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Introduction

One way of modeling changes in a time series consists of considering that the underlying dynamics of the system changes discontinuously at unknown points in time, indexed by a hidden discrete random variable. In this paper, we are interested in Switching Markov State-Space Models (SMSSM) which are widely used in several fields of applied science such as signal processing [START_REF] Oh | Learning and inferring motion patterns using parametric segmental switching linear dynamic systems[END_REF], econometrics [START_REF] Lammerding | Speculative bubbles in recent oil price dynamics: evidence from a Bayesian Markov-switching state-space approach[END_REF] and bioinformatics [START_REF] Yoshida | Estimating time-dependent gene networks from time series microarray data by dynamic linear models with Markov switching[END_REF]. A SMSSM can be viewed as a Linear Gaussian State-Space Model (LGSSM) with parameters indexed by a latent Markov chain, or as a Hidden Markov Model (HMM) with two latent states: a continuous system state, and a discrete Markov state.

For latent structure models, the parameters inference can fail due to identifiability issue. Leroux [4] establishes a sufficient condition for the HMM identifiability. For the LGSSM, the identifiability issue can be addressed by imposing some structural constraints on its parameters [START_REF] Walter | Unidentifiable compartmental models: what to do?[END_REF], or by taking it into account in the parameters inference algorithm [START_REF] Overschee | Subspace algorithms for the stochastic identification problem[END_REF].

We consider here a SMSSM where the unknown continuous state and the observations are scalars. We show that, if the hidden Markov chain is irreducible and aperiodic, a prior information relating the observations to the un-known continuous state at a time t 0 , for instance t 0 = 0, is sufficient to ensure the identifiability of the model. Moreover, we check the relevance of these constraints by estimating the parameters of a SMSSM using a penalized EM algorithm. In this purpose, a SMSSM modeling the state of charge of an electric battery is considered. The results, using real electric vehicle data, show that the parameters are efficiently estimated.

The paper is organized as follows. Section 2 presents the model and the identifiability issue. In Section 3, the identifiability of a LGSSM is addressed. In Section 4, the previous identifiability result is extended for SMSSM. Section 5 shows the relevance of these constraints using real electric vehicle data. Section 6 concludes the paper.

Problem formulation 2.1 Model

Let s t denote a discrete irreducible and aperiodic Markov chain on {1, . . . , κ}, with initial distribution Π and transition matrix P . We consider a stochastic process (y t , x t , s t ) where y t is observable, and s t and x t are unobservable. This process is defined by a switching Markov state-space model

x t = A(s t )x t-1 + B(s t )u t + ω t , (1) 
y t = C(s t )x t + D(s t )u t + ε t , (2) 
where u t denotes a known exogenous input, and ω t and ε t are independent Gaussian white noises with variances σ 2 X (s t ) and σ 2 Y (s t ) respectively. The observations y t are assumed to be independent given (s t , x t ). It is also assumed that x 0 is fixed and that the initial distribution Π is known. For simplicity, we consider that x t and y t ∈ R. Let Θ denote the vector of parameters

Θ = {P, Γ = (A(s), B(s), C(s), D(s), σ X (s), σ Y (s))} (3)
for s = 1, . . . , κ. The distributions p(x t | x t-1 , s t , Θ) and p(y t | x t , s t , Θ) are assumed to be Gaussian, with parameters deduced from (1) and [START_REF] Lammerding | Speculative bubbles in recent oil price dynamics: evidence from a Bayesian Markov-switching state-space approach[END_REF]. It is noteworthy that given a specific sequence of Markov states s 0:T = {s 0 , . . . , s T }, the likelihood p(y 0:T | s 0:T , Γ) is p(y 0:T |s 0:T , Γ) = p(y 0 |s 0 , Γ) T t=1 p(y t | y 0:t-1 , s 0:t , Γ), [START_REF] Leroux | Maximum-likelihood estimation for hidden Markov models[END_REF] where y t | y 0:t-1 , s 0:t , Γ ∼ N (y t ; y t|t-1 , Ω t|t-1 ), with y t|t-1 and Ω t|t-1 deduced from (2)

y t|t-1 = C(s t )x t|t-1 + D(s t )u t , (5) 
Ω t|t-1 = C(s t )Σ t|t-1 C(s t ) + σ 2 Y (s t ). (6) 
The variables x t|t-1 and Σ t|t-1 are deduced from (1)

x t|t-1 = A(s t )x t-1|t-1 + B(s t )u t , (7) 
Σ t|t-1 = A(s t )Σ t-1|t-1 A (s t ) + σ 2 X (s t ), (8) 
with x t-1|t-1 and Σ t-1|t-1 given by the correction step of a Kalman filter

x t-1|t-1 =x t-1|t-2 + K t-1 (y t-1 -y t-1|t-2 ), (9) 
Σ t-1|t-1 =(I -K t-1 C(s t-1 ))Σ t-1|t-2 (I -K t-1 C(s t-1 )) + K t-1 σ 2 Y (s t-1 )K t-1 , (10) 
where I is the identity matrix with an appropriate dimension and K t-1 is the Kalman gain [START_REF] Kalman | Mathematical description of linear dynamical systems[END_REF] given by

K t-1 = Σ t-1|t-2 C(s t-1 )Ω t-1|t-2 . ( 11 
)

Identifiability issue

The SMSSM, among many other mathematical models, is used to describe the dynamics of a given system using experimental data and understand observed phenomena. Indeed, it is desirable that every model parameter has a physical interpretation in order to easily integrate any prior knowledge and interpret the results of this modeling. Among the major issues arising from this modeling, this paper focuses on the identifiability one, which is essential for parameters estimation. According to the classical definition, a subset of parameters F ⊂ Θ is said "globally structurally (g.s.) identifiable" when p(y 0:T |Θ * ) = p(y 0:T |Θ) implies F * = F . However, it is well-known that a SMSSM is unidentifiable and constraints must be imposed to guarantee its identifiability, i.e. its interpretability. As a first step, we consider the identifiability of a LGSSM.

Identifiability of a LGSSM

Let us consider the LGSSM described by ( 1)-( 2) with κ = 1. Each minimal representation of this model can be deduced from Γ by a state-space linear transformation H, which leads to the following system of equations

       A * = H • A • H -1 B * = H • B C * = C • H -1 σ 2 X * = H • σ 2 X • H, (12) 
where H ∈ R. It has to be noted that D and σ Y are always g.s. identifiable, i.e. they are invariant under any linear transformation H. And, A is also g.s. identifiable since H ∈ R. The following prior information is considered at

t 0 = 0 y 0 = Cx 0 + Du 0 , (13) 
with x 0 • u 0 = 0. Under (13), it is easily proved that the only solution of ( 12) is H = 1. Thus, the parameters of a LGSSM are g.s. identifiable under the constraint (13).

In the following, this identifiability result is extended for SMSSM.

Identifiability of a SMSSM

First of all, it is noteworthy that Markov states s t can be relabeled without changing the distribution of the observations. Thus, the identifiability of the SMSSM, up to state switching, is discussed below.

Specific sequence of Markov states

As a first step, we consider that the sequence of Markov states s 0:T is known. It is assumed that at t 0 = 0

y 0 = C(s 0 )x 0 + D(s 0 )u 0 , (14) 
for any hidden state s 0 = 1, . . . , κ. Similarly to a LGSSM, each minimal representation of the model can be deduced from Γ by a state-space linear transformation H where

H = [H 1 H 2 . . . H κ ], (15) 
with H ∈ R κ . Indeed, given a specific Markov sequence s 0:T , the model can be transformed into κ LGSSMs with appropriate sampling times. Hence, D(s), σ Y (s) and A(s) are g.s. identifiable for s = 1, . . . , κ, since they are invariant under any linear transformation H s . In addition, the remaining parameters of these κ LGSSMs are g.s. identifiable under the constraint (14), as shown in Section 3. Accordingly given a specific Markov sequence s 0:T , the parameter Γ of a SMSSM with κ ≥ 1 is g.s. identifiable under constraints (14), and p(y 0:T |s 0:T , Γ) = p(y 0:T |s 0:T , Γ * ) ⇒ Γ = Γ * . (16)

The next section discusses the identifiability of a SMSSM when the sequence of Markov states is unknown.

Unknown sequence of Markov states

The marginal likelihood of the SMSSM (1)-( 2) is given by p(y 0:T | Θ) = Under the constraints (14), the first equation implies that Γ = Γ * . Since s t is an irreducible aperiodic Markov chain, the second equation implies that P = P * cf. Lemma 2 in [START_REF] Leroux | Maximum-likelihood estimation for hidden Markov models[END_REF]. As a result, we have the following proposition.

Proposition 1

The parameters of the SMSSM (1)-( 2) are g.s. identifiable if the following constraints are verified 1. A prior information at t 0 = 0 is available: 2. ∀(i, j), P (i, j) = 0.

Condition 2 implies that the hidden Markov chain is irreducible and aperiodic. In the next section the parameters of a SMSSM are estimated, under the proposed constraints, by the Maximum Likelihood (ML) methodology through the EM algorithm.

ML parameters inference

When faced with an identifiability problem, ML methods could fail to efficiently estimate the model parameters. In the following, we show that, since the identifiability issue is solved under the constraints (14), the ML parameter estimation works properly. The EM formulas are not detailed here. They are presented for instance in [START_REF] Tanner | Tools for statistical inference -Observed data and data augmentation methods[END_REF][START_REF] Doucet | A tutorial on particle filtering and smoothing: Fifteen years later[END_REF].

The EM algorithm consists of iteratively estimating the parameter Θ by maximizing the expected log-likelihood of the complete data. Here this maximization must be conducted under the constraints (14). This is summarized in Algorithm 1. The Lagrangian associated to the

Algorithm 1 EM algorithm under constraints

Input ← y 0:T , u 0:T , x 0 , Π

Init Θ (0) , k = 0 for k < k max do 1-E-Step Compute Q(Θ, Θ (k) ) = E y 0:T ,Θ (k) [log p Θ (x 0:T , s 0:T , y 0:T )] 2-M-Step Θ (k+1) = argmax Θ Q(Θ, Θ (k) ) while ∀s = 1, . . . , κ y 0 -C(s)x 0 -D(s)u 0 = 0 and j P (s, j) = 1 end for Output ← Θ (k) constraints is L(Θ, λ, µ) =Q(Θ, Θ ) + κ i=1 λi[1 - j P (i, j)] + κ i=1 µi[y0 -C(i)x0 -D(i)u0], (19) 
where λ i and µ i are the Lagrangian multipliers. Canceling the derivative equations of L(Θ, λ, µ) w.r.t. Θ requires performing summations over up to κ T +1 values of s 0:T . Actually, the optimal estimation of the unknown states of a SMSSM is a well-known NP problem [START_REF] Doucet | A tutorial on particle filtering and smoothing: Fifteen years later[END_REF]. To overcome this, a Monte Carlo (MC) approximation of the EM algorithm is generally developed [START_REF] Doucet | A tutorial on particle filtering and smoothing: Fifteen years later[END_REF]. It consists of using a set of N "particles" {s i 0:T } N i=1 and importance weights {w i T } N i=1 , such that ∂Q(Θ, Θ (k) )/∂Θ is estimated by

N i=1 w i T ∂ ∂Θ E s i 0:T ,y 1:T ,Θ (k) [log pΘ(x0:T , s i 0:T , y1:T )]. (20) 
We illustrate the validity of these constraints using real electric vehicle data. A SMSSM of the State of Charge (SoC) of an electric battery, using voltage and current measurements, is considered. Indeed, the battery dynamics randomly changes according to uncontrolled usage conditions such as ambient temperature and driving behavior. The problem consists of estimating the parameters of this model using the proposed MC-EM algorithm. The observation and the transition equations are based on physical models [START_REF] Plett | Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs[END_REF], and the corresponding SMSSM is given by

x t = x t-1 + B(s t )u t + ω t , y t = C(s t )x t + D 1 (s t )u t + D 2 (s t ) + ε t , (21) 
where y t is the observed voltage, u t the input current and x t the SoC to be estimated. Here, A(s) is physically identified: ∀s, A(s) = 1. In addition, we have a physical prior information at t 0 = 0

y 0 = C(s 0 )x 0 + D 2 (s 0 ), (22) 
where y 0 is the Open Circuit Voltage (OCV) measurement and x 0 its corresponding SoC. Indeed, in practice at 1 shows the ratio of the parameters estimated without constraints to those estimated with constraints. It can be seen that, as shown in (12), D and σ Y are invariant in both cases, whereas C is divided and σ X is multiplied by H = 10. For B, the ratio must be theoretically equal to H = 10. However, the experimental ratio is not fixed which is not surprising since B describes the evolution of the unknown x t . Figure 1 represents the ratio of estimated x t and y t without constraints to the one with constraints. The results show that the estimated y t is invariant whereas x t is multiplied by H = 10. Thus, these results show that under the proposed constraints, the penalized EM algorithm efficiently estimates the parameters and that the identifiability issue is resolved. It is noteworthy that, under constraints, the order of magnitude of the estimated parameters and x t is physically accurate; for instance the estimated state of charge x t ∈ [0, 100].

Conclusion

This paper has addressed the identifiability of switching Markov state-space models where the unknown continuous state and the observations are scalars. We prove that, in case of an irreducible and aperiodic Markov chain, if a constraint relating the observations to the continuous state at a time t 0 is available, the model parameters become generally structurally identifiable. In order to verify the relevance of this proposition, a comparison between ML parameters inference of a SMSSM, under and without the proposed constraints, is performed. The results show that, by considering the above constraints, the identifiability issue is resolved and the EM algorithm works efficiently.
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  0:T ∈S p(s 0:T |P ) • p(y 0:T |s 0:T , Γ), (17) where S = {1, . . . , κ} T +1 and p(y 0:T |s 0:T , Γ) is a Gaussian distribution whose parameters are recursively calculated (Section 2). Thus p(y 0:T | Θ) is a finite convex combinaison of Gaussian distributions. Following the line of proof in [8], we have p(y0:T |Θ) = p(y0:T |Θ * ) ⇒ (18) 1)p(y0:T |s0:T , Γ) = p(y0:T |s0:T , Γ * ) 2)p(s0:T |P ) = p(s0:T |P * ).

  y0 = C(s)x0 + D(s)u0 with s = 1, . . . , κ and x0 • u0 = 0,

  Fig.1: Ratio of estimated x t (top) and y t (bottom) without constraints to the one with constraints t 0 = 0, the battery is often in a resting state, and the SoC can be efficiently calculated using an OCV /SoC relationship. To verify the relevance of the proposed constraints, the unknown parameters are estimated based on the presented MC-EM algorithm, using 200 particles, with as well as without constraints (14). When the estimation is performed without constraints, we impose an upper bound to x t to avoid numerical problems. Experimental results show that both marginal likelihoods p(y 0:T | Θ) are equal. Table

			B	C	D 1	D 2 σ X	σ Y
	Ratio for s = 1 7.78 0.14 1.05	1	9.5 0.93
	Ratio for s = 2 5.05 0.12 0.96	1	9.5 0.93
	Ratio for s = 3 9.12 0.14 1.06	1	9.5 0.93
	Tab. 1: Ratio of the parameters estimated without con-
	straints to those with constraints, SMSSM (21) with κ = 3
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