. It gives the
lowest measure of GCE and the highest mean RI score.

The proposed method gives better results by producing
a fewer number of homogeneous regions. Also, it provides
a good solution to overcome the sensitiveness to the initial-
ization condition of clusters. The oversegmentation is
decreased effectively since this method integrates diffusion
with automatic seeded region growing.

Fig. 9 The performance comparison with several segmentation approaches.

Fig. 10 Distribution of the global consistency error. Fig. 11 Distribution of the Rand index.
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7 Conclusions
In this paper, we have addressed the problem of learning
from a small informative set using a graph-based diffusion
model. A case study was automatic image segmentation.
We presented a unified framework through three steps: a
spectral graph embedding of SIFT keypoints, manifold
denoising with p-Laplacian, and a multilabel diffusion algo-
rithm. With this scheme, a set of keypoints are automatically
located on the image and, subsequently, distributed over the
background and the regions of interest (ROIs). Thereafter,
these seeds are propagated progressively on the graph, rep-
resenting the image, which exploits the acquired semantic
information and visual features among pixels until the seg-
mentation of the ROI. We implemented the proposed frame-
work and obtained encouraging experimental results. The
proposed method produces good boundaries with respect
to the ground-truth segmentation and relatively higher pre-
cision compared with other methods. Nevertheless, the num-
ber of classes needs to be specified in advance.

We currently explore the possibility of generalizing
the concept of this framework for video segmentation by
considering three-dimensional images representing the video
keyframes and incorporating audio features to help our
categorization.
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