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DEMYSTIFYING REACHABILITY

IN VECTOR ADDITION SYSTEMS

JÉRÔME LEROUX AND SYLVAIN SCHMITZ

Abstract. More than 30 years after their inception, the decidability
proofs for reachability in vector addition systems (VAS) still retain much
of their mystery. These proofs rely crucially on a decomposition of runs
successively refined by Mayr, Kosaraju, and Lambert, which appears
rather magical, and for which no complexity upper bound is known.

We first offer a justification for this decomposition technique, by
showing that it computes the ideal decomposition of the set of runs,
using the natural embedding relation between runs as well quasi or-
dering. In a second part, we apply recent results on the complexity
of termination thanks to well quasi orders and well orders to obtain a
cubic Ackermann upper bound for the decomposition algorithms, thus
providing the first known upper bounds for general VAS reachability.

Keywords. Vector addition system, reachability, well quasi order,
ideal, fast-growing complexity

1. Introduction

Vector addition systems (VAS), or equivalently Petri nets, find a wide range
of applications in the modelling of concurrent, chemical, biological, or busi-
ness processes. Their algorithmics, and in particular the decidability of
their reachability problem, is a central component to many decidability re-
sults spanning from the verification of asynchronous programs [15] to the
decidability of data logics [4, 10, 8]. Considered as one of the great achieve-
ments of theoretical computer science, the original 1981 decidability proof
of Mayr [34] is the culmination of more than a decade of research into the
topic, and builds notably on an incomplete proof by Sacerdote and Ten-
ney [38]. The proof was simplified a year later by Kosaraju [24]; see also
the account by Müller [35] and the self-contained and detailed monograph
of Reutenauer [37] on this second proof. In spite of this success, as put by
Lambert [26] “the complexity of the two proofs (especially in [34]) wrapped
the result in mystery and no use of their original ideas” was made before he
provided a further simplification ten years later in 1992, and employed it to
prove results on VAS languages.

At the heart of the various proofs lies a decomposition technique, which
we dub the Kosaraju-Lambert-Mayr-Sacerdote-Tenney (KLMST) decompo-
sition in this article after its inventors. In a nutshell, the KLMST decompo-
sition defines both a structure and a condition for this structure to represent
in some way the set of all runs witnessing reachability. The algorithms ad-
vanced by Mayr, Kosaraju, and Lambert compute this decomposition by
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successive refinements of the structure until the condition is fulfilled. The
KLMST decomposition is a powerful tool when reasoning about VAS runs,
and it has notably been employed

• by Habermehl, Meyer, and Wimmel [17] to show that the downward-
closure of a labelled VAS language is effectively computable—let us
mention a new proof by Zetzsche [44], which does not explicitly rely
on the KLMST decomposition—, and
• by Leroux [29] to derive a new algorithm for reachability based on

Presburger inductive invariants—he would later re-prove the correc-
tion of this new algorithm without referring to the KLMST decompo-
sition, yielding a compact self-contained decidability proof for VAS
reachability [30].

Our feeling however is that the decidability of VAS reachability, and es-
pecially the KLMST decomposition, is still shrouded in mystery. The result
is highly complex on two accounts:

On a conceptual level the various instances of the KLMST decomposition
seem rather magical. How did Mayr come up with regular constraint graphs
with a consistent marking? How did Kosaraju come up with generalised
VASS and his θ condition? How did Lambert come up with his perfect
condition on marked graph-transition sequences? Most importantly, which
guidelines to follow in order to develop similar concepts for VAS extensions
where the decidability of reachability is still open, e.g. for unordered data
Petri nets [28], pushdown VASS [27], or branching VAS [39]?

Arguably, the issue here is not to understand how these structures and
conditions are used in the algorithms themselves, nor to check that they
indeed yield the decidability of VAS reachability. Rather, the issue is to
explain how these structures and conditions can be derived in a principled
manner.

On a computational complexity level no complexity upper bound is known
for the general VAS reachability problem, while the best known lower bound
is ExpSpace-hardness [32]. The only known tight bounds pertain to the
very specific case of 2-dimensional VAS with states, which were recently
shown to have a PSpace-complete reachability problem [3].

As observed e.g. by Müller [35] the algorithms computing the KLMST
decomposition are not primitive-recursive, but no one has been able to derive
a complexity upper bound for these algorithms, while the new algorithm of
Leroux [29, 30] using Presburger inductive invariants seems even harder to
analyse from a complexity viewpoint.

Our contributions in this paper are first to propose an explanation for
the KLMST decomposition. Using a well quasi ordering of VAS runs de-
fined by Jančar [20] and Leroux [30] and recalled in Section 5, we show a
Decomposition Theorem (Theorem 8.1): the KLMST algorithm computes an
ideal decomposition of the set of runs, i.e. a decomposition into irreducible
downward-closed sets (see Section 8). The effective representation of those
ideals through finite structures turns out to match exactly the structures
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and conditions expressed by Lambert [26], see sections 6 and 7. This pro-
vides a full formal framework in which the reachability problem in various
VAS extensions might be cast, offering some hope to see progress on those
open issues.

The second contribution in Section 9 is the proof of a “cubic Ackermann”
complexity upper bound on the complexity of the KLMST decomposition
algorithm, i.e., an Fω3 upper bound in the fast-growing complexity hierarchy
(Fα)α defined in [41]. We apply to this end the recent results on bounding
the length of controlled bad sequences over well quasi orders from [42, 40]. It
yields the first known upper bound on VAS reachability. As a byproduct, it
also yields the first complexity upper bound for numerous problems known
decidable thanks to a reduction to VAS reachability, e.g. [4, 15, 10, 8] among
many others.

We start in sections 2, 3, and 4 by presenting the necessary background
on VAS, well quasi orders, and ideals.

2. Vector Addition Systems

Vectors and sets of vectors in Zd for some natural d are denoted in bold
face. A periodic set is a subset P of Zd that contains the zero vector 0

def
=

(0, . . . , 0) and such that p + q ∈ P for all p, q ∈ P .
A vector addition system of dimension d in N is a finite set A of actions

a in Zd [23]. The operational semantics of VASs operates on configurations,
which are vectors c in Nd. A transition is then a triple (u,a,v) ∈ Nd×A×Nd
such that v = u + a, where addition operates componentwise; the set of
transitions of A is denoted by TransA.

A prerun over A is a triple ρ = (u, w,v) where u and v are two config-
urations in Nd and w is a sequence of triples (u1,a1,v1) · · · (uk,ak,vk) in
(Nd×A×Nd)∗. The configurations u and v are called respectively the source
and target of ρ, and are denoted respectively by src(ρ) and tgt(ρ). The ac-
tion sequence σ = a1 · · ·ak is called the label of ρ. We write PreRunsA for
the set of preruns over A.

A prerun (u, w,v) is connected if w = (u1,a1,v1) · · · (uk,ak,vk) is a
transition sequence in Trans∗A such that

• either w = ε is the empty sequence and then u = v,
• or k > 0 and u = u1, v = vk, and uj+1 = vj for all 0 ≤ j < k.

We call a connected prerun ρ a run. If there exists a run ρ from source u

to target v labelled by σ, we denote by u
σ−→ v this unique run ρ. Notice

that it implies v = u +
∑k

j=1 aj ; note however that given u, v, and σ,

v = u +
∑k

j=1 aj does not necessarily imply that u
σ−→ v.

We are interested in this paper in the following decision problem:

Problem: VAS Reachability.

input: A VAS A, a source configuration x, and a target configura-
tion y.

question: ∃σ ∈ A∗.x
σ−→ y?
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x

y

x−−→(1,3)−−→(2,4)−−→(3,5)−−→(4,6)−−→(3,4)−−→(2,2)−−→y

Figure 1. A run from x = (0, 2) to y = (1, 0) labelled by
(1, 1)4(−1,−2)3.

Given two configurations x and y in Nd, we define the set of runs of A from
x to y as

RunsA(x,y)
def
= {x σ−→ y | σ ∈ A∗} . (1)

The VAS reachability problem can then be recast as asking whether the set
RunsA(x,y) is non empty.

3. Well Quasi Orders

A quasi-order (qo) is a pair (X,≤) whereX is a set and≤ is a reflexive and
transitive binary relation over X. We write x < y if x ≤ y but y 6≤ x. Given

a set S ⊆ X, we define its upward-closure ↑S def
= {x ∈ X | ∃s ∈ S . s ≤ x}

and downward-closure ↓S def
= {x ∈ X | ∃s ∈ S . x ≤ s}. When S = {s}

is a singleton, we write more succinctly ↑s and ↓s. An upward-closed set
U ⊆ X is such that U = ↑U and a downward-closed set D ⊆ X such that
D = ↓D. Observe that upward- and downward-closed sets are closed under
arbitrary union and intersection, and that the complement over X of an
upward-closed set is downward-closed and vice versa.

3.1. Characterisations. A finite or infinite sequence x0, x1, x2, . . . of el-
ements of a qo (X,≤) is good if there exist two indices i < j such that
xi ≤ xj , and bad otherwise. A well quasi order (wqo) is a qo with the
additional property that all its bad sequences are finite.

Example 3.1 (Finite sets). As an example, a set X ordered by equality is a
wqo if and only if it is finite: if finite, by the pigeonhole principle its bad
sequences have length at most |X|; if infinite, any enumeration of infinitely
many distinct elements yields an infinite bad sequence. �

There are many equivalent characterisations of wqos [25, 42]. For in-
stance, (X,≤) is a wqo if and only if it is well-founded, i.e. there are no
infinite descending sequences x0 > x1 > · · · of elements from X, and it has
the finite antichain (FAC) property, i.e. any set of mutually incomparable
elements from X is finite.

Example 3.2 (Well orders). Any well-founded linear order, i.e. where ≤ is
furthermore antisymmetric and total, is a wqo: in that case, antichains have
cardinal at most one. Examples include (N,≤) the set of natural numbers,
i.e. the ordinal ω. �
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We will also be interested in the following characterisation:

Fact 3.3 (Descending Chain Property). A qo (X,≤) is a wqo if and only
if any non-ascending chain D0 ⊇ D1 ⊇ D2 ⊇ · · · of downward-closed sub-
sets of X eventually stabilises, i.e. there exists a finite rank k such that⋂
i∈NDi = Dk.

Proof. For the direct implication, assume that there exists a non-ascending
chain that does not stabilise, i.e. there exists an infinite descending sub-chain
Di0 ) Di1 ) Di2 ( · · · . This means that there exists an infinite sequence
of elements xij ∈ Dij \Dij+1 . Note that, if j < k, then xij is in Dij \Dik ,
hence xij 6≤ xik , and therefore (X,≤) is not a wqo.

Conversely, consider any infinite sequence x0, x1, . . . of elements of X. Let

then Ui
def
=
⋃
j≤i ↑xj and Di

def
= X \ Ui. Observe that if the non-ascending

chain of Di’s stabilises at some rank k, then Uk = Uk+1 = Uk ∪↑xk+1, hence
there exists i ≤ k such that xi ≤ xk+1, showing that (X,≤) is a wqo. �

Another consequence of the definition of wqos is:

Fact 3.4 (Finite Basis Property). Let (X,≤) be a wqo. If U ⊆ X is upward-
closed, then there exists a finite basis B ⊆ U such that ↑B = U .

3.2. Elementary Operations. Many constructions are known to yield
new wqos from existing ones. In this paper we will employ the following
elementary operations:

3.2.1. Cartesian Products. If (X,≤X) and (Y,≤Y ) are wqos, then their
Cartesian product X × Y is well quasi ordered by the product (quasi-) or-
dering defined by (x, y) ≤ (x′, y′) if and only if x ≤X x′ and y ≤Y y′. For
instance, vectors in Nd along with the product ordering form a wqo. This
result is also known as Dickson’s Lemma.

3.2.2. Finite Sequences. If (X,≤X) is a wqo, then the set X∗ of finite se-
quences over X is well quasi ordered by the sequence embedding defined by
σ ≤∗ σ′ if and only if σ = x1 · · ·xk and σ′ = σ′0x

′
1σ
′
1 · · ·σ′k−1x

′
kσ
′
k for some

xj ≤X x′j in X for 1 ≤ j ≤ k and some σ′j in X∗ for 0 ≤ j ≤ k. For instance,

finite sequences in Σ∗ for a finite alphabet (Σ,=) form a wqo. This result
is also known as Higman’s Lemma.

In the following, we call elementary those wqos obtained from finite sets
(X,=) through finitely many applications of Dickson’s and Higman’s lem-
mas. Note that (N,≤) is elementary since it is isomorphic with finite se-
quences over some unary alphabet with equality.

4. WQO Ideals

Downward-closed sets D can be denoted by a finite set of elements in
X: since X \ D is upward closed, it is the upward closure of a finite set
B ⊆ X \D thanks to Fact 3.4. We deduce the following decomposition:

D =
⋂
x∈B

(X \ ↑x) .
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In this section, we recall an alternative way of decomposing downward-
closed sets, namely as finite unions of ideals. This is a classical notion—
Fräıssé [14, Section 4.5] attributes finite ideal decompositions to Bonnet [5]—
which has been rediscovered in the study of well structured transition sys-
tems [13]. Let us review the basic theory of ideals, as can be found in [5,
14, 22, 13]; see in particular [16] for a gentle introduction.

4.1. Ideals. A subset S of a qo (X,≤) is directed if for every x1, x2 ∈ S there
exists x ∈ S such that both x1 ≤ x and x2 ≤ x. An ideal I is a directed
non-empty downward-closed set. The class of ideals of X is denoted by
Idl(X).1

Example 4.1 (Well orders). In an ordinal α seen in set-theoretic terms as
{β | β < α}, any β ≤ α is a downward-closed directed subset of α, and
conversely any downward-closed directed subset of α is some β ≤ α. Hence
the ideals of α are exactly the elements of α+ 1 except 0. �

4.1.1. Ideals as Irreducible Downward-Closed Sets. An alternative charac-
terisation of ideals shows that they are the irreducible downward-closed sets
of a qo (X,≤):

Fact 4.2 (Ideals are Irreducible [22, 13, 16]). Let I be a non-empty downward-
closed set. The following are equivalent:

(1) I is an ideal,
(2) for every pair of downward-closed sets (D1, D2), if I = D1∪D2, then

I = D1 or I = D2, and
(3) for every pair of downward-closed sets (D1, D2), if I ⊆ D1∪D2, then

I ⊆ D1 or I ⊆ D2.

Because we find the proof of this fact in [22, 13, 16] enlightening, we recall
the main ideas here:

Proof of 1 =⇒ 2. Assume that I is an ideal and let (D1, D2) be two downward-
closed sets such that I = D1∪D2. If I = D1 we are done, so we can assume
that there exists x ∈ I \ D1. Because D2 ⊆ I, it remains to prove that
I ⊆ D2.

Consider any y ∈ I. Because I is directed, there exists m ∈ I such that
x, y ≤ m. Observe that m ∈ I ⊆ D1∪D2 but m 6∈ D1 since D1 is downward-
closed, x ≤ m and x 6∈ D1. Thus m ∈ D2, and since D2 is downward-closed,
y ∈ D2. We have shown that I ⊆ D2. �

Proof of 2 =⇒ 3. Let I be a non-empty downward-closed set satisfying
item 2 and let (D1, D2) be a pair of downward-closed sets with I ⊆ D1∪D2.

Define D′1
def
= D1 ∩ I and D′2

def
= D2 ∩ I: then I = D′1 or I = D′2 by item 2,

and therefore I ⊆ D1 or I ⊆ D2. �

Proof of 3 =⇒ 1. Let I be a non-empty downward-closed set satisfying

item 3. Consider x1, x2 ∈ I along with the downward-closed sets D1
def
=

X \ ↑x1 and D2
def
= X \ ↑x2. Observe that, if I ⊆ D1 ∪D2, by item 3 I ⊆ D1

or I ⊆ D2, and in both cases we get a contradiction with x1, x2 ∈ I. Hence,

1The set of ideals equipped with the inclusion relation is also called the completion of
the wqo (X,≤), see [13].
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there exists m ∈ I \ (D1 ∪D2), thus x1, x2 ≤ m and we have shown that I
is directed. �

Example 4.3 (Finite sets). In a finite wqo (X,=), any subset ofX is downward-
closed. The ideals are thus exactly the singletons over X: any other non-
empty subset of X can be split into simpler sets. �

Corollary 4.4. An ideal I is included in a finite union D1 ∪ · · · ∪ Dk of
downward-closed sets D1, . . . , Dk if and only if I ⊆ Dj for some 1 ≤ j ≤ k.

Proof. By induction on k using Fact 4.2. �

4.1.2. Finite Decompositions. Observe that any downward-closed set of the
form ↓x is an ideal, hence any downward-closed set is a union of ideals.
However, the main interest we find with ideals is that they provide finite
decompositions for downward-closed subsets of wqos:

Fact 4.5 (Canonical Ideal Decompositions [22, 13, 16]). Every downward-
closed set over a wqo is the union of a unique finite family of incomparable
(for the inclusion) ideals.

Let us again recall the proof as found in [22, 13, 16]:

Proof. Assume for the sake of contradiction that there exists a downward-
closed set D of a wqo (X,≤), for which only infinite ideal decompositions
exist. Because (X,≤) is a wqo, by Fact 3.3 (Idl(X),⊆) is well-founded
and we can choose D minimal for inclusion. Observe that D is nonempty
(or it would be an empty union of ideals). Whenever D = D1 ∪ D2 for
some downward-closed sets D1 and D2, there is i in {1, 2} such that Di

requires an infinite ideal decomposition, and thus by minimality of D, D =
Di. By Fact 4.2, D is an ideal, contradiction. Finally, the unicity of the
decomposition follows from Corollary 4.4. �

The statement of Fact 4.5 can be strengthened: it already holds for FAC
partial orders [see 5, 14, 22].

4.2. Adherent Ideals. Consider some subset S of X. We call an ideal I
of X an adherent ideal of S, and say that I is in the adherence of S, if there
exists a directed subset ∆ ⊆ S such that ↓∆ = I.

By Fact 4.5, the downward-closure ↓S has a canonical ideal decomposi-
tion. The following lemma shows that the ideals in this decomposition are
in the adherence of S.

Lemma 4.6. Let (X,≤) be a wqo and S ⊆ X. Then every maximal ideal
of ↓S is in the adherence of S.

Proof. Assume that S is non-empty—or the lemma holds trivially. Let us
write ↓S = J ∪ J1 ∪ · · · ∪ Jk for the canonical decomposition of ↓S. By
minimality of this decomposition, there exists xJ in J such that xJ 6∈ Jj for
all 1 ≤ j ≤ k. Thus any element s in ↑xJ ∩ S must belong to J .

Let us show that J ∩S is directed: for s, s′ ∈ J ∩S, because J is directed
we first find y in J larger or equal to s, s′, and xJ . Since J ⊆ ↓S, we then
find s′′ ≥ y in S. By the remark made in the previous paragraph, since
s′′ ≥ xJ , s′′ also belongs to J .

7



It remains to show that J = ↓(J ∩ S). It suffices to show the inclusion
J ⊆ ↓(J ∩S) since the converse inclusion is immediate. Consider any y from
J . Then there exists y′ in J larger or equal to both y and xJ , and again
since J ⊆ ↓S and by definition of xJ there exists s ≥ y′ in J ∩ S. �

Later in Section 5 we will exploit Lemma 4.6 in a particular setting, where
a downward-closed over-approximation D of S is known.

Lemma 4.7. Let (X,≤) be a wqo, S ⊆ D ⊆ X for D downward-closed, and
I be a maximal ideal of D. Then I ⊆ ↓S if and only if I is in the adherence
of S.

Proof. If there exists a directed set ∆ ⊆ S such that I = ↓∆, then I ⊆ ↓S.
Conversely, assume that I ⊆ ↓S. Because I is non-empty, this means that

↓S has a non-empty ideal decomposition into maximal ideals by Fact 4.5.
Furthermore, by Corollary 4.4, I is included into one of those maximal ideals
J of ↓S.

Because J ⊆ D, by Corollary 4.4 again there exists I ′ a maximal ideal of
D with J ⊆ I ′. Hence I = J = I ′, or I would not be a maximal ideal of D.
Then Lemma 4.6 allows to conclude that I = J is in the adherence of S. �

4.3. Effective Ideal Representations. Thanks to Fact 4.5, any downward-
closed set has a representation using finitely many ideals. Should we manage
to find effective representations of wqo ideals, this will provide us with algo-
rithmic means to manipulate downward-closed sets. This endeavour is the
subject of [13, 16], and we merely provide pointers to their results here.

4.3.1. Natural Numbers. As seen in Example 4.1, the ideals of (N,≤) are
either ↓n for some finite n ∈ N, or the whole of N itself. As done classically
in the VAS literature, we represent the latter using a new element noted

“ω” with n < ω for all n ∈ N, and denote the new set Nω
def
= N ] {ω}. For

notational convenience, we write ↓ω for N, so that an ideal of (N,≤) can be
written as ↓x for x in Nω.

4.3.2. Cartesian Products. Let (X,≤X) and (Y,≤Y ) be two wqos, and as-
sume that we know how to represent the ideals in Idl(X) and Idl(Y ). Then
the ideals of X×Y equipped with the product ordering have a simple enough
representation as pairs of ideals:

Idl(X × Y ) = {I × J | I ∈ Idl(X) ∧ J ∈ Idl(Y )} . (2)

Configurations. For example, configuration ideals can be represented as ↓v
for a vector v in Ndω.

In this paper we often find it convenient to identify partial vectors u in NF
for some subset F ⊆ {1, . . . , d} with vectors v in Ndω with finite values over
F , such that v(i) = ω if i 6∈ F and v(i) = u(i) otherwise. Then projections
πF :Ndω → Ndω on a set F ⊆ {1, . . . , d} can be defined for all 1 ≤ i ≤ d by

πF (u)(i)
def
=

{
u(i) if i ∈ F
ω otherwise.

(3)
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Transitions. By Dickson’s Lemma, the product ordering over Nd ×A × Nd
is a wqo.

A transition ideal is an ideal of Nd×A×Nd that is the downward closure
of a set of transitions of TransA. As seen in Example 4.3, the ideals of A
are the singletons {a} for a ∈ A. By (2), the ideals of Nd×A×Nd can thus
be presented as downward-closures of triples (u,a,v) in Ndω ×A× Ndω.

Transition ideals are going to form a particular class of such triples. Let
us define addition over Z ] {ω} by k + ω = ω + k = ω + ω = ω. A partial
transition is a triple (u,a,v) in Ndω × A × Ndω such that v = u + a. The
following is immediate by continuity, but can also be given a non-topological
proof:

Lemma 4.8. The transitions ideals of Nd ×A× Nd are exactly the sets ↓t
with t a partial transition.

Proof. First notice that ↓(u,a,u + a) for some u in Ndω and a in A is a
transition ideal of Nd×A×Nd: it is non-empty, directed, and the downward
closure of a set of transitions in TransA.

Conversely, let I ⊆ TransA be a transition ideal. There exists a set
T ⊆ TransA such that I =↓ T . Then I = ↓(u,a,v) for u,v in Ndω and a
in A. Let us show that v = u + a. Assume for the sake of contradiction
that there exists 1 ≤ i ≤ d such that v(i) < u(i) + a(i). There exists u′ in
↓u such that v(i) < u′(i) + a(i). Moreover, since u′ is in ↓u, there exists
(u′′,a,u′′ + a) ∈ T such that u′ ≤ u′′. But then u′′ + a does not belong
to ↓v since u′′(i) + a(i) ≥ u′(i) + a(i) > v(i). This is a contradiction. The
case where there exists 1 ≤ i ≤ d such that v(i) > u(i) +a(i) is similar. �

Partial transitions can also be viewed as projected transitions:

πF ((u,a,v))
def
= (πF (u),a, πF (v)) . (4)

4.3.3. Finite Sequences. In the case of sequences over a finite alphabet (Σ,=),
Jullien [21] first characterised the ideals using a simple form of regular ex-
pressions, which was later rediscovered by Abdulla et al. [1] for the verifica-
tion of lossy channel systems. A representation of ideals for sequences over
an arbitrary wqo (X,≤) was given by Kabil and Pouzet [22] and also redis-
covered in the context of well-structured systems by Finkel and Goubault-
Larrecq [13].

Assume as before that we know how to represent the ideals in Idl(X).
Define an atom A over X as a language A ⊆ X∗ of the form A = D∗ where
D is a downward-closed set of X—i.e. a finite union of ideals from Idl(X)—,
or form A = I∪{ε} where I is an ideal from Idl(X) and ε denotes the empty
sequence. A product P ⊆ X∗ over X is a finite concatenation P = A1 · · ·Ak
of atoms A1, . . . , Ak over X. We denote by Prod(X) the set of products
over X.

Fact 4.9. The ideals of X∗ are the products over X.

It is convenient for algorithmic tasks to have a canonical representation of
ideals. In the case of products over X, there is no uniqueness of representa-
tion, e.g. (a+ b)∗ · b∗ denotes the same ideal as (a+ b)∗ over X = {a, b}. We
can avoid such redundancies by considering reduced products P = A1 · · ·Ak,
where for every j, the following conditions hold:

9



(1) Aj 6= ∅∗,
(2) if j + 1 ≤ k and Aj+1 is some D∗, then Aj 6⊆ Aj+1,
(3) if j − 1 ≥ 1 and Aj−1 is some D∗, then Aj 6⊆ Aj−1.

Because inclusion tests between effective representations of ideals are usually
decidable, these conditions can effectively be enforced.

Fact 4.10. Every ideal of X∗ admits a canonical representation as a reduced
product over X.

4.3.4. Effectiveness. In order to be usable in algorithms, wqo ideals need
to be effectively represented. Following Goubault-Larrecq et al. [16], one
can check that all the elementary wqos (X,≤) enjoy a number of effective-
ness properties. Besides some basic desiderata, among which being able to
decide whether (the representation of) two elements of X coincide or are
related through ≤, and similarly for Idl(X) and the inclusion ordering, our
elementary wqos are in particular equipped with (see [16] for details):

II: an algorithm taking any pair of (representations of) ideals I and J
in Idl(X) and returning (a representation of) an ideal decomposition
of I ∩ J , and

CU’: an algorithm taking any (representation of an) element x in X
and returning (a representation of) an ideal decomposition of X \↑x.

By combining those two algorithms, we get:

Corollary 4.11 ([16]). Let (X,≤) be an elementary wqo. There is an al-
gorithm taking any (representation of an) ideal I in Idl(X) and any (rep-
resentation of an) element x in X and returning (a representation of) an
ideal decomposition of I \ ↑x.

5. A WQO on Runs

The key idea in our explanation of the KLMST decomposition is to see
it as building the ideals of the downward-closure of RunsA(x,y) for an ap-
propriate well quasi ordering defined by Jančar [20] and Leroux [30]. The
reachability problem can then be restated as asking whether ↓RunsA(x,y)
is non empty, i.e. whether the ideal decomposition of ↓RunsA(x,y) is empty
or not.

5.1. Ordering Preruns and Runs. There is a natural ordering � of pre-
runs. The product ordering over Nd×A×Nd can be lifted to an embedding
between sequences of tuples in (Nd × A × Nd)∗. Finally, we denote by �

the natural ordering over PreRunsA (see Figure 2 for an illustration in the
particular case of runs). For a set of runs Ω, we write ↓Ω for its downward-
closure inside PreRunsA, i.e.

↓Ω def
= {ρ′ ∈ PreRunsA | ∃ρ ∈ Ω.ρ′ � ρ} . (5)

5.1.1. Transformer Relations. Embeddings between runs can also be un-
derstood in terms of transformer relations (aka production relations) à la

Hauschildt [18] and Leroux [30, 31]: the relation
cy with capacity c in Nd is

the relation included in Nd×Nd defined by u
cy v if there exists a run from

u + c to v + c.
10



(3, 3) (2, 1) (3, 2) (2, 0) (3, 1)

(1, 0) (2, 1)

≥ ≤ ≥ ≤=

Figure 2. A run embedding for �.

5.1.2. Run Amalgamation. Leroux [30] observed that, thanks to monotonic-

ity, each
cy is a periodic relation (see Section 2): 0

cy 0, as witnessed by

the empty run, and if u
cy v and u′

cy v′, as witnessed by u + c
σ−→ v + c

and u′ + c
σ′−→ v′ + c respectively, then u + u′

cy v + v′ as witnessed by

u + u′ + c
σ−→ v + u′ + c

σ′−→ v + v′ + c. Translated in terms of embeddings,
the same reasoning shows:

Proposition 5.1. Let ρ0, ρ1, and ρ2 be runs with ρ0 � ρ1, ρ2. Then there
exists a run ρ3 such that ρ1, ρ2 � ρ3.

Proof. Let ρ0 = c0
a1−→ c1 · · · ck−1

ak−→ ck. From ρ0 � ρ1, we can write ρ1 as

ρ1 = v0 + c0
σ0−→ v1 + c0

a1−→ v1 + c1 · · ·vk + ck−1
ak−→ vk + ck

σk−→ vk+1 + ck
where v0, . . . ,vk+1 is a sequence of vectors in Nd. Symetrically, from ρ0�ρ2,

we can write ρ2 = v′0+c0
σ′0−→ v′1+c0

a1−→ v′1+c1 · · ·v′k+ck−1
ak−→ v′k+ck

σ′k−→
v′k+1 + ck where v′0, . . . ,v

′
k+1 is a sequence of vectors in Nd.

Define ρ3 = v0 + v′0 + c0
σ0−→ v1 + v′0 + c0

σ′0−→ v1 + v′1 + c0
a1−→ v1 + v′1 +

c1 · · ·vk + v′k + ck−1
ak−→ vk + v′k + ck

σk−→ vk+1 + v′k + ck
σ′k−→ vk+1 + v′k+1 +

ck. �

Note that the proof of Proposition 5.1 further shows that when ρ0, ρ1, ρ2 ∈
RunsA(x,y), then ρ3 ∈ RunsA(x,y) as well.

5.1.3. Prerun Ideals. By Fact 4.9 and Equation 2, the ideals of PreRunsA
are of the form ↓u × P × ↓v where u and v are in Ndω and P is a product
over Nd ×A × Nd, i.e. can be represented as a regular expression over the
alphabet Ndω ×A× Ndω.

5.2. Abstraction Refinement Procedure. Because runs are particular
preruns, we can look at the downward-closure of RunsA(x,y) inside PreRunsA.
By Fact 4.5, this set has a finite decomposition using prerun ideals from
Idl(PreRunsA). This suggests an abstraction refinement procedure to com-
pute the ideal decomposition of ↓RunsA(x,y).

5.2.1. A Procedure for Reachability. An idea that looks promising is to
build a descending sequence of downward-closed sets D0 ) D1 ) · · · in-
side PreRunsA while maintaining ↓RunsA(x,y) ⊆ Dn at all steps, until we
find the ideal decomposition of ↓RunsA(x,y). By Fact 4.5 we can work
with finite sets of incomparable ideals to represent the Dn’s.

We start therefore with

D0
def
= PreRunsA . (6)

11



Assume we are provided with an oracle to decide whether an ideal I from
Dn is included in ↓RunsA(x,y) and extract a counter-example otherwise.
If I ⊆ ↓RunsA(x,y) for all the (finitely many) maximal ideals I in Dn we
stop; otherwise we find a maximal ideal I from the decomposition of Dn s.t.

∃w ∈ I \ ↓RunsA(x,y) (7)

and thanks to Corollary 4.11 we construct an ideal decomposition of

D′
def
= I \ ↑w (8)

and we can refine Dn and construct the downward-closed set for the next
iteration—which involves removing redundant ideals—by

Dn+1
def
= D′ ∪ (Dn \ I) . (9)

The procedure terminates by Fact 3.3 but depends on an oracle to per-
form (7).

5.2.2. Adherence Membership. Turning the previous abstraction refinement
procedure into an algorithm hinges on the effective checking of I ⊆ ↓RunsA(x,y)
for a maximal prerun ideal I of Dn.

Note that, in general, deciding whether I ⊆ ↓RunsA(x,y) for a pre-
run ideal I is at least as hard as VAS Reachability: observe indeed that
↓(0, ε,0) ⊆ ↓RunsA(x,y) if and only if RunsA(x,y) 6= ∅. We know this
containment check to be decidable thanks to the Decomposition Theorem,
but have at the moment no clue how to prove decidability without first
assuming that there is an algorithm computing the ideal decomposition of
RunsA(x,y).

We are therefore going to consider an adherence membership test instead.
Indeed, by Lemma 4.7, and because RunsA(x,y) ⊆ Dn for all n, we know
that this containment check is equivalent to testing whether I is in the
adherence of RunsA(x,y).

Problem: Adherence Membership of Prerun Ideals.

input: A d-dimensional VAS A, two configurations x and y in Nd,
and an ideal I in Idl(PreRunsA).

question: Is I in the adherence of RunsA(x,y)?

As we show in App. A, this problem in its full generality is undecidable:

Theorem 5.2. The adherence membership of prerun ideals is already unde-
cidable for ideals of the form ↓x×D∗×↓x for D a downward-closed subset
of TransA and x in Nd.

All is not lost however: we ask with the adherence membership problem
for more than really needed. In the decomposition algorithm, I presents
some further structure that can be exploited towards an algorithm. This
motivates a deeper investigation of the properties of run ideals, which will
be the object of the next sections.

6. Local Adherent Ideals

We start our investigation of the ideals of ↓RunsA(x,y) by looking at
rather restricted classes of runs. The treatment of this restricted case will

12



c

c + a c + b

c + y

...

c + (n− 1)y

c + a + (n− 1)y c + b + (n− 1)y

c + ny

a b

ab

a b

ab

Figure 3. The set of runs Ωγ in Example 6.1.

turn out to contain most of the technical challenges of the next section on
general run ideals, where we will assemble those local ideals into global ones.

More precisely, we focus on sets Ωγ of runs of the form

c + u
σ−→ c + v (10)

where c is a configuration in Nd, σ is a sequence in A∗, and (u,v) is a
pair of configurations in a periodic set (see Section 2) P included in the

transformer relation
cy. We write γ for the pair (c,P ). As we are going to

see in Lemma 6.3, ↓Ωγ is an ideal of a particular form, for which an effective
representation can be found, see Section 6.2.

6.1. Periodic Transformer Subrelations. Formally, let γ denote a pair

(c,P ) where c is in Nd and P ⊆ cy is periodic. This is a familiar object, and
we will reuse several statements from the literature. Following the notations
from [31], let

• Ωγ denote the set of runs of the form (10),

• Qγ ⊆ Nd denote the set of configurations q that appear along some
run in Ωγ—thus in particular c+u and c+v belong to Qγ whenever
(u,v) are in P .

Example 6.1. Let us consider the 3-dimensional VAS A = {a, b} where
a = (1, 1,−1) and b = (−1, 0, 1), and the pair γ = (c,P ) where c = (1, 0, 1)

and P = N(0,y) with y = (0, 1, 0). Note that P is included in
cy since

there exists a run c
(ab)n−−−→ c + ny for every n. We have

Ωγ = {c w1···wn−−−−→ c + ny | n ∈ N, wj ∈ {ab, ba}} ,
Qγ = (c + a + Ny) ∪ (c + Ny) ∪ (c + b + Ny) .

The set Ωγ is depicted in Figure 3. �

6.1.1. Saturated Pairs. We denote by F in
γ (resp. F out

γ ) the sets of indices i
such that u(i) = 0 (resp. v(i) = 0) for every pair (u,v) ∈ P . We say that a
pair (u,v) in P saturates (F in

γ , F
out
γ ) if u(i) = 0 implies i ∈ F in

γ and v(i) = 0

implies i ∈ F out
γ . Since P is periodic, by summing at most 2d pairs in P ,

we see that there exist pairs in P that saturate (F in
γ , F

out
γ ).
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(1, 0, 1) (1, ω, 1)

(2, ω, 0) (1, ω, 1) (0, ω, 2)

b

b

a

a

Figure 4. The graph Gγ with its input sin
γ and output sout

γ

for Example 6.1.

By projecting c, we obtain two partial configurations sin
γ and sout

γ :

sin
γ

def
= πF in

γ
(c) , sout

γ
def
= πF out

γ
(c) . (11)

Example 6.1 (continued). We have for our example:

F in
γ = {1, 2, 3} F out

γ = {1, 3} ,
sin
γ = (1, 0, 1) , sout

γ = (1, ω, 1) .

Note that (0,y) saturates (F in
γ , F

out
γ ). �

6.2. Representation through Marked Witness Graphs. We investi-
gate in this section how to effectively represent ↓Ωγ . In the sequel, we show
that this ideal can be represented using the set of edges of a strongly con-
nected graph called a witness graph (see Lemma 6.2) enjoying some pumping
properties with respect to sin

γ and sout
γ (see Lemma 6.4). Such graphs will

turn out to be exactly the ones employed by Lambert [26] in his variant of
the KLMST decomposition (see also [29]).

6.2.1. Marked Witness Graphs. A witness graph is a strongly connected di-
rected graph G = (S, E, s) where S is a non-empty finite set of partial
configurations in NF for some F ⊆ {1, . . . , d}, E ⊆ S ×A×S is a finite set
of partially defined transitions, and s is a distinguished state in S.

A marked witness graph is a triple M = (sin, G, sout) where G is a witness

graph, and sin and sout are partial configurations in NF in
and NF out

for some
F in, F out ⊇ F such that πF (sin) = πF (sout) = s. We associate with M the

set ΩM of runs ρ of the form x
σ−→ y where σ is the label of a cycle on s in

G, and such that sin = πF in(x) and sout = πF out(y).

6.2.2. Projected Graphs. Let Fγ ⊆ {1, . . . , d} denote the set of indices i such
that {q(i) | q ∈ Qγ} is finite, i.e. the indices where Qγ remains bounded.
Note that this entails Fγ ⊆ F in

γ and Fγ ⊆ F out
γ . We denote by πγ the

projection function πFγ .

Observe that the projection Sγ
def
= πγ(Qγ) of Qγ is finite, and so is Eγ

the set of partial transitions (πγ(q),a, πγ(q′)) where (q,a, q′) appears in

some run in Ωγ . We distinguish sγ
def
= πγ(c) as a particular state in Sγ .

We denote by Gγ
def
= (Sγ , Eγ , sγ) the finite labelled directed graph defined

by projecting the runs in Ωγ , and Mγ
def
= (sin

γ , Gγ , s
out
γ ) the corresponding

marked graph with input sin
γ and output sout

γ .
14



Example 6.1 (continued). Projecting Qγ on Fγ = {1, 3} yields πγ(c + a +
ny) = (2, ω, 0), πγ(c + ny) = (1, ω, 1), and πγ(c + b + ny) = (0, ω, 2):

sγ = (1, ω, 1) , Sγ = {(2, ω, 0), (1, ω, 1), (0, ω, 2)} .
The graph Gγ is depicted on Figure 4. �

We associate to a prerun ρ = (x, t1 · · · tk,y) and a set F ⊆ {1, . . . , d}, the
partial prerun:

πF (ρ)
def
= (πF (x), πF (t1) · · ·πF (tk), πF (y))

If ρ is a run in Ωγ , then πγ(ρ) is a path inside Gγ , and by [31, Corol-
lary VIII.5], πγ(x) = πγ(y) = sγ , which means that this path is actually a
cycle in Gγ . This in turn shows that Gγ is strongly connected. This proves:

Lemma 6.2. The marked graph Mγ is a marked witness graph such that
Ωγ ⊆ ΩMγ .

6.2.3. Intraproductions. An intraproduction for γ is a vector h in Nd such
that c+h belongs to Qγ . We denote by Hγ the set of intraproductions for
γ; note that it contains in particular u and v if (u,v) ∈ P .

Leroux [31, Lemma VIII.3] shows that Hγ is periodic and Qγ+Hγ ⊆ Qγ .
Following the proof of that lemma, denoting by Tγ the set of transitions
occurring along runs of Ωγ , we deduce that if t = (p,a, q) is in Tγ , and h in

Hγ is an intraproduction, then the transition t+h
def
= (p+h,a, q +h) also

occurs in some run of Ωγ , i.e. t+h ∈ Tγ . It follows that, if h in Hγ is such
that h(i) > 0 for some index i, then i cannot belong to Fγ , since c + nh is
in Qγ for all n. This entails in particular that h = 0 if Fγ = {1, . . . , d}.

A kind of converse property sometimes holds: we say that an intrapro-
duction h in Hγ saturates Fγ if whenever h(i) = 0, then i belongs to Fγ ,
and therefore Fγ = {i | h(i) = 0}. Leroux [31, Lemma VIII.3] shows there
exist intraproductions h in Hγ that saturate Fγ .

Example 6.1 (continued). To continue with our example, the set of intrapro-
ductions is Hγ = Ny. The only non-saturated intraproduction is 0, as any
ny with n > 0 saturates Fγ . �

By similarly shifting every word w = t1 . . . tk of transitions in T ∗γ to the

word w + h
def
= (t1 + h) · · · (tk + h) where h is an intraproduction that

saturates Fγ , we can show the following characterisation of ↓Ωγ :

Lemma 6.3. The following equality holds:

↓Ωγ = ↓sin
γ × (↓Eγ)∗ × ↓sout

γ .

Proof. The inclusion ⊆ is immediate. For the converse inclusion, let us
denote by Tγ the set of transitions occurring along runs of Ωγ . Now, consider
any word w = t1 · · · tk of transitions in T ∗γ . There exists an intraproduction

h that saturates Fγ and a pair (u0,v0) in P that saturates (F in
γ , F

out
γ ). We

denote by w + h the word (t1 + h) · · · (tk + h). Since tj + h is a transition

in Tγ , it occurs along some run c + uj
σj−→ c + vj of Ωγ . Moreover, as

(u0,v0) is in P , there exists a run c + u0
σ0−→ c + v0. Let u

def
=
∑k

j=0 uj ,
15



v
def
=
∑k

j=0 vj , and σ
def
= σ0 · · ·σk. Because P is periodic, it follows that

(u,v) is a pair in P . Notice that ρ
def
= (c + u

σ−→ c + v) is a run in Ωγ and
(c + u0, w + h, c + v0) ∈ ↓ρ. Hence ↓(sin

γ , πγ(w), sout
γ ) ⊆ ↓Ωγ , proving the

converse inclusion. �

Leroux [31, Lemma VIII.11] shows that Sγ is a set of incomparable par-
tial configurations. Therefore the partial transitions in Eγ are incomparable.
The previous lemma then shows that Eγ is the unique finite set of incom-

parable elements in Ndω ×A× Ndω satisfying Lemma 6.3.

6.2.4. Pumpable Configurations. A partial configuration x in Ndω is said to
be forward pumpable by a witness graph G = (S, E, s) if there exists a

cycle on s labelled by a word σ+, and a run using this label x
σ+−−→ x′ with

x ≤ x′ such that ↓s =
⋃
n ↓xn, where xn is the configuration defined by

x
σn+−−→ xn (such a configuration exists by monotonicity). Symmetrically, a

partial configuration y in Ndω is said to be backward pumpable by a witness
graph G = (S, E, s) if there exists a cycle on s labelled by a word σ−,

and a run y′
σ−−−→ y with y ≤ y′ such that ↓s =

⋃
n ↓yn where yn is the

configuration defined by yn
σn−−−→ y.

Saturated intraproductions also provide a way to prove that the graph
input sin

γ and output sout
γ are pumpable.

Lemma 6.4. The input sin
γ is forward pumpable by Gγ, and the output sout

γ

is backward pumpable by Gγ.

Proof. Let h be an intraproduction that saturates Fγ . There exists a run

ρ
def
= c + uh

σ+−−→ c + h
σ−−−→ c + vh in Ωγ . The projection πγ(ρ) shows

that σ+, σ− are cycles on sγ . Moreover, by projecting over F in
γ the run

c+uh
σ+−−→ c+h we see that sin

γ
σ+−−→ sin

γ +h. Hence sin
γ is forward pumpable

by Gγ . Symmetrically sout
γ is backward pumpable by Gγ . �

7. Global Adherent Ideals

Our understanding of the KLMST decomposition is that it builds an
ideal decomposition of ↓RunsA(x,y) inside PreRunsA. We have seen in
Section 5.1 how to represent prerun ideals. However we should expect the
maximal ideals of ↓RunsA(x,y) to have additional properties besides adher-
ence, and indeed we shall see they can be represented using the structures
employed in the KLMST decomposition.

The starting point for our characterisation of run ideals is to consider
some finite basis B of (RunsA(x,y),�): if we consider the upward closure
↑ρ ∩ RunsA(x,y) of each run ρ in B inside RunsA(x,y), we obtain again

RunsA(x,y) =
⋃
ρ∈B
↑ρ ∩ RunsA(x,y) . (12)

Taking the downward-closure inside PreRunsA then yields

↓RunsA(x,y) =
⋃
ρ∈B
↓(↑ρ ∩ RunsA(x,y)) , (13)
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prompting the study of ↓(↑ρ ∩ RunsA(x,y)).

7.1. Maximal Ideals. Observe that each set ↓(↑ρ∩RunsA(x,y)) for a run
ρ is downward-closed and non-empty, and that by Proposition 5.1 it is also
directed, and is therefore an ideal.

We can further see that those ideals are exactly the maximal ideals in the
canonical decomposition of ↓RunsA(x,y).

Proposition 7.1. The maximal ideals from the canonical decomposition of
↓RunsA(x,y) are exactly the sets ↓(↑ρ ∩ RunsA(x,y)) for some runs ρ in
RunsA(x,y).

Proof. For any run ρ, because ↓(↑ρ∩RunsA(x,y)) is an ideal, it is included
into some maximal ideal I. By Lemma 4.6, I = ↓∆ for some directed subset
∆ of RunsA(x,y). Let us show that I ⊆ ↓(↑ρ ∩ ∆), which will show that
I ⊆ ↓(↑ρ∩RunsA(x,y)) and thereby the maximality of ↓(↑ρ∩RunsA(x,y)).
Since ρ is in I, there is a run ρ∆ in ∆ such that ρ�ρ∆. Then, for any prerun
ρ0 in I, since I is directed there exists ρ1 in I with ρ∆, ρ0�ρ1. Finally, since
I = ↓∆, there exists ρ2 in ∆ such that ρ1 � ρ2, i.e. ρ2 ∈ ↑ρ ∩∆ as desired.

Conversely, if I is a maximal ideal of ↓RunsA(x,y), then by Lemma 4.6
it is adherent and thus equal to ↓∆ for some directed subset ∆ of runs
in RunsA(x,y). Pick some ρ0 in ∆; then I ⊆ ↓(↑ρ0 ∩ RunsA(x,y)), and
equality follows from the maximality of I. �

Note that the sets ↓(↑ρ ∩ RunsA(x,y)) and ↓(↑ρ′ ∩ RunsA(x,y)) for ρ 6= ρ′

might coincide, even for minimal ρ and ρ′, so there is no canonicity in terms
of those basic runs.

What we seek now is a more syntactic representation for such ideals,
which would not require to explicitly exhibit a run ρ.

7.2. Perfect Runs. Let us accordingly fix a run ρ = c0
a1−→ c1 · · · ck−1

ak−→
ck with x = c0 and y = ck throughout this subsection.

7.2.1. Transformer Relations Along a Run. Consider the relation R of tu-
ples ((u0,v0), . . . , (uk,vk)) of pairs in Nd × Nd such that:

0 = u0
c0y v0 = u1

c1y v1 · · · = uk
cky vk = 0 (14)

and let us introduce the relation P j defined for 0 ≤ j ≤ k by:

P j
def
= {(uj ,vj) | ((u0,v0), . . . , (uk,vk)) ∈ R} . (15)

Informally, each P j is the subset of
cjy that can be completed into some run

in ↑ρ∩RunsA(x,y). We can check that R and each P j is a periodic relation
since each transformer relation is periodic.

7.2.2. Global Ideal Representation. Denoting by γj the pair (cj ,P j), we de-
rive from Lemma 6.3 the following equality:

↓Ωγj = ↓ sin
γj × (↓Eγj )∗ × ↓ sout

γj . (16)

Notice that sin
γ0 = x and sout

γk
= y. Moreover, the triple ej

def
= (sout

γj−1
,aj , s

in
γj )

is a partial transition for every 1 ≤ j ≤ k.
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Observe that ↓(↑ρ ∩ RunsA(x,y)) is included in

↓x× (↓Eγ0)∗ ·A0 · (↓Eγ1)∗ · · ·Ak · (↓Eγk)∗ × ↓y (17)

where Aj is the atom ↓ej∪{ε}. The converse inclusion will be a consequence
of Lemma 7.3 and Lemma 7.5.

In the upcoming subsection, we derive a condition satisfied by the follow-
ing sequence ξρ of interspersed marked witness graphs and actions, which
allows to represent the ideal (17):

ξρ
def
= Mγ0 ,a1,Mγ1 , . . . ,ak,Mγk . (18)

7.3. Perfect Marked Witness Graph Sequences. A marked witness
graph sequence ξ is a sequence

ξ = M0,a1,M1, . . .ak,Mk , (19)

where M0, . . . ,Mk are marked witness graphs and a1, . . . ,ak are actions
in A. In the sequel, Mj denotes the marked witness graph (sin

j , Gj , s
out
j )

where Gj is the witness graph (Sj , Ej , sj). The sets F in
j , Fj , F

out
j denote the

finite coordinates of sin
j , sj , s

out
j . The two partial configurations sin

0 and sout
k

are assumed to be respectively x and y. Such sequences ξ are also called
marked graph-transition sequences in [26], and are the structures maintained
throughout the KLMST decomposition algorithm.

7.3.1. Ideals and Runs. A marked witness graph sequence ξ defines a prerun
ideal

Iξ
def
= ↓x× (↓E0)∗ ·A1 · (↓E1)∗ · · ·Ak · (↓Ek)∗ × ↓y (20)

where Aj
def
= ↓(sout

j−1,aj , s
in
j )∪{ε} for all 1 ≤ j ≤ k. It is also associated with

a set of runs Ωξ of the form

x0
σ0−→ y0

a1−→ x1
σ1−→ y1 · · ·

ak−→ xk
σk−→ yk (21)

where each xj
σj−→ yj is a run in ΩMj . Note that ↓Ωξ ⊆ Iξ.

We show next in Lemma 7.3 that for marked witness graph sequences
ξ which satisfy the perfectness condition of Lambert [26]—which is mostly
equivalent to Kosaraju’s θ condition—, the prerun ideal Iξ associated with
ξ is adherent. This condition is not arbitrary, but stems from the properties
of the sequences ξρ we derived in sections 6 and 7.

7.3.2. Perfectness Condition. Perfectness is defined by introducing a linear
system over the natural numbers that denotes a set Lξ of solutions. This

linear system relies on a binary relation
ψ
99K over configurations in Nd, where

ψ:E → N denotes some function defined on a finite set E of partial transi-

tions. The relation is defined by x
ψ
99Ky if y = x +

∑
e∈E ψ(e)∆(e), where

∆(e)
def
= a for a partial transition e labelled by a.

Let Lξ be the set of tuples (x0, ψ0,y0, . . . ,xk, ψk,yk) where ψj :Ej → N
is a function satisfying for every s ∈ Sj :∑

e∈Ej |tgt(e)=s

ψj(e) =
∑

e∈Ej |src(e)=s

ψj(e)
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and x0,y0, . . . ,xk,yk are configurations in Nd such that

x0
ψ0
99Ky0

a1−→ x1
ψ1
99Ky1 · · ·xk

ψk
99Kyk

and such that for every 0 ≤ j ≤ k

πF in
j

(xj) = sin
j ∧ πF out

j
(yj) = sout

j .

Notice that Lξ is defined as solutions of a linear system. Moreover, for every
run in Ωξ of the form (21), by introducing the Parikh image ψj :Ej → N of
the cycle on sj labelled by σj , we get a sequence ((x0, ψ1,x1), . . . , (xk, ψk,yk))
in Lξ.

Definition 7.2. A marked witness graph sequence is said to be perfect if it
satisfies the following conditions for all j:

• sin
j and sout

j are respectively forward and backward pumpable by Gj,

• supXj = sin
j and supY j = sout

j ,

• sup Ψj(e) = ω for every e ∈ Ej, and

where Xj, Ψj, and Y j are resp. the sets of elements xj, ψj, and yj satis-
fying:

((x0, ψ0,y0), . . . , (xk, ψk,yk)) ∈ Lξ .

Perfect witness graph sequences denote adherent ideals:

Lemma 7.3. If ξ is a perfect marked witness graph sequence, then Iξ is in
the adherence of RunsA(x,y) and Iξ = ↓Ωξ.

Proof. The proof comes from [26, Lemma 4.1] and shows that a directed
family of runs of the following form can always be extracted from a perfect
marked witness graph sequence:

x0,n

σn+,0σ
n
0w0σn−,0−−−−−−−−−→ y0,n

a1−→ x1,n · · ·xk,n
σn+,kσ

n
kwkσ

n
−,k−−−−−−−−−→ yk,n (22)

such that each run family xj,n
σn+,jσ

n
j wjσ

n
−,j−−−−−−−−−→ yj,n is directed with ↓ΩMj as

downward-closure. Intuitively, σ+,j pumps up the components in F in
j \ Fj ,

σ−,j pumps down those in F out
j \ Fj , and σj is the label of a cycle on sj

such that every transition in Ej occurs at least once along the cycle. The
sequence wj comes from a solution of the linear system Lξ. �

7.3.3. Deciding Perfectness. We can decide if a marked witness graph se-
quence is perfect as follows. First of all, observe that checking if a partial
configuration x ∈ Ndω is pumpable (either backward or forward) by a wit-
ness graph G = (S, E, s) can be performed in exponential space since this
problem reduces to the place boundedness problem for vector addition sys-
tems [2, 9]. Moreover, since we can compute the unbounded components
of the set of solutions of a linear system on N in nondeterministic polyno-
mial time, we can effectively do this computation on sets Lξ of solutions for
marked witness graph sequences ξ. Hence:

Lemma 7.4. The perfectness of a marked witness graph sequence is decid-
able in exponential space.

19



7.4. Run Ideals. We have seen that the downward closed set ↓RunsA(x,y)
can be decomposed as a finite union of ideals Iξρ where ξρ is the marked
witness graph sequence associated to ρ. By the following lemma, this implies
that ↓RunsA(x,y) can be represented using a finite set of perfect marked
witness graph sequences.

Lemma 7.5. The marked witness graph sequence ξρ is perfect for every
run ρ.

Proof. By Lemma 6.4, for all j, sin
γj and sin

γj are resp. forward and backward

pumpable by Gγj .
Regarding the conditions on Lξρ , for every tuple ((u0,v0), . . . , (uk,vk))

in R, every sequence family (σj)1≤j≤k in A∗ such that ρj
def
= (cj + uj

σj−→
cj + vj), and every n ∈ N, we observe that

((c0 + nu0, nψ0, c0 + nv0), . . . , (ck + nuk, nψk, ck + nvk))

is in Lξρ where ψj :Ej → N is the Parikh image of the cycle πγj (ρj) on sj in

Gj . In particular, if sin
j (i) = ω for some i ∈ F in

γj and some 0 ≤ j ≤ k, then

there exists (uj ,vj) ∈ P j such that uj(i) > 0. By completing this pair as
a tuple ((u0,v0), . . . , (uk,vk)) in R, we deduce that supXj(i) = ω. Thus
supXj = sin

γj , and we get similarly supY j = sout
γj and sup Ψj(e) = ω for

every e ∈ Ej . Thus ξρ is perfect. �

Theorem 7.6. For any perfect marked witness graph sequence ξ, Iξ ⊆
↓RunsA(x,y). Moreover, there exists a finite set Ξ of perfect marked wit-
ness graph sequences such that

↓RunsA(x,y) =
⋃
ξ∈Ξ

Iξ .

8. The Decomposition Algorithm

We explain succinctly in this section how the classical KLMST algo-
rithm of Mayr, Kosaraju, and Lambert computes the decomposition of
↓RunsA(x,y) into ideals. By Theorem 7.6 these ideals can be presented
as finite families of perfect marked witness graph sequences.

The KLMST algorithm operates along the same general lines as the ab-
straction refinement procedure of Section 5.2. It refines successively a finite
family Ξn of marked witness graph sequences from x to y while maintaining
as an invariant

RunsA(x,y) =
⋃
ξ∈Ξn

Ωξ (23)

for all n. Because ↓Ωξ ⊆ Iξ for all ξ, this implies

↓RunsA(x,y) ⊆ Dn
def
=
⋃
ξ∈Ξn

Iξ (24)

as in the abstraction refinement procedure.
If every marked witness graph sequence in Ξn is perfect (which is decidable

by Lemma 7.4), the algorithm stops since by Lemma 7.3

↓RunsA(x,y) =
⋃
ξ∈Ξn

Iξ . (25)
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Otherwise, the family Ξn is decomposed into a new family Ξn+1 as follows:
we pick a marked witness graph sequence ξ ∈ Ξn that is not perfect. The
imperfectness of ξ provides a way of computing a new finite family dec(ξ)
of marked witness graph sequences from x to y (see Section 8.2) with

Ωξ =
⋃

ξ′∈dec(ξ)

Ωξ′ . (26)

The family Ξn+1 is then defined as

Ξn+1
def
= (Ξn \ {ξ}) ∪ dec(ξ) . (27)

Termination is ensured through a ranking function relating ξ with each
sequence in dec(ξ), see Section 8.3. The KLMST algorithm shows:

Theorem 8.1 (Decomposition Theorem). The ideal decomposition of ↓RunsA(x,y)
inside PreRunsA is effectively computable.

Because ↓RunsA(x,y) = ∅ if and only if RunsA(x,y) = ∅, this yields:

Theorem 8.2 (Mayr [34], Kosaraju [24], Lambert [26]). VAS reachability
is decidable.

8.1. Initial Family. The KLMST algorithm starts with an initial family
Ξ0 containing a single marked witness graph sequence ξ0, itself reduced

to a single marked witness graph M
def
= (x, G,y) where G

def
= (S, E, s) is

defined by s = (ω, . . . , ω), S = {s}, and E = S × A × S. Note that
Ωξ0 = RunsA(x,y) and

↓RunsA(x,y) ⊆ D0 = ↓x× (Nd ×A× Nd)∗ × ↓y . (28)

8.2. Decomposition. Let us fix a marked witness graph sequence ξ that
is not perfect, and let us recall how the finite family dec(ξ) is obtained in
the KLMST algorithm. We assume that

ξ = M0,a1,M1, . . .ak,Mk ,

where M0, . . . ,Mk are marked witness graphs, and a1, . . . ,ak are actions in
A. In the sequel, Mj denotes the marked witness graph (sin

j , Gj , s
out
j ) and

Gj is the witness graph (Sj , Ej , sj). We let F in
j , Fj , F

out
j be respectively

the finite components of sin
j , sj and sout

j .

Remark 8.3. The main difference between the KLMST algorithm and the
abstraction refinement procedure from Section 5.2 lies in the decomposition
step. Because some of the ideals Iξ denoted by the various sequences ξ in
Ξn might be comparable, a decomposition step (27) might leave Dn = Dn+1

unchanged. This explains why we cannot use Fact 3.3 to prove termination
but rely instead on a ranking function in Section 8.3. It would be interesting
to provide a variant of the KLMST decomposition algorithm that follows
more closely the abstraction refinement procedure. �
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8.2.1. Unpumpable Case. If sin
j is not forward pumpable by Gj , the algo-

rithm of Karp and Miller [23] provides an effective way of computing an
index i 6∈ Fj and a constant c such that configurations occurring in any run
ρ in ΩMj are bounded by c on component i. The same property holds if

symmetrically sout
j is not backward pumpable by Gj .

In such cases the graph Gj can be synchronised with a finite state au-
tomaton A with states in S = {0, . . . , c} and transitions of form (n,a,m) ∈
S ×A × S satisfying m = a(i) + n. This synchronisation might produce a
graph that is no longer strongly connected, but it can be decomposed into
strongly connected components. This way we obtain a finite family dec(ξ)
of marked witness graph sequences where the graph Gj in ξ is replaced by
sequences of subgraphs of Gj ×A where the finite components Fj of Gj are
replaced by a larger set Fj ∪ {i}.

8.2.2. Input/Output Bounded Solutions. Now, let us assume that ξ is not
perfect due to the conditions on the set of solutions Lξ. Following the
notations introduced in Definition 7.2, recall that we can check in nonde-
terministic polynomial time whether supXj(i) < ω for a component i such
that sin

j (i) = ω. If it is not the case, we obtain a component i 6∈ F in such

that supXj(i) = c is finite. Such a bound is computable in deterministic
polynomial time. Now, just observe that component i of sin

j can be replaced
by all the possible values up to c. We obtain in this way a finite family
dec(ξ) where the set F in

j is replaced by F in
j ∪ {i}. The same construction

can be applied symmetrically when supY j does not match sout
j .

8.2.3. Edge Bounded Solutions. Finally, assume that {ψj(e) | ψj ∈ Ψj} is
bounded. Once again, we can effectively compute in deterministic polyno-
mial time an upper bound c of this set. Notice that in this case, every run
ρj ∈ ΩMj labelled by a word σ provides a cycle on sj in Gj in such a way
that e occurs at most c times. By removing from Gj the edge e we obtain
a graph that may not be strongly connected any more. However, by com-
puting strongly connected components, we obtain in this way a finite family
dec(ξ) such that the graph Gj has been replaced by sequences of up to c
graphs, each with a set of edges included in Ej \ {e}.

8.3. Ranking Function. We present the usual termination argument for
the KLMST algorithm by explicitly giving a ranking function r from marked
witness graph sequences into an ordinal, such that r(ξ) > r(ξ′) for all ξ′ in
dec(ξ).

8.3.1. Ordinals. Rather than the usual multiset ordering over triples in N3

ordered lexicographically used in the KLMST algorithm, we use an equiv-
alent formulation using ordinals. Recall that an ordinal α < ε0 can be
written in Cantor normal form (CNF) as α = ωα1 + · · · + ωαn where
α > α1 ≥ · · · ≥ αn, or equivalently as α = ωα1 · c1 + · · · + ωαn · cn with
α > α1 > · · · > αn and finite ci’s.

One can compare two ordinals α = ωα1 +· · ·+ωαn and β = ωβ1 +· · ·+ωβm
using their CNFs: α < β if and only if there exists k ≤ m such that αj = βj
for all 1 ≤ j < k with j ≤ n, and n < k or αk < βk.
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The natural sum of two ordinals α = ωα1 + · · ·+ωαn and β = ωβ1 + · · ·+
ωβm is defined as α⊕ β def

= ωγ1 + · · ·+ωγn+m such that γ1 ≥ · · · ≥ γn+m is a
reordering of the αi’s and βj ’s.

8.3.2. Rank of a Marked Witness Graph. We associate with a marked wit-
ness graph M = (sin, G, sout) an ordinal βM in ω3 defined as

βM
def
= ω2 · (d− |F |) + ω · |E|+ (2d− |F in| − |F out|) (29)

where G = (S, E, s), and F in, F , F out are respectively the defined compo-
nents of sin, s, sout. Note that this is equivalent to a lexicographic ordering
over triples in N3.

8.3.3. Rank of a Sequence. We associate with a marked witness graph se-

quence ξ = M0,a1,M1, . . . ,ak,Mk the ordinal r(ξ) in ωω
3

defined by

r(ξ)
def
=
⊕

1≤j≤k
ω
βMj . (30)

Note that this is equivalent to a multiset ordering over the βMj .

8.3.4. Termination Argument. By seeing the KLMST algorithm as con-
structing a tree with ξ labelling the parent node of ξ′ if ξ is imperfect and
ξ′ ∈ dec(ξ), this ranking function shows that the tree has finite height. Since
the families Ξ0 and dec(ξ) are finite, this tree is also of finite degree, and is
therefore finite by Kőnig’s Lemma.

9. Fast-Growing Upper Bounds

We establish in this section an Fω3 upper bound on the complexity of the
KLMST decomposition algorithm, which yields the first upper bound on the
complexity of VAS reachability. Without loss of generality, we can assume
that the actions in A are in {−1, 0, 1}d.

9.1. Subrecursive Hierarchies. As noted early on e.g. by Müller [35], the
complexity of the decomposition algorithm of Mayr, Kosaraju, and Lambert
is not primitive-recursive. As a consequence, we have to employ some lesser
known complexity classes in order to express upper bounds on the running
time and space of this algorithm.

9.1.1. The Hardy Hierarchy. A convenient tool to this end is found in the
Hardy hierarchy of functions. Given some monotone expansive function
h:N → N, this is an ordinal-indexed hierarchy of functions (hα:N → N)α
defined by transfinite induction by

h0(x)
def
= x, hα+1(x)

def
= hα(h(x)), hλ(x)

def
= hλ(x)(x),

where λ denotes a limit ordinal and λ(x) the xth element of its fundamental
sequence. The latter is usually defined for limit ordinals below ε0 by

(γ + ωβ+1)(x)
def
= γ + ωβ · (x+ 1) ,

(γ + ωλ)(x)
def
= γ + ωλ(x) .

Observe that hk for some finite k is the kth iterate of h. At index ω,
ω(x) = x+ 1 and thus hω(x) = hx+1(x); more generally, hα is a transfinite

23



iteration of the function h, using a kind of diagonalisation to handle limit
ordinals.

Example 9.1. For instance, starting with the successor function H(x)
def
=

x + 1, we see that Hω(x) = Hx(x + 1) = 2x + 1. The next limit ordinal
occurs at Hω·2(x) = Hω+x(x+1) = Hω(2x+1) = 4x+3. Fast-forwarding a

bit, we get for instance a function of exponential growth Hω2
(x) = 2x+1(x+

1) − 1, and later a non-elementary function Hω3
, an “Ackermannian” non

primitive-recursive function Hωω , and a “hyper-Ackermannian” non multi-

ply recursive-function Hωω
ω

. �

9.1.2. Complexity Classes. Although we could derive upper bounds in terms
of Hardy functions, it is more convenient to work with coarser-grained com-
plexity classes. For α > 2, we define respectively the fast-growing function
classes (Fα)α of Löb and Wainer [33] and the associated fast-growing com-
plexity classes (Fα)α of [41] by

F<α
def
=

⋃
β<ωα

FSpace
(
Hβ(n)

)
, (31)

Fh,α
def
=

⋃
p∈F<α

Space
(
hω

α
(p(n))

)
, Fα

def
= FH,α , (32)

where FSpace(s(n)) (resp. Space(s(n))) denotes the set of functions com-
putable (resp. problems decidable) in space O(s(n)) and H is the successor

function H(x)
def
= x+1. This defines for instance F<ω as the set of primitive-

recursive functions, and Fω as the class of problems that can be solved in
Ackermann time of some primitive-recursive function of their input size.
Here Fω3 is not primitive-recursive, but among the lowest multiply-recursive
classes.

9.2. Length Function Theorems. Given some wqo (X,≤), let us posit a

norm |.|X :X → N over X such that X≤n
def
= {x ∈ X | |x|X ≤ n} is finite for

every n. Given a control function g:N → N which is monotone expansive
and some initial norm n ∈ N, we say that a sequence x0, x1, . . . over X is
(g, n)-controlled if for all i, |xi|X ≤ gi(n) the ith iterate of g. Then there
exists maximal (g, n)-controlled bad sequences over (X,≤), and we write
Lg,X(n) for their length.

Length function theorems provide upper bounds on this maximal length
Lg,X(n). The upper bounds we use from [42, 40] are expressed in terms of
another hierarchy of functions called the Cichoń hierarchy (hα:N → N)α.
The relation with the Hardy hierarchy is that, if a controlled sequence is of
length bounded by some hα(x) from the Cichoń hierarchy, then the norm of
all its elements is bounded by

hhα(x)(x) = hα(x) (33)

in the Hardy hierarchy.
For instance, upper bounds for (Nd × Q,≤) for some finite set Q, along

with the product ordering, can be found in [42, Theorem 2.34], where the
norm of a pair (x, q) from Nd ×Q is max1≤i≤d x(i):

24



Fact 9.2 ([42]). Let H(x)
def
= x + 1 and n, d > 0. Then LH,Nd×Q(n) ≤

Hωd·|Q|d(dn) ≤ Hωd+1(|Q|dn).

Proof. Let us first recall the definition of the Cichoń hierarchy of functions
for indices α < ε0 [7]:

h0(x)
def
= 0, hα+1(x)

def
= 1 + hα(h(x)), hλ(x)

def
= hλ(x)(x).

Consider any control function g, dimension d, finite set Q, and initial
norm n. By computing the maximal order type ωd · |Q| of Nd × Q, and
when provided with a function h with h(dx− d+ 1) ≥ dg(x)− d+ 1, we can
combine Corollary 2.24 and Theorem 2.34 from [42] to show that

Lg,Nd×Q(n) ≤ hωd·|Q|(dn− d+ 1) .

Since we are dealing with VAS actions in {−1, 0, 1}d, our control function

g is H(x)
def
= x+1, and we can choose h(x)

def
= x+d = Hd(x). The statement

then follows from the fact that, for such a function h and assuming d > 0,

hα(x) ≤ Hα·d(x)

for all α < ε0 and x, which can be checked by (a somewhat technical)
transfinite induction over α. �

Another example from [40, Theorem 3.3] is a length function theorem for
ordinals below ε0, where the norm N(α) of an ordinal α = ωα1 · c1 + · · · +
ωαn · cn with α > α1 > · · · > αn ≥ 0 and ω > c1, . . . , cn ≥ 0 is the largest

constant that appears in it: N(α)
def
= max1≤i≤n{ci, N(αi)}:

Fact 9.3 ([40]). Let α < ε0 be of norm N(α) ≤ n. Then Lg,α(n) = gα(n).

9.3. Controlling the KLMST Decomposition. Recall from Section 8.3
that the KLMST algorithm terminates because any descending sequence of

ordinals in ωω
3

is finite. As remarked in Example 3.2, descending sequences
over an ordinal are bad sequences. From the previous discussion of length
function theorems, in order to apply the bounds from [40] on the norms in

bad sequences over ωω
3
, we need to find a control function for any sequence

r(ξ0) > r(ξ1) > · · · (34)

of ordinals in ωω
3

found along a branch of the tree described in §8.3.4.

9.3.1. A Measure on Marked Witness Graph Sequences. Let us write ‖v‖ def
=

maxi∈F v(i) for the infinite norm of partial vectors in Ndω and ‖V ‖ def
=

maxv∈V (|V |, ‖v‖) for a set V of partial vectors. Using the norm func-
tion N over ε0 defined above on the ordinals in (29) and (30), we see that
N(r(ξ)) is bounded by

‖ξ‖ def
= max

0≤j≤k
(2d, k, |Ej |, ‖sin

j ‖, ‖sout
j ‖, ‖Sj‖) (35)

for ξ = M0,a1, . . . ,ak,Mk where Mj is the marked graph (sin
j , Gj , s

out
j ) and

Gj = (Sj , Ej , sj). Note that ‖ξ0‖ = max(2d, 1, |A|) initially.
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9.3.2. Controlling Decompositions. We are going to exhibit a control func-
tion g such that ‖ξi‖ ≤ gi(‖ξ0‖) for all descending sequences (34) and index
i, which will therefore also be a control function on (34) for the ordinal
norm. It suffices to show that ‖ξ′‖ ≤ g(‖ξ‖) whenever ξ′ ∈ dec(ξ). Let us
analyse how this measure evolves in the different decomposition cases:

(1) In the unpumpable case, the constant c can be bounded using Fact 9.2

by Hωd+1
(d2 · |Sj | ·max(‖sin

j ‖, ‖sout
j ‖)) (see also [19, Theorem 2.10]

or [12, Section VII-C] for similar enough bounds in terms of the

fast-growing function Fd+1 = Hωd+1
). The resulting sequences ξ′ in

dec(ξ) satisfy therefore ‖ξ′‖ ≤ Hωd+1
(‖ξ‖4).

(2) In the input/output bounded case, the constant c is at most expo-
nential in the size of the linear system Lξ, which is of polynomial

size in ‖ξ‖. Thus ‖ξ′‖ ≤ 2p(‖ξ‖) for some fixed polynomial p.
(3) In the edge bounded case, the constant c is similarly at most ex-

ponential in the size of Lξ and again ‖ξ′‖ ≤ 2p(‖ξ‖) for some fixed
polynomial p.

Assuming d ≥ 1, Hωd+1
(x) > 2x, hence we can choose g(x)

def
= Hωd+1

(p(x))
for some fixed polynomial p as our control function. This is a primitive-
recursive function in F<ω for any fixed d, and is in F<ω+1 when d is part
of the input.

9.4. Complexity Bounds. Assuming ‖ξ0‖ ≥ 3, by Fact 9.3 the norm of

the elements in any sequence (34) controlled by g is at most gω
ω3

(‖ξ0‖).
This function can be computed in space gω

ω3

(e(‖ξ0‖)) for some elementary
function e by [41, Theorem 5.1]. This yields the same bound on the space
used by a nondeterministic version of the KLMST decomposition algorithm,
which guesses a branch like (34) that leads to a perfect marked witness graph
sequence if there is one. Finally, because our function g yields Fg,ω3 = Fω3

by [41, Theorem 4.4], we obtain:

Theorem 9.4. VAS reachability is in Fω3.

9.5. A Combinatorial Algorithm. The bounds in Section 9.4 allow to
propose a conceptually simple algorithm for VAS Reachability, based on a
small run property. If there is a run in RunsA(x,y), it must belong to some
Ωξ for a perfect ξ constructed by the KLMST decomposition. Thus this ξ

is of measure ‖ξ‖ bounded by gω
ω3

(‖ξ0‖). Using Lemma 7.3 we can extract
a run of commensurate length `.

The combinatorial algorithm is a nondeterministic algorithm that first
computes ` and then guesses a run ρ in RunsA(x,y) of length at most `.
Its complexity is similar to that of the KLMST decomposition algorithm,
in Fω3 .

10. Conclusion

The KLMST decomposition algorithm of Mayr, Kosaraju, and Lambert
is most certainly a stroke of genius, allowing to prove the decidability of
reachability in VAS. What was however sorely lacking until now was an
explanation for this decomposition that could be adapted and extended in
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various directions. Far from closing the subject, we expect this demystifica-
tion to span a whole research programme.

The first natural question is how easily one can use the framework of ideals
on runs for various VAS extensions. A good test is the case of VAS with
hierarchical zero tests, which were proven to enjoy a decidable reachability
problem by Reinhardt [36]. A wqo on runs using nested applications of
Higman’s Lemma for this extension is defined by Bonnet [6] in his alternative
decidability proof using Presburger inductive invariants. Using the algebraic
framework of Section 4.3, we see that prerun ideals for this new ordering are
essentially nested products, and thus bear at least a superficial resemblance
to the structures manipulated by Reinhardt [36]. The framework could also
shed new light on reachability in other VAS extensions [28, 39, 27].

A second question is whether we can significantly improve the Fω3 upper
bound provided in Section 9. The best known lower bound on the running
time of the algorithm is Ackermannian, i.e. Fω, leaving a huge gap on the
complexity of the KLMST algorithm, and a gigantic gap on the complexity
of VAS reachability, which is only known to be ExpSpace-hard.

Acknowledgements. The authors thank J. Goubault-Larrecq, P. Karandikar,
K. Narayan Kumar, and Ph. Schnoebelen for sharing their draft [16] with
us and for insightful discussions around the uses of wqo ideals.

Appendix A. Undecidability of Adherence Membership

Theorem 5.2. The adherence membership of prerun ideals is already unde-
cidable for ideals of the form ↓x×D∗×↓x for D a downward-closed subset
of TransA and x in Nd.

The proof proceeds by a reduction from the boundedness problem for lossy
Minsky machines, which was shown undecidable by Dufourd et al. [11] (see
also the survey [43]).

Lossy Minsky machines (LMM) are Minsky machines where counter values
might decrease spontaneously at all times. Let us define their syntax and
semantics in a style similar to those of VASs. Let d in N be the dimension
of the machine, i.e. its number of counters. A Minsky action r is a pair
(Z,a) where Z ⊆ {1, . . . , d} denotes the components tested for zero, and
a is a vector in Zd satisfying a(i) = 0 for every i ∈ Z. We associate with

such a Minsky rule r a transition relation
r−→ over the set of configurations

Nd defined by x
r−→ y if x(i) = 0 = y(i) for every i ∈ Z and y = x + a. A

Minsky machine is a finite set R of Minsky rules. A Minsky machine R is
said to be lossy if (∅,−ei) ∈ R for every 1 ≤ i ≤ d (where ei is the unit
vector with 1 in coordinate i and 0 everywhere else).

A set X ⊆ Nd is called a post-fixpoint for a Minsky machine R if for every

x ∈ X and r ∈ R the relation x
r−→ y implies y ∈ X. The reachability set

Reach(R,xinit) of a Minsky machine R from an initial configuration xinit is
the minimal post-fixpoint of R that contains the initial configuration.

Problem: LMM Boundedness.

input: A d-dimensional LMM R and an initial configuration xinit in
Nd.
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question: Is Reach(R,xinit) finite?

As mentioned earlier this boundedness problem is undecidable [11, 43].

Minimality of Post-Fixpoints. Note that, due to lossiness, any post-fixpoint
is downward-closed and has therefore a finite ideal decomposition using
vectors in Ndω. The ideal decomposition of Reach(R,xinit) is however not
effective—or the boundedness problem would be decidable: the machine is
unbounded if and only if some ω-value appears in some coordinate of an
ideal from the decomposition of Reach(R,xinit).

Assume we have an oracle to decide whether a post-fixpoint X that con-
tains xinit is equal to Reach(R,xinit). Because we can enumerate finite sets
of vectors in Ndω and effectively check whether they define a post-fixpoint X
that contains xinit, we could use this oracle to construct the ideal decomposi-
tion of Reach(R,xinit)—and as noted just before, use the latter to decide the
boundedness problem. This means that we cannot decide whether a post-
fixpoint is equal to Reach(R,xinit)—this is similar to [43, Theorem 3.7]:

Problem: Minimality of LMM Post-Fixpoints.

input: A d-dimensional LMM R, an initial configuration xinit in Nd,
and a post-fixpoint X that contains xinit.

question: Does X = Reach(R,xinit)?

This problem is already undecidable for a slightly restricted class of
LMMs: Observe that if xinit = 0 then the reachability set is infinite if,
and only if, there exists (Z,a) ∈ R for some Z such that a > 0. So, we
can assume in the previous problem that xinit 6= 0. Observe similarly that
if (Z,xinit) ∈ R for some Z (where necessarily xinit(i) = 0 for all i ∈ Z by
assumption on Minsky actions), then nxinit is reachable for every n ∈ N and
by the previous assumption the reachability set is infinite. So we can also
assume that for every (Z,a) ∈ R we have a 6= xinit and retain undecidability.

Proof of Theorem 5.2. We are going to reduce the problem of testing the
minimality of LMM post-fixpoints to the adherence membership problem
for an ideal of the form ↓xinit ×D∗ × ↓xinit where D is a downward-closed
set of transitions. The main intuition is that a downward-closed set of
transitions where some maximal transitions have zero components can be
used to perform zero tests in a VAS, and simulate the behaviour of a lossy
Minsky machine.

Without loss of generality, we assume that (∅,0) belongs to R since the
reachability set is unchanged by adding this Minsky rule. Let X ⊆ Nd
be a post-fixpoint of R that contains the initial configuration xinit. By
minimality of Reach(R,xinit) we get Reach(R,xinit) ⊆ X. We define a
downward-closed set DX of transitions of some VAS A in such a way that
the inclusion Reach(R,xinit) ⊆ X is an equality if, and only if, the set of
preruns (xinit, w,xinit) with transition sequence w ∈ D∗X is an ideal from
Idl(RunsA(xinit,xinit)).

Our VAS is defined by

A
def
= {xinit} ∪ {a | ∃Z.(Z,a) ∈ R} . (36)
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Our set DX is defined as the set of transitions

DX
def
= {(0,xinit,xinit)}

∪ {(x,a,y) ∈X ×A×X | ∃Z.∃r = (Z,a) ∈ R.x r−→ y} , (37)

which is downward-closed because X is, and we let IX denote the following
set of preruns using transitions from DX , which is an ideal of PreRunsA:

IX
def
= ↓xinit ×D∗X × ↓xinit . (38)

Note that a representation of IX can effectively be computed from a repre-
sentation of X.

Claim 1. Reach(R,xinit) is the set of configurations x ∈ Nd such that there
exists a run (xinit, w,x) with w ∈ D∗X .

The proof is by induction on the length of runs (xinit, w,x) of A and runs

xinit
∗−→ x of R.

Claim 2. If X = Reach(R,xinit) then IX is in the adherence of RunsA(xinit,xinit).

Let t = (x,a,y) be a transition inDX . By definition x ∈X = Reach(R,xinit)
and we deduce by Claim 1 that there exists a run (xinit, wt,x) with wt ∈ D∗X .
Due to lossiness, there also exists a run with transition sequence w′t in D∗X
from y to 0 labelled by actions −ei. By definition (37) the transition

tinit
def
= (0,xinit,xinit) belongs to DX . Hence for every t ∈ DX there ex-

ists a run with transition sequence wttw
′
ttinit in D∗X from xinit to xinit along

which t occurs.
By concatenating such transition sequences, for every word w = t1 · · · tk

of transitions t1, . . . , tk ∈ DX , there exists a run from xinit to xinit with
transitions in D∗X and with w as an embedded subsequence. We conclude
by noting that these runs form a directed subset of RunsA(xinit,xinit).

Claim 3. If IX is in the adherence of RunsA(xinit,xinit) then X = Reach(R,xinit).

Assume there exists a directed family ∆ of runs with ↓∆ = IX . Let x ∈X;
let us show that x ∈ Reach(R,xinit). The prerun (xinit, w,xinit) with

w
def
= (0,xinit,xinit)(x,0,x) (39)

belongs to IX (recall that we assumed (∅,0) ∈ R). Hence there exists a run
ρ = (xinit, w

′,xinit) in ∆ with w �∗ w′ (for the subsequence embedding over
(Nd ×A× Nd)∗). Thus w′ is in D∗X and of the form

w′ = w1(y,xinit,y + xinit)w2(x + z,0,x + z)w3 (40)

for some vectors y and z in Nd. Because (Z,xinit) 6∈ R for any Z, y = 0.
Therefore (xinit, w2,x + z) is a run with transitions in DX . Hence by

Claim 1, x+z is in Reach(R,xinit), and by lossiness x is also in Reach(R,xinit).
This shows X ⊆ Reach(R,xinit) and thus Reach(R,xinit) = X. �
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