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Abstract

In the theory of orthogonal polynomials, sum rules are remarkable relationships between
a functional defined on a subset of all probability measures involving the reverse Kullback-
Leibler divergence with respect to a particular distribution and recursion coefficients related
to the orthogonal polynomial construction. Killip and Simon (Killip and Simon (2003)) have
given a revival interest to this subject by showing a quite surprising sum rule for measures
dominating the semicircular distribution on [−2, 2]. This sum rule includes a contribution
of the atomic part of the measure away from [−2, 2]. In this paper, we recover this sum
rule by using probabilistic tools on random matrices. Furthermore, we obtain new (up to
our knowledge) magic sum rules for the reverse Kullback-Leibler divergence with respect to
the Marchenko-Pastur or Kesten-McKay distributions. As in the semicircular case, these
formulas include a contribution of the atomic part appearing away from the support of the
reference measure.

Keywords: Sum rules, Jacobi matrix, Kullback-Leibler divergence, orthogonal polyno-
mials, spectral measures, large deviations, random matrices.
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1 Introduction

1.1 Szegő-Verblunsky theorem and sum rules

A very famous result in the theory of orthogonal polynomial on the unit circle (OPUC) is the
Szegő-Verblunsky theorem (see Simon (2011) Theorem 1.8.6 p. 29). It concerns a deep relation-
ship between the coefficients involved in the construction of the orthogonal polynomial sequence
of a measure supported by the unit circle and its logarithmic entropy. More precisely, the in-
ductive relation between two successive monic orthogonal polynomials φn+1 and φn (deg φn = n,
n ≥ 0) associated with a probability measure µ on the unit circle T supported by at least n + 1
points involves a complex number αn and may be written as

(1.1) φn+1(z) = zφn(z)− αnφ∗n(z) where φ∗n(z) := znφn(1/z̄).

The complex number αn = −φn+1(0) is the so-called Verblunsky coefficient. In other contexts,
it is also called Schur, Levinson, Szegő coefficient or even canonical moment (Dette and Studden
(1997)).

The Szegő-Verblunsky theorem is the identity

(1.2)
1

2π

∫ 2π

0

log gµ(θ)dθ =
∑
n≥0

log(1− |αn|2) ,

where the Lebesgue decomposition of µ with respect to the uniform measure dθ/2π on T is

dµ(θ) = gµ(θ)
dθ

2π
+ dµs(θ) ,

and where both sides of (1.2) are simultaneously finite or infinite. An exhaustive overview and
the genesis tale of this crucial theorem may be found in the very nice book of Simon (Simon
(2011)). The identity (1.2) is one of the most representative example of a sum rule (or trace
formula): it connects the coefficients of an operator (Killip (2007)) to its spectral data. There
are various analytical methods of proof (see Chapter 1 in Simon (2011)) and a probabilistic one
(see section 5.2 of Gamboa and Rouault (2010)).

In the theory of orthogonal polynomials on the real line (OPRL), given a probability measure µ
with an infinite support, a.k.a. nontrivial case (resp. with a finite support consisting of n points,
a.k.a. trivial case), the orthonormal polynomials (with positive leading coefficients) obtained by
applying the orthonormalizing Gram-Schmidt procedure to the sequence 1, x, x2, . . . obey the
recursion relation

xpk(x) = ak+1pk+1(x) + bk+1pk(x) + akpk−1(x)(1.3)

for k ≥ 0 (resp. for 0 ≤ k ≤ n − 1) where the Jacobi parameters satisfy bk ∈ R, ak > 0. Notice
that here the orthogonal polynomials are not monic but normalized in L2(µ).

The sum rule analogous to (1.2) in the OPRL case is given by the Killip-Simon theorem (Killip
and Simon (2003)). It relates the sum of functions of ak and bk to a spectral expression involving
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µ. Like the Szegő-Verblunsky formula, the spectral side of the sum rule equation measures in
some sense the deviation from a reference measure, the semi-circle law

(1.4) SC(dx) =
1

2π

√
4− x2 1[−2,2](x) dx

and gives on the “sum-side” the corresponding contribution by the sequence of recursion coeffi-
cients. We restate the sum rule of Killip and Simon (2003) in Section 2.1 in full detail. Again,
an exhaustive discussion and history of this sum rule can be found in Section 1.10 of the book of
Simon (2011). The deep analytical proof is in Chapter 3 of the book.

In both models, the Kullback-Leibler divergence or relative entropy between two probability
measures µ and ν plays a major role. When the probability space is R endowed with its Borel
σ-field it is defined by

(1.5) K(µ | ν) =


∫
R

log
dµ

dν
dµ if µ is absolutely continuous with respect to ν

∞ otherwise.

Usually, ν is the reference measure. Here the spectral side will involve the reversed Kullback-
Leibler divergence, where µ is the reference measure and ν is the argument.

Later, Nazarov et al. (2005) obtained a more general sum rule, when the reference measure is
A(x) SC(dx) with A a nonnegative polynomial (see also Kupin (2005) for other generalizations).
We will discuss this point in Section 3.3.

1.2 Our main results with hands: outline of the paper

The contribution of this paper is twofold. On the one hand, we show two new sum rules. One for
measures on the positive half line and one for measures restricted to a compact interval. In each
case, the reference measure is different and the sum involves a function of specific coefficients
related to the sequences (an)n and (bn)n. On the other hand, we also show new large deviation
theorems for spectral measures of random operators. In fact, this probabilistic result yields the
new sum rules as a direct consequence and also allows for an alternative probabilistic proof of
the Killip-Simon sum rule. Notice that as pointed out by Simon in Simon (2007): ”The gems
of spectral theory are ones that set up one-one correspondences between classes of measures and
coefficients with some properties.” In Section 2.4, we will discuss the underlying gems deduced
from the new sum rules.

Large deviations for these random spectral measures arising from the classical ensembles of ran-
dom matrix theory have been considered before in Gamboa and Rouault (2011). Therein, the
main tool was the study of large deviation properties of the recursion coefficients. This method
yields as rate function precisely the sum side of the new sum rules. Furthermore, the rate func-
tion in our new result is the spectral side. Since the rate function in large deviations is unique,
both sides must be equal. This is, in a nutshell, our proof for sum rules. Our method of proof
also stress why both sides of the sum rule equations gives a measure for the divergence to some
reference measure as they are large deviation rate functions.
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To build a comfortable common ground for both mathematical analyst and probabilist reader,
we will recap in the further course of this section some useful facts on spectral measures, on
their tridiagonal representations and on their randomization. We will also recall the definition of
large deviations. In Section 2, we restate the sum rule showed in Killip and Simon (2003) and
give our new sum rules. For the convenience of the reader, we formulate the sum rules without
mentioning the underlying randomization. In Section 3 we give the main large deviation result
and we explain why the sum rules are a consequence of this theorem. We also give a conjecture
for a more general sum rule going away from the frame of classical ensembles. The proof of
the main large deviation theorem can be found in Section 4. Finally, some technical details are
referred to the Appendix.

Let us notice that three extensions of the above method are quite natural and will appear in
further work.

1. A matricial version of the Killip-Simon sum rule is the due to Damanik, Killip and Simon
(see Damanik et al. (2010) or Theorem 4.6.3 in Simon (2011)). We will extend the results
of the present paper to block Laguerre and block Jacobi random matrices. As a matter of
fact, we will lean on the large deviation results proved in Gamboa et al. (2012).

2. In the unit circle case, there is a natural model having a limit measure supported by a
proper arc of T. In this frame, the random Verblunsky coefficients have a nice independence
structure (see Bourgade et al. (2009)). This allows to extend the sum rules developed here.

3. All along this paper, we consider measures with essential support consisting in a single
interval (so-called one-cut assumption). We will later consider equilibrium measures sup-
ported by several intervals. For this task, the probabilistic tools may be found in Borot and
Guionnet (2013a) and the analytic ones are in Chapter 9 of Simon (2011).

1.3 OPRL and tridiagonal matrices

If H is a self-adjoint bounded operator on a Hilbert space H and e is a cyclic vector, the spectral
measure of the pair (H, e) is the unique probability measure µ on R such that

〈e,Hke〉 =

∫
R
xkdµ(x) (k ≥ 1).

Actually, µ is a unitary invariant for (H, e). Another invariant is the tridiagonal reduction whose
coefficients will play the role of the earlier-mentioned Verblunsky coefficients for unitary operators.
If dim H = n and e is cyclic for H, let λ1, . . . , λn be the (real) eigenvalues of H and let ψ1, . . . , ψn
be a system of orthonormal eigenvectors. The spectral measure of the pair (H, e) is then

µ(n) =
n∑
k=1

wkδλk ,(1.6)

with wk = |〈ψk, e〉|2. This measure is a weighted version of the empirical eigenvalue distribution

µ(n)
u =

1

n

n∑
k=1

δλk .(1.7)
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µ(n) is called eigenvector empirical distribution function in a recent paper of Xia et al. (2013). Let
us now describe shortly the Jacobi mapping between tridiagonal matrices and spectral measures.

We consider n× n matrices corresponding to measures supported by n points (trivial case) and
semi-infinite matrices corresponding to measures with bounded infinite support (non-trivial case).

In the basis {p0, p1, . . . , pn−1}, the linear transform f(x)→ xf(x) (multiplication by x) in L2(dµ)
is represented by the matrix

Jµ =


b1 a1 0 . . . 0

a1 b2 a2
. . .

...

0
. . . . . . . . . 0

...
. . . an−2 bn−1 an−1

0 . . . 0 an−1 bn

(1.8)

So, measures supported by n points lead to Jacobi matrices, i.e. n × n symmetric tridiagonal
matrices with subdiagonal positive terms. In fact, there is a one-to-one correspondence between
such a matrix and such a measure. If J is a Jacobi matrix, we can take the first vector of the
canonical basis as the cyclic vector e. Let µ be the spectral measure associated to the pair (J, e1),
then J represents the multiplication by x in the basis of orthonormal polynomials associated to
µ and J = Jµ.

More generally, if µ is a probability measure on R with bounded infinite support, we may apply
the same Gram-Schmidt process and consider the associated semi-infinite Jacobi matrix:

Jµ =


b1 a1 0 0 · · ·
a1 b2 a2 0 · · ·
0 a2 b3 a3
...

. . . . . . . . .

(1.9)

Notice that again we have ak > 0 for every k. The mapping µ 7→ Jµ (called here the Jacobi
mapping) is a one to one correspondence between probability measures on R having compact
infinite support and this kind of tridiagonal matrices with supn(|an| + |bn|) < ∞. This result is
sometimes called Favard’s theorem.

1.4 Randomization: gas distribution and random matrices

In this paper we consider distributions of log-gases and random matrices. In the sequel, n is the
number of particles (or eigenvalues), denoted by λ1, . . . , λn, with the joint distributions PnV on
Rn having the density

dPnV (λ)

dλ
=

1

Zn
V

e−nβ
′∑n

k=1 V (λk)
∏

1≤i<j≤n

|λi − λj|β.(1.10)

with respect to the Lebesgue measure dλ = dλ1 · · · dλn. The potential V : R → (−∞,+∞] is
supposed to be continuous real valued on the interval (b−, b+) (−∞ ≤ b− < b+ ≤ +∞), infinite

5



outside of [b−, b+] and limx→b± V (x) = V (b±) with possible limit V (b±) = +∞. Let β = 2β′ > 0
be the inverse temperature. Under the assumption

(A1) Confinement: lim inf
x→b±

V (x)

2 log |x|
> max(1, β−1) ,

the empirical distribution µ
(n)
u of eigenvalues λ1, . . . , λn has a limit µV (in probability)1, which is

the unique minimizer of

µ 7→ E(µ) :=

∫
V (x)dµ(x)−

∫∫
log |x− y|dµ(x)dµ(y).(1.11)

µV has compact support (see Johansson (1998) or Anderson et al. (2010)). Indeed, this is a
consequence of the large deviations of the empirical spectral measure (see Theorem 1.2). We will
make the following assumptions on µV :

(A2) One-cut regime: the support of µV is a single interval [α−, α+] ⊂ [b−, b+] ( α− < α+).

(A3) Control (of large deviations): the effective potential

JV (x) := V (x)− 2

∫
log |x− ξ| dµV (ξ)(1.12)

achieves its global minimum value on (b−, b+) \ (α−, α+) only on the boundary of this set.

Furthermore, to obtain a non-variational expression for the rate we need the following conditions:

(A4) Offcriticality: We have

dµV (x) =
1

2π
S(x)

√
Πτ∈Soft|x− ατ |

Πτ ′∈Hard|x− ατ ′|
dx

where S > 0 on [α−, α+] and τ ∈ Hard iff bτ = ατ , otherwise τ ∈ Soft (Hard∩ Soft = ∅ and
Hard∪ Soft = {−,+}).

(A5) Analyticity: V can be extended as an holomorphic function is some open neighborhood of
[α−, α+].

We remark that for V strictly convex, the assumptions (A2), (A3) and (A4) are fulfilled (see
Borot and Guionnet (2013b) and Johansson (1998)).

Hereafter, we discuss the classical models with their potentials and their domains, and their
equilibrium measure.

1Various authors used to say almost surely, but since the probability spaces are not embedded, it seems more
convenient to keep in probability.
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1. Hermite ensemble:

V (x) =
x2

2
, (b−, b+) = R and the equilibrium measure is SC(dx), α± = ±2 .

2. Laguerre ensemble of parameter τ ∈ (0, 1]:

V (x) = τ−1x− (τ−1 − 1) log x , [b−, b+) = [0,∞)

with equilibrium measure the Marchenko-Pastur law with parameter τ ,

MPτ (dx) =

√
(τ+ − x)(x− τ−)

2πτx
1(τ−,τ+)(x)dx , α± = τ± = (1±

√
τ)2

3. Jacobi ensemble of parameters κ1, κ2 ≥ 0:

V (x) = −κ1 log x− κ2 log(1− x) , [b−, b+] = [0, 1] .

The equilibrium measure is the Kesten-McKay distribution

KMKκ1,κ2(dx) =
(2 + κ1 + κ2)

2π

√
(u+ − x)(x− u−)

x(1− x)
1(u−,u+)(x)dx ,

where

α± = u± :=
1

2
+
κ2

1 − κ2
2 ± 4

√
(1 + κ1)(1 + κ2)(1 + κ1 + κ2)

2(2 + κ1 + κ2)2
.(1.13)

Let us start with a crash recall in random matrix theory. The GOE of order n is a probability
distribution P

(1)
n on the set of all symmetric real n × n matrices, obtained by assuming that

the diagonal entries are distributed as N (0, 2) and the non-diagonal ones as N (0, 1) and that
entries are independent up to symmetry. Taking on-or-above-diagonal entries as coordinates of
the random matrix H, this gives a density with respect to the Lebesgue measure proportional
to exp−trH2/4. The distribution of eigenvalues of 1√

n
H is given by (1.10) with β = 1 and

V (x) = x2/2. Besides, Trotter (1984) proved that the coefficients bk are Gaussian and the
coefficients a2

k are gamma distributed, with convenient parameter. Furthermore, by the invariance
of the Gaussian distribution under rotation, the first row of the eigenvector matrix is independent
of the eigenvalues and uniformly distributed on the sphere. Dumitriu and Edelman (2002) also
proved that conversely, if we take an array (λ1, . . . , λn) distributed as in (1.10), with general
β > 0 and an independent array of weights (w1, . . . , wn) sampled with the Dirichlet distribution
Dirn(β′) of order n and parameter β′ on the simplex

∑
i wi = 1, i.e. with density proportional to

(w1 · · · wn)β
′−1 ,

then the coefficients of the tridiagonal matrix are independent Gaussian and gamma variables,
respectively. In the case of Laguerre and Jacobi ensembles, other systems of auxiliary variables
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with nice structure of independence were introduced in Dumitriu and Edelman (2002) and in
Killip and Nenciu (2004). We will use these parametrizations in the next sections.

The case of a general potential V is not so easy. Nevertheless, the correspondence is ruled by the
following result. Let A(n) = (a1, . . . , an−1) and B(n) = (b1, . . . , bn) and let T (n) be the symmetric

tridiagonal matrix with T
(n)
k,k = bk for k ≤ n and T

(n)
k,k+1 = T

(n)
k+1,k = ak for k ≤ n − 1. Then we

may state the following theorem.

Theorem 1.1 (Krishnapur et al. (2013) Prop.2) Let (A(n), B(n)) sampled from the density
proportional to

exp−nβ′
[

tr V (T (n))− 2
n−1∑
k=1

(
1− k

n
− 1

nβ

)
log ak

]
.

Then the eigenvalues λ1, . . . , λn have joint density proportional to

e−nβ
′∑n

1 V (λk)
∏

1≤j<k≤n

|λj − λk|β

and the weights w1, . . . , wn are independent with distribution Dirn(β′).

1.5 Large deviations

In order to be self-contained, let us recall the definition of a large deviation principle. For a general
reference of large deviation statements we refer to the book of Dembo and Zeitouni (1998) or to
the Appendix D of Anderson et al. (2010).

Let U be a topological Hausdorff space with Borel σ-algebra B(U). We say that a sequence (Pn)n
of probability measures on (U,B(U)) satisfies a large deviation principle (LDP) with speed an
and rate function I : U → [0,∞] if:

(i) I is lower semicontinuous.

(ii) For all closed sets F ⊂ U :

lim sup
n→∞

1

an
logPn(F ) ≤ − inf

x∈F
I(x)

(iii) For all open sets O ⊂ U :

lim inf
n→∞

1

an
logPn(O) ≥ − inf

x∈O
I(x)

The rate function I is good if its level sets {x ∈ U | I(x) ≤ a} are compact for all a ≥ 0. If in the
conditions above, we replace closed sets by compact sets, we say that (Pn)n satisfies a weak LDP.
In this case, we can recover a LDP if the additional condition of exponential tighness is fulfilled:
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For every M > 0 there exists a compact set KM ⊂ U such that

lim sup
n→∞

1

an
logPn(U \KM) ≤ −M .

In our case, the measures Pn will be the distributions of the random spectral measures µn and
we will say that the sequence of measures µn satisfies a LDP.

The most famous LDP in random matrix theory is for the sequence of empirical spectral measures.
We let P1 denote the set of all probability measures on R.

Theorem 1.2 If the potential V satisfies assumption (A1), and if (λ1, . . . , λn) is distributed

according to PnV (see (1.10)), then the sequence of random probability measures (µ
(n)
u ) satisfies in

P1 equipped with the weak topology, a LDP with speed β′n2 and good rate function

µ 7→ E(µ)− E(µV )

where E is defined in (1.11) .

Let us recall the definition of convex duality, used several times in the proofs. If R is a function
defined on a topological vector space H and valued in (−∞,∞], then its convex dual R∗ is a
function defined on the topological dual space H∗ by

R∗(x) = sup
θ∈H

[〈θ, x〉 −R(θ)] (x ∈ H∗).

Here, 〈 , 〉 is the duality bracket. For H = R, two examples are meaningful in our context

1. Gaussian case

(1.14) L0(θ) =
θ2

2
⇒ L∗0(x) =

x2

2

2. Exponential case

(1.15) L(θ) =

{
− log(1− θ) if θ < 1 ,

∞ otherwise,

then

(1.16) L∗(x) = G(x) :=

{
x− 1− log x if x > 0 ,

∞ otherwise.

Let us denote respectively by N (0, σ2) the centered Gaussian distribution and Gamma(a, b) the
gamma distribution of order a > 0 and scale factor b > 0 with density

x 7→ xa−1

baΓ(a)
e−

x
b x > 0 .

L∗0 is the rate function of the LDP satisfied by (N (0, n−1))n at speed n and L∗ is the rate function
of the LDP satisfied by (Gamma(n, n−1))n, also at speed n. Besides, (Gamma(a, n−1))n satisfies
a LDP at speed n with rate function

(1.17) x 7→

{
x if x ≥ 0,

∞ otherwise.
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2 Sum rules from large deviations

Let S = S(α−, α+) be the set of all bounded positive measures µ on R with

(i) supp(µ) = J ∪ {λ−i }N
−

i=1 ∪ {λ+
i }N

+

i=1, where J ⊂ I = [α−, α+], N−, N+ ∈ N ∪ {∞} and

λ−1 < λ−2 < · · · < α− and λ+
1 > λ+

2 > · · · > α+.

(ii) If N− (resp. N+) is infinite, then λ−j converges towards α− (resp. λ+
j converges to α+).

Such a measure µ will be written as

µ = µ|I +
N+∑
i=1

γ+
i δλ+i +

N−∑
i=1

γ−i δλ−i(2.1)

Further, we define S1 = S1(α−, α+) := {µ ∈ S|µ(R) = 1}. We endow S1 with the weak topology
and the corresponding Borel σ-algebra.

2.1 Hermite case revisited

We start by stating the classical sum rule (due to Killip and Simon (2003) and explained in
Simon (2011) p.37), the new probabilistic proof using large deviations is tackled in Section 3.2.
The sum rule gives two different expressions for the distance to the semicircle law SC. Its Jacobi
coefficients are

(2.2) aSC
k = 1, bSC

k = 0 for all k ≥ 1 .

For a probability measure µ on R with recursion coefficients (ak)k, (bk)k as in (1.3), define the
sum

IH(µ) =
∑
k≥1

(1

2
b2
k +G(a2

k)
)

=
∑
k≥1

(
L∗0(bk) +G(a2

k)
)
,(2.3)

where G and L∗0 have been defined in the previous section. Further, let

F+
H(x) :=


∫ x

2

√
t2 − 4 dt = x

2

√
x2 − 4− 2 log

(
x+
√
x2−4
2

)
if x ≥ 2

∞ otherwise,

and, for x ∈ R, set F−H(x) := F+
H(−x). Then we have the following theorem.

Theorem 2.1 (Killip and Simon (2003)) Let J be a Jacobi matrix with diagonal entries
b1, b2, . . . ∈ R and subdiagonal entries a1, a2, . . . > 0 satisfying supk ak + supk |bk| <∞ and let µ
be the associated spectral measure. Then IH(µ) is infinite if µ /∈ S1(−2, 2) and for µ ∈ S1(−2, 2),

IH(µ) = K(SC| µ) +
N+∑
n=1

F+
H(λ+

n ) +
N−∑
n=1

F−H(λ−n )

where both sides may be infinite simultaneously.
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2.2 New magic sum rule: the Laguerre case

For our first new sum rule, we consider probability measures µ supported on [0,∞). In this case,
the recursion coefficients can be decomposed as

bk =z2k−2 + z2k−1,

a2
k =z2k−1z2k,

(2.4)

for k ≥ 1, where zk ≥ 0 and z0 = 0. In fact, by Favard’s Theorem a measure µ is supported on
[0,∞) if and only if the decomposition as in (2.4) holds. The central probability measure is the
Marchenko-Pastur law MPτ defined in Section 1.4, whose Jacobi coefficients are

(2.5) aMP
k =

√
τ (k ≥ 1) , bMP

1 = 1 , bMP
k = 1 + τ (k ≥ 2)

and correspond to zMP
2n−1 = 1 and zMP

2n = τ for all n ≥ 1. For a measure µ supported on [0,∞), let

IL(µ) :=
∞∑
k=1

τ−1G(z2k−1) +G(τ−1z2k).(2.6)

For the new sum rule, we have to replace F±H by

F+
L (x) =


∫ x

τ+

√
(t− τ−)(t− τ+)

tτ
dt if x ≥ τ+,

∞ otherwise,

F−L (x) =


∫ τ−

x

√
(τ− − t)(τ+ − t)

tτ
dt if x ≤ τ−,

∞ otherwise.

Then we have the following magic sum rule for probability measures on [0,∞). The probabilistic
proof can be found in Section 3.2.

Theorem 2.2 Assume the entries of the Jacobi matrix J can be decomposed as in (2.4) with
supk zk < ∞ and let µ be the spectral measure of J . Then for all τ ∈ (0, 1], IL(µ) = ∞ if
µ /∈ S1(τ−, τ+). If µ ∈ S1(τ−, τ+), we have

IL(µ) = K(MPτ | µ) +
N+∑
n=1

F+
L (λ+

n ) +
N−∑
n=1

F−L (λ−n )

where both sides may be infinite simultaneously.

Note that if τ = 1, the support of the limit measure is [0, 4], so that we have a hard edge at 0
with N− = 0 and no contribution of outliers to the left.

11



2.3 New magic sum rule: the Jacobi case

Our second new sum rule is a generalization of the Szegő theorem for probability measures on
the unit circle. The classical Szegő mapping is a correspondence between a probability measure
ν on T invariant by θ 7→ 2π − θ and a probability measure µ on [−2, 2] obtained by pushing
forward ν by the mapping θ 7→ 2 cos θ. In this case the Verblunsky coefficients (αk)k≥0 of ν (they
all belong to [−1, 1] by symmetry) are by extension called the Verblunsky coefficients of µ. For
k ≥ 1, the recursion coefficients associated with µ are connected with the Verblunsky coefficients
by the Geronimus relations:

bk+1 = (1− α2k−1)α2k − (1 + α2k−1)α2k−2

ak+1 =
√

(1− α2k−1)(1− α2
2k)(1 + α2k+1)

(2.7)

where αk ∈ [−1, 1] and α−1 = −1. While these recursion coefficients give a measure µ on [−2, 2],
it is more convenient for our approach to consider the measure µ̃ on [0, 1] obtained by pushing
forward µ by the affine mapping x 7→ 1

2
− 1

4
x. We keep calling (αk)k the Verblunsky coeffcients

of µ̃. The Jacobi coefficients of µ̃ are

b̃k =
2− bk

4
, ãk =

ak
4

(k ≥ 1) .

Here, the important probability measure is the Kesten-McKay distribution KMKκ1,κ2 on [0, 1]
with parameters κ1, κ2 ≥ 0. The associated Verblunsky coefficients are, for k ≥ 0,

αKMK
2k =

κ1 − κ2

2 + κ1 + κ2

, αKMK
2k+1 = − κ1 + κ2

2 + κ1 + κ2

.

and the corresponding Jacobi coefficients are

(2.8) ãKMK
1 =

√
(1 + κ1)(1 + κ2)

(2 + κ1 + κ2)3/2
, b̃KMK

1 =
1 + κ2

2 + κ1 + κ2

,

and for k ≥ 2

ãKMK
k =

√
(1 + κ1 + κ2)(1 + κ1)(1 + κ2)

(2 + κ1 + κ2)2
, b̃KMK

k =
1

2

[
1− κ2

1 − κ2
2

(2 + κ1 + κ2)2

]
.

Set

IJ(µ̃) =
∞∑
k=0

H1(α2k+1) +H2(α2k),(2.9)

where for x ∈ [−1, 1]

H1(x) = −(1 + κ1 + κ2) log

[
2 + κ1 + κ2

2(1 + κ1 + κ2)
(1− x)

]
− log

[
2 + κ1 + κ2

2
(1 + x)

]

12



H2(x) = −(1 + κ1) log

[
(2 + κ1 + κ2)

2(1 + κ1)
(1 + x)

]
− (1 + κ2) log

[
(2 + κ1 + κ2)

2(1 + κ1)
(1− x)

]
.

Let F+
J be defined by

F+
J (x) =


∫ x

u+

√
(t− u+)(t− u−)

t(1− t)
dt if u+ ≤ x ≤ 1

∞ otherwise.

Similarly, let

F−J (x) =


∫ u−

x

√
(u− − t)(u+ − t)

t(1− t)
dt if 0 ≤ x ≤ u−

∞ otherwise.

Then the following magic sum rule for probability measures on [0, 1] holds.

Theorem 2.3 Let µ̃ be a probability measure on [0, 1] and let αk be the Verblunsky coefficients
of µ̃. Then for any κ1, κ2 ≥ 0, IJ(µ̃) =∞ if µ̃ /∈ S1(u−, u+). If µ̃ ∈ S1(u−, u+), then

IJ(µ̃) = K(KMKκ1,κ2| µ̃) +
N+∑
n=1

F+
J (λ+

n ) +
N−∑
n=1

F−J (λ−n )

and both sides may be infinite simultaneously.

Similar to the Laguerre case, if κ1 = 0 or κ2 = 0, then u− = 0 or u+ = 1, respectively, and we have
no contribution coming from respective outliers. In particular, if κ1 = κ2 = 0, the Kesten-McKay
distribution reduces to the arcsine distribution

dµ0(x) =
1

π
√
x(1− x)

1(0,1)(x) dx

and then the sum rule reads

(2.10) K(µ0 | µ̃) = −
∞∑
n=0

log(1− α2
n),

which is nothing more than the classical Szegő sum rule written for probability measures pushed
forward by the application θ → 1

2
− cos θ

2
. Notice also that in this frame we may rewrite this sum

rule in terms of a cousin parametrization. Namely, by the way of the so-called canonical moments
defined for a measure supported on [0, 1] (see the excellent book of Dette and Studden (1997)).
More precisely, let for k ≥ 1, pk denote the canonical moment of order k of µ̃. Recall that pk
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may be defined browsing different paths, the straightest is from the ordinary moments. Indeed,
assuming that µ̃ is not supported by a finite number of points, we have

p1 :=

∫ 1

0

xµ̃(dx),

pn+1 :=

∫ 1

0
xn+1µ̃(dx)− c−n+1

c+
n+1 − c−n+1

for n ≥ 1.

Here, c+
n+1 (resp. c−n+1) is the maximum (resp. minimum) possible value for the (n+1)-th moment

of a probability measure supported by [0, 1] having the same n first moments as µ̃. With this
parametrisation, as αn = 2pn+1 − 1 for all integer n (see Dette and Studden (1997) p. 287), the
sum rule (2.10) becomes

K(µ0 | µ̃) = −
∞∑
n=0

log(4pn(1− pn)).

Notice that the last expression is also the functional obtained in Gamboa and Lozada-Chang
(2004) in the study of large deviations for a random Hausdorff moment problem.

2.4 Semiprecious gems

In the introduction of the paper we pointed out that the gem of spectral theory is to set up
one-one correspondences between classes of measures and coefficients with some properties. More
precisely, a gem (see Simon (2011) Section 1.4) gives a one-one correspondence between properties
on the sequences (an) and (bn) and the associated spectral measure. The gem corresponding to the
Hermite case has been proved by Killip and Simon (see Simon (2011) Section 1.10). We discuss
here such correspondences for the two sum rules given in Theorems 2.2 and 2.3. Although we do
not succeed to find the holy grail of such a correspondence between classes relying on (an) and
(bn), we set it in terms of the sequences (zn) (Laguerre case) and (αn) (Jacobi case).

Corollary 2.4 Assume the entries of the Jacobi matrix J can be decomposed as in (2.4) with
supk zk <∞ and let µ be the spectral measure of J . Then

∞∑
k=1

[(z2k−1 − 1)2 + (z2k − τ)2] <∞(2.11)

(that is, IL(µ) <∞) if and only if

1. µ ∈ S1(τ−, τ+)

2.
∑N+

i=1(λ+
i − τ+)3/2 +

∑N−

i=1(τ− − λ−i )3/2 <∞ and if N− > 0, then λ−1 > 0.

3. the spectral measure µ of J with decomposition dµ(x) = f(x)dx+ dµs(x) with respect to the
Lebesgue measure satisfies∫ τ+

τ−

√
(τ+ − x)(x− τ−)

x
log(f(x))dx > −∞.
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Proof: It is enough to notice that F−L (0) =∞ and

F±L (τ± ± h) =
4

3τ 3/4(1 +±
√
τ)2

h3/2 + o(h3/2) (h→ 0+)

and

G(1 + h) =
h2

2
+ o(h) (h→ 0)

Remark 2.5 Comparing with the Hermite gem, it would be most desirable to obtain a purely
spectral criterion for when J is a Hilbert-Schmidt operator relative to the Jacobi operator of the
equilibrium measure, that is, in the Laguerre case

∞∑
k=1

[(bk − 1− τ)2 + (ak −
√
τ)2] <∞.(2.12)

Unfortunately, Theorem 2.2 will not yield such a criterion. (2.11) implies (2.12) but the converse
is not true. As an example, set z2k−1 = τ , z2k = 1 for all k ≥ 1, then (2.12) is clearly satisfied,
but IL(µ) = ∞ for µ the spectral measure of J and τ 6= 1. Actually, this system of coefficients
correspond to the measure

µ(dx) = (1− τ)δ0 + τ MPτ (dx)

(see Saitoh and Yoshida (2001) for the identification); the extra mass in 0 gives a contribution
F−L (0) =∞, the condition 2 is not fulfilled, although the conditions 1 and 3 are fulfilled.

Corollary 2.6 Assume the entries of the Jacobi matrix J can be decomposed as in (2.7) and let
µ be the spectral measure of J with pushforward µ̃ under the mapping x 7→ 1

2
− 1

4
x. Then, for any

κ1, κ2 > 0,

∞∑
k=1

[(
α2k−1 +

κ1 + κ2

2 + κ1 + κ2)

)2

+

(
α2k −

κ1 − κ2

2 + κ2 + κ2

)2
]
<∞(2.13)

(that is, IJ(µ̃) <∞) if and only if

1. µ̃ ∈ S1(u−, u+)

2.
∑N−

i=1(1
2
− 1

4
λ−i − u+)3/2 +

∑N+

i=1(u−− 1
2

+ 1
4
λ+
i )3/2 <∞ and λ−1 > −2 if N− > 0 and λ+

1 < 2
if N+ > 0.

3. when dµ̃(x) = f(x)dx + dµ̃s(x) is the decomposition of µ̃ with respect to the Lebesgue
measure, then ∫ u+

u−

√
(u+ − x)(x− u−)

x(1− x)
log(f(x))dx > −∞.

The proof is similar to the Laguerre case.
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Remark 2.7 We can argue as in Remark 2.5. In particular (2.13) implies

∞∑
k=1

[(b̃k − b̃KMK
k )2 + (ãk − ãKMK

k )2] <∞ ,(2.14)

but it is not equivalent.

3 Large deviations main theorem

3.1 The main result

Our large deviation result will hold for general eigenvalue distributions PnV defined in (1.10).
The corresponding spectral measure µ(n) is then defined by (1.6), where the weights w1, . . . , wn
are Dirn(β′) distributed and independent of the eigenvalues. We regard µ(n) as a random ele-
ment of P1, the set of all probability measures on R, endowed with the weak topology and the
corresponding σ-algebra. We need one more definition in order to formulate the general result.

Recall that JV has been defined in assumption (A3). We define, in the general case, the rate
function for the extreme eigenvalues,

F+
V (x) =

{
JV (x)− infξ∈R JV (ξ) if α+ ≤ x ≤ b+,

∞ otherwise,
(3.1)

F−V (x) =

{
JV(x)− infξ∈R JV (ξ) if b− ≤ x ≤ α−,

∞ otherwise.
(3.2)

Theorem 3.1 Assume that the potential V satisfies the assumptions (A1), (A2) and (A3). Then
the sequence of spectral measures µ(n) under PnV ⊗ Dirn(β′) satisfies the LDP with speed β′n and
rate function

IV (µ) = K(µV | µ) +
N+∑
n=1

F+
V (λ+

n ) +
N−∑
n=1

F−V (λ−n )

if µ ∈ S1(α−, α+) and IV (µ) =∞ otherwise.

Additionally, we have an alternative expression for F±V , given by the following proposition. This
result is more or less classical. It may be found in Deift et al. (1999) (proof of Theorem 3.6) or
in Albeverio et al. (2001) (Equation (1.13)).

Proposition 3.2 If moreover, the conditions of analyticity (A5) and off-criticality (A4) are
satisfied, then

F+
V (x) =

∫ x

α+

S(t)
√

(t− α−)(t− α+) dt if x ≥ α+,(3.3)

F−V (x) =

∫ α−

x

S(t)
√

(α− − t)(α+ − t) dt if x ≤ α−.(3.4)
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3.2 From large deviations to sum rules

As described in the introduction, the sum rules of Section 2 are a consequence of two different
proofs of a LDP, one leading to our main result Theorem 3.1, giving the spectral side and
another one yielding the sum side. Let us explain this in detail for the Hermite case.

For the Hermite case with probability measures on the whole real line, the correct randomization
on the set of probability measures is the Hermite ensemble, defined by the eigenvalue density

cβ
∏
i<j

|λj − λi|β
n∏
i=1

e−
β′n
2
λ2i

corresponding to the potential V (x) = x2/2, and with weights following the Dirichlet distribution
independent of the eigenvalues. Wigner’s famous theorem states that the weak limit of the
empirical eigenvalue distribution is then the semicircle law SC. Indeed, here the potential V
satisfies all assumptions in Section 3.1 with µV = SC and S(x) = 1

2
on [−2, 2]. Thus, by Theorem

3.1 the LDP for the measure µ(n) holds. Further, by Proposition 3.2, we may calculate the rate
for the outliers as F±V = F±H . The rate function IV is therefore precisely the right hand side in
Theorem 2.1.
On the other hand, the recursion coefficients (ak)k, (bk)k of the measure µ(n) are independent
with respectively gamma and normal distributions. Using this representation for the spectral
measure, Gamboa and Rouault (2011) proved that µ(n) satisfies an LDP, again with speed β′n,
and with rate function IH the left hand side in Theorem 2.1. Since the rate function is unique,
we must have IV = IH .

For the new sum rules, the arguments are similar. In the Laguerre case, the eigenvalue distribution
of the spectral measure is

cτ,β
∏
i<j

|λi − λj|β
n∏
i=1

λ
β′n(τ−1−1)
i e−β

′nτ−1λi1{λi>0}

with τ ∈ (0, 1] and independent Dirichlet distributed weights. The potential of the Laguerre
ensemble is V (x) = τ−1x − (τ−1 − 1) log x on (0,∞). As n → ∞, the empirical eigenvalue
distribution and the weighted spectral measure µ(n) converge to the Marchenko-Pastur law MPτ .
Moreover, the assumptions of Theorem 3.1 are satisfied and we have an LDP with speed β′n
and rate function IV the right hand side in the new sum rule, as F±V = F±L . As for the Hermite
ensemble, Gamboa and Rouault (2011) proved an LDP for µ(n) in the subset of probability
measures on [0,∞) with speed β′n and rate function IL(µ) (note that Gamboa and Rouault
(2011) consider the speed β′nτ). The uniqueness of the rate function implies IV = IL.

In the Jacobi case, the eigenvalue density is

cκ1,κ2,β ·
∏
i<j

|λi − λj|β
n∏
i=1

λκ1β
′n

i (1− λi)κ2β
′n
1{0<λi<1}
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corresponding to the potential V (x) = −κ1 log(x)−κ2 log(1−x) on (0, 1) for parameters κ1, κ2 ≥
0. The equilibrium measure is then the Kesten-McKay distribution KMKκ1,κ2 . By Theorem 3.1,
µ(n) satisfies the LDP with rate function IV , where additionally F±V = F±J . On the other hand,
we know from the paper of Gamboa and Rouault (2011), that the LDP with rate function IH
holds. The combination of these two results yields Theorem 2.3.

3.3 Conjecture for a general sum rule

3.3.1 The probabilistic point of view

We know from Section 3.1 that under some assumptions on the potential V , the random spectral
measure sequence (µ(n))n satisfies the LDP with rate function IV . Besides, owing to Theorem
1.1, we can hope to compute the rate function of the encoding by Jacobi coefficients directly from
the expression of the density. For a semi-infinite Jacobi matrix T = T ((ak)k, (bk)k) with upper
left n× n block T (n) set

H(T (n)) = tr V (T (n))− 2
n−1∑
k=1

log ak

It would give for the rate function of the LDP at the speed nβ′

T 7−→ lim
n→∞

[
H(T (n))− inf

S
H(S(n))

]
So, we conjecture the following identity, as soon as V is a polynomial with even degree and
positive leading coefficient :

K(µV |µ) +
N+∑
k=1

FV (λ+
k ) +

N−∑
k=1

FV (λ−k ) = lim
n→∞

[
H(J (n)

µ )− inf
S
H(S(n))

]
(3.5)

Let us show that this is in agreement with the sum rules proven in this paper. In the Hermite
case when V (x) = x2/2 , we get

tr V (T (n)) =
1

2

n∑
k=1

b2
k +

n−1∑
k=1

a2
k

and then

H(T (n)) =
1

2

n∑
k=1

b2
k +

n−1∑
k=1

a2
k − log a2

k

Now, infSH(S(n)) is achieved for bk(S) ≡ 0, ak(S) ≡ 1, so that

lim
n→∞

[
H(J (n)

µ )− inf
S
H(S(n))

]
=
∞∑
k=1

1

2
b2
k +G(a2

k),

where G(x) = x− 1− log x and this is exactly the rate function of (2.3).
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In the Laguerre case when V (x) = τ−1x− (τ−1 − 1) log x,

tr V (T (n)) = τ−1tr T (n) − (τ−1 − 1) log detT (n).

But with the notation of Section 2.2,

bk = z2k−2 + z2k−1 and ak =
√
z2k−1z2k

so that tr T (n) =
∑2n−1

k=1 zk and T (n) = B(n)(B(n))∗, with

B
(n)
k,k =

√
z2k−1, B

(n)
k+1,k =

√
z2k

and B
(n)
i,j = 0 for other entries. Then we have detT (n) = (detB(n))2 =

∏n
k=1 z2k−1 and

H(T (n)) = τ−1

2n−2∑
k=1

zk − (τ−1 − 1)
n∑
k=1

log z2k−1 −
2n−1∑
k=1

log zk

= τ−1

n∑
k=1

(G(z2k−1) + 1) +
n−1∑
k=1

(G(τ−1z2k)− log(τ) + 1) + log z2n−1.

Of course, the infimum is achieved for z2k−1 ≡ 1, z2k ≡ τ , which gives exactly the expression of
(2.6).

Finally, let us look at the Jacobi case, transformed onto the interval [−2, 2], with

V (x) = −κ1 log(2− x)− κ2 log(2 + x)

and

tr V (T (n)) = −κ1 log det(2I(n) − T (n))− κ2 log det(2I(n) + T (n)).

In formula (5.2) of Killip and Nenciu (2004) we see

Φ2n(1) =
2n−1∏
k=0

(1− αk) =
n∏
k=1

(2− λj) = det(2I(n) − T (n))

Similarly, from formula (5.3) of the same paper we get

Φ2n(−1) =
2n−1∏
k=0

(1 + (−1)kαk) =
n∏
k=1

(2 + λj) = det(2I(n) + T (n))

such that we obtain

tr V (T (n)) = −κ1 log
n−1∏
k=0

(1− α2k)− κ2 log
n−1∏
k=0

(1 + α2k)

− κ1 log
n−1∏
k=0

(1− α2k+1)− κ2 log
n−1∏
k=0

(1− α2k+1)
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Recall that a2
k+1 = (1− α2k−1)(1− (α2k)

2)(1 + α2k+1), and then

H(T (n)) = tr V (T (n))−
n−1∑
k=0

log(1− α2
k) + An

= −
n−1∑
k=0

(1 + κ1) log(1− α2k) + (1 + κ2) log(1 + α2k)

−
n−1∑
k=0

(1 + κ1 + κ2) log(1− α2k+1) + log(1 + α2k+1) + An

with An = log(1−α2n−3) + log(1−α2
2n−2) + log(1−α2

2n−1). Again, in the limit n→∞ this leads
exactly to the rate function (2.9).

3.3.2 Mathematical analysis point of view

In Nazarov et al. (2005), a sum rule is given when the reference measure may be written as

(3.6) σ(dx) = A(x) SC(dx)

with A a nonnegative polynomial (Theorem 1.5 therein). Under appropriate conditions, the sum
rule is

(3.7) K(σ |µ) +
N+∑
k=1

F(λ+
k ) +

N−∑
k=1

F(λ−k ) = lim
n→∞

(
−2

n−1∑
1

log ak + tr
(

Φ(T (n))− Φ(T
(n)
0 )
))

where

F(x) =


∫ x

2

A(t)
√
t2 − 4 dt if x ≥ 2 ,∫ −2

x

A(t)
√
t2 − 4 dt if x ≤ −2 .

Actually, these conditions warrant the existence of this limit. Set

(3.8) Φ′(z) = zA(z)− 1

π

∫
A(x)− A(z)

x− z
SC(dx)

which leads for z /∈ [−2, 2] to

Φ′(z) = F ′(z)−
∫
σ(dx)

x− z
.

The function Φ was defined in Nazarov et al. (2005) as an auxiliary function. In view of our
Proposition 3.2 (up to an affine change of variables), it appears then that the triple (σ,F ,Φ) is
actually identical to the triple (µV ,FV , V ).

Nazarov et al. claimed that the scope of generality was not clear to them, so that they use
the polynomial nature of A. Actually, our classical ensembles are, again up to an affine change
of variables, of the form (3.6) with A analytic in a neighboorhood of [−2, 2], namely with 1/A
polynomial of degree at most 2.

To end this section let us give some concluding remarks.
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1. The sum rule given by Nazarov et al. should be true beyond the polynomial case for more
general functions A.

2. The function Φ is nothing else than a potential and F the corresponding effective potential.

3. When A is a polynomial the underlying potential is also a polynomial.

4. In this latter case, Section 3.3.1 gives a probabilistic interpretation of (3.7) and a draft for
a probabilistic proof.

We also refer to Kupin (2005) for other extensions.

4 Proofs

This section is devoted to the proof of Theorem 3.1. The main idea is to apply the projective
limit method to reduce the spectral measure to a measure with only a fixed number of eigenvalues
outside the limit support [α−, α+]. For this we need to consider a topology on S different from
the weak topology. Recall that measures µ ∈ S are written as

µ = µ|I +
N+∑
i=1

γ+
i δλ+i +

N−∑
i=1

γ−i δλ−i(4.1)

and we associate the measure (4.1) with(
µ|I , (λ

+
i )i≥1, (λ

−
i )i≥1, (γ

+
i )i≥1, (γ

−
i )i≥1

)
(4.2)

with λ+
i = α+ and γ+

i = 0 if i > N+ and λ−i = α− and γ−i = 0 if i > N−. The topology on S is
then defined by the vector (4.2): we say that µn converges to µ in S if:

µn|I −−−→
n→∞

µ|I weakly and for every i ≥ 1(
λ+
i (µn), λ−i (µn), γ+

i (µn), γ−i (µn)
)
−−−→
n→∞

(
λ+
i (µ), λ−i (µ), γ+

i (µ), γ−i (µ)
)(4.3)

We will show in Section 4.4 that on the smaller set S1 = {µ ∈ S|µ(R) = 1}, this convergence
implies weak convergence, but we remark that µn → µ weakly does not imply convergence in our
topology. For example, the merging of two atoms outside of I is no continuous operation, while it
is continuous in the weak topology. The σ-algebra on S is then the corresponding Borel-algebra.
On S we define a family of projections (πj)j∈N, where for a measure µ as in (4.1),

πj(µ) = µ|I +

N+∧j∑
i=1

γ+
i δλ+i +

N−∧j∑
i=1

γ−i δλ−i ,(4.4)

that is, we keep µ on I but delete all but up to j point masses left of α− and right of α+. Note
that the projections are continuous in our topology, but they are not in the weak topology.
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4.1 LDP for a finite collection of extreme eigenvalues

The study of LDP for (one) extreme eigenvalue of random matrices began in Ben Arous et al.
(2001) and in Albeverio et al. (2001). For detailed comments on the assumptions see Section 5.1.

4.1.1 Notation

Under the probability measures considered, there are almost surely no ties among eigenvalues,
so that we may reorder λ = (λ1, . . . , λn) as λ̂ = (λn1 , . . . , λ

n
n) such that λn1 > λn2 > · · · > λnn. Let

λ+
i = λni and λ−i = λnn−i+1 and for j a fixed integer and n > 2j

λ+(j) = (λ+
1 , . . . , λ

+
j ) , λ−(j) = (λ−1 , . . . , λ

−
j ) .

For the sake of simplicity, we denote by R↑j (resp. R↓j) the subset of Rj of all vectors with non
decreasing (resp. non increasing) components.

4.1.2 Main result

Theorem 4.1 Let j and ` be fixed integers. Assume that V is continuous and satisfies (A1),
(A2) and the control condition (A3).

1. If b− < α− and α+ < b+, then the law of (λ+(j), λ−(`)) under PnV satisfies a LDP in Rj+`

with speed β′n and rate function

Iλ±(x+, x−) :=

{ ∑j
k=1F

+
V (x+

k ) +
∑`

k=1F
−
V (x−k ) if (x+

1 , . . . , x
+
j ) ∈ R↓j and (x−1 , . . . , x

−
` ) ∈ R↑`

∞ otherwise.

2. If b− = α−, but α+ < b+, the law of λ+(j) satisfies the LDP with speed β′n and rate function

Iλ+(x+) = Iλ±(x+, α−) =

{ ∑j
k=1F

+
V (x+

k ) if (x+
1 , . . . , x

+
j ) ∈ R↓j

∞ otherwise.

3. If b− < α−, but α+ = b+, the law of λ−(`) satisfies the LDP with speed β′n and rate function

Iλ−(x−) = Iλ±(α+, x−) =

{ ∑`
k=1F

−
V (x−k ) if (x−1 , . . . , x

−
` ) ∈ R↑`

∞ otherwise.

The same statement is Theorem 2.10 in Benaych-Georges et al. (2012), but with an extra technical
assumption that is not easy to check. Besides, after the above mentioned publications, recently
Borot and Guionnet (2013b) and Borot and Guionnet (2013a) provided other sketch of proofs for
the case where ` = 0, j = 1 and without this assumption. For the sake of completeness, we give
a proof for the general case. As this proof is technical, we postpone it to the Appendix (Section
5).
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4.2 Joint LDP for the restricted measure and a finite collection of
extreme eigenvalues

Recall that ((λ1, . . . , λn), (w1, . . . , wn)) is distributed according to QV
n = PnV ⊗ Dirn(β′). The two

sources of randomness are not at the same scale. On the one hand, the eigenvalues are ruled
by a LDP at speed n2. On the other hand, the weights are ruled by a factor n. Hence, it is
natural to consider the eigenvalues as quasi-deterministic, and to begin by a conditioning upon
these variables. As in a previous paper (Gamboa and Rouault (2010)), it is then convenient to
decouple the weights by introducing independent random variables. We know that

(4.5) (w1, . . . , wn)
(d)
=

(
γ1

γ1 + · · ·+ γn
, . . . ,

γn
γ1 + · · ·+ γn

)
where

(d)
= means equality in distribution, and γ1, . . . , γn are independent variables with distribution

Gamma(β′, (β′n)−1) and mean n−1. We enlarge the probability space to define such variables γi’s

and denote by Q̃V
n the corresponding probability measure. With this notation, we can rewrite

the spectral measure µ(n) as

(4.6) µ(n) =
µ̃(n)

µ̃(n)(R)

where

(4.7) µ̃(n) :=
n∑
k=1

γkδλk

is a random measure with independent masses γ1, . . . , γn and µ̃(n)(R) is its total mass
∑n

k=1 γk.

We denote by µ
(n)
I the restriction of µ(n) to the interval I. Similarly, for I(j) = I \

{λ+
1 , λ

−
1 , . . . , λ

+
j , λ

−
j }, µ

(n)
I(j) is the restriction of µ(n) to I(j) and we use the analogous notation for

the restrictions of the empirical measure µ
(n)
u . Notice that we choose j = ` for the sake of sim-

plicity. The aim of this subsection is to prove the following joint LDP for the restricted spectral
measure and a collection of largest and/or smallest eigenvalues.

Theorem 4.2

1. If b− < α− < α+ < b+, then for any fixed j ∈ N and under Q̃V
n , the sequence of random

objects
(
µ̃

(n)
I(j), λ

+(j), λ−(j)
)

satisfies the joint LDP with speed β′n and rate function

I(µ, x+, x−) = K(µV | µ) + µ(I)− 1 + Iλ±(x+, x−)

2. If b− = α−, but α+ < b+ (or b+ = α+, but α− > b−), then, with the same notation as in the

previous section,
(
µ

(n)
I(j), λ

+(j)
)
(or

(
µ

(n)
I(j), λ

−(j)
)

respectively,) satisfies the LDP with speed

β′n and rate function

I+(µ, x+) = I(µ, x+, α−) (or I−(µ, x−) = I(µ, α+, x−) respectively) .
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Proof: We only prove here the first point of the theorem. The second claim can be shown
in the same way. We first show a joint LDP when the eigenvalues are truncated. For M >
max{|α+|, |α−|}, let λ+

M(j) (resp.λ−M(j)) be the collection of truncated eigenvalues

λ+
M,i = min{λ+

i ,M} (resp. λ−M,i = max{λ−i ,−M}) ,

for i = 1, . . . , j. To further simplify notation, let λ±M(j) = (λ+
M,1, . . . , λ

+
M,j, λ

−
M,1, . . . , λ

+
M,j).

Exponential tightness:
In a first step, we will obtain the joint LDP for (µ̃

(n)
I(j), λ

±
M(j)) by applying Theorem 1.1 of Baldi

(1988). For this, we need to check that this sequence is exponentially tight. For M as above,
define the set

KM =
{

(µ, λ) ∈ S × R2j|µ(I) ≤M,µ(Ic) = 0, λ ∈ [−M,M ]2j
}
.

Indeed, KM is a compact set in the topology (4.3) and

P((µ̃
(n)
I(j), λ

±
M(j)) /∈ KM) = P(µ̃

(n)
I(j)(I) > M) ≤ P

(
n∑
k=1

γk > M

)
.

The sum in the last probability is Gamma(β′n, (β′n)−1) distributed. By the LDP for the Gamma-
distribution with rate G,

P

(
n∑
k=1

γk > M

)
≤ e−β

′nG(M)

Therefore,

lim sup
n→∞

1

β′n
logP((µ̃

(n)
I(j), λ

±
M(j)) /∈ KM) ≤ −G(M),

which can be chosen to be arbitrarily small, i.e., the sequence (µ̃
(n)
I(j), λ

±
M(j)) is exponentially tight.

Joint LDP for measure and truncated eigenvalues:
Let f be a continuous function from R to R such that log(1 − f) is bounded. For s± ∈ R2j, we
calculate the joint moment generating function

Gn(f, s±) = E
[
exp

{
nβ′

(
µ̃

(n)
I(j)(f) + 〈s±, λ±M(j)〉

)}]
under Q̃V

n . First recall that γi is Gamma(β′, (β′n)−1) distributed, so that

1

β′
logEeβ′nγit = L(t)(4.8)
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(see (1.16)) and then, integrating with respect to the γi’s we get

Gn(f, s±) = E

exp
(
nβ′〈s±, λ±M(j)〉

) ∏
i∈I(j)

E
[
enβ

′γ1f(λi)|λ1, . . . , λn

]
= E

[
exp

{
nβ′

(
µ

(n)
u,I(j)(L ◦ f) + 〈s±, λ±M(j)〉

)}]
,

This expectation only involves PnV . Set

Dn(s±) := E
[
exp

{
nβ′〈s±, λ±M(j)〉

}]
.

By Theorem 4.1 we have a LDP for the extremal eigenvalues λ±(j) of the spectral measure with
rate function Iλ± . By the contraction principle (see Dembo and Zeitouni (1998) p.126), the
truncated eigenvalues satisfy the LDP with rate function

IM,λ±(x±) =

{
Iλ±(x+, x−) if x± = (x+, x−) ∈ [−M,M ]2j,

∞ otherwise.

Since the truncated eigenvalues are bounded, Varadhan’s Integral Lemma (Dembo and Zeitouni
(1998) p. 137) implies

lim
n→∞

1

β′n
logDn(s±) = I∗M,λ±(s±),(4.9)

where

I∗M,λ±(s±) = sup
x±∈R2j

{
〈s±, x±〉 − IM,λ±(x±)

}
is the convex dual of IM,λ± . To control nµ

(n)
u,I(j)(L ◦ f), let for η > 0

A(η) =
{
d(µ

(n)
u,I(j), µV ) < η

}
,

with a metric d inducing weak convergence. Since µ
(n)
u,I(j) and µ

(n)
u,I differ only by at most 2j support

points, their total variation distance is bounded by 2j/n. For n large enough this implies{
d(µ

(n)
u,I , µV ) < η/2

}
⊂ A(η).

Now,
P(A(η)c) ≤ P(d(µ

(n)
u,I , µV ) ≥ η/2) ≤ P(d(µ(n)

u , µV ) ≥ η/2)

and then, since µ
(n)
u satisfies an LDP with speed n2 and a rate which is good with unique minimizer

µV (Theorem 1.2) we have for n large enough

P(A(η)c) ≤ e−n
2δ(4.10)
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with a δ = δ(η) > 0. Writing Gn(f, s±) = Gn,A(f, s±) + Gn,Ac(f, s±) with

Gn,A(f, s±) = E
[
exp

{
nβ′

(
µ

(n)
u,I(j)(L ◦ f) + 〈s±, λ±M(j)〉

)}
1A(η)

]
we can bound

Cn(s±) exp {nβ′ (µV (L ◦ f)− η)} ≤ Gn,A(f, s±) ≤ Cn(s±) exp {nβ′ (µV (L ◦ f) + η)}(4.11)

where
Cn(s±) := E

[
exp

{
nβ′

(
〈s±, λ±M(j)〉

)}
1A(η)

]
≤ Dn(s±) ,

and then from (4.9)

lim sup
n→∞

1

β′n
log Gn,A(f, s±) ≤ µV (L ◦ f) + η + I∗M,λ±(s±) .(4.12)

For the complimentary event, we have the upper bound

Gn,Ac(f, s±) ≤ (Dn(s±)− Cn(s±)) exp {nβ′||L ◦ f ||∞} .

By the Cauchy-Schwarz inequality and (4.10) we get

(Dn(s±)− Cn(s±)) ≤ Dn(2s±)e−n
2δ ,

and then, using (4.9) we get

lim sup
n→∞

1

nβ′
log(Dn(s±)− Cn(s±)) = −∞(4.13)

which eventually leads to

lim sup
n→∞

1

nβ′
log Gn,Ac(f, s±) = −∞.(4.14)

Combining (4.12) and (4.14), we get

lim sup
n→∞

1

nβ′
log Gn(f, s±) ≤ µV (L ◦ f) + η + I∗M,λ±(s±).(4.15)

For the lower bound, we have

lim inf
n→∞

1

nβ′
log Gn(f, s±) ≥ lim inf

n→∞

1

nβ′
log Gn,A(f, s±)

≥ µV (L ◦ f)− η + lim inf
n→∞

1

nβ′
logCn(s±) ,

and from (4.9) and (4.13)

lim
n→∞

1

nβ′
logCn(s±) = I∗M,λ±(s±) ,
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so that

lim inf
n→∞

1

nβ′
log Gn(f, s±) ≥ µV (L ◦ f)− η + I∗M,λ±(s±) .(4.16)

From (4.15) and (4.16) and since η > 0 was arbitrary, we can conclude:

lim
n→∞

1

β′n
log Gn(f, s±) = µV (L ◦ f) + I∗M,λ±(s±) =: G(f, s±).

The convex dual of G is

G∗(µ, λ±) = sup
f∈Cb(I),s±∈R2j

(∫
fdµ+ 〈λ±, s±〉 − G(f, s±)

)
= sup

f∈Cb(I)

(∫
fdµ− µV (L ◦ f)

)
+ sup

s±∈R2j

(
〈λ±, s±〉 − I∗M,λ±(s±)

)
= Λ∗(µ) + IM,λ±(λ±),

where Λ∗ is the convex dual of µV (L ◦ ·). The LDP follows now from Theorem 1.1 of Baldi
(1988) with rate function given by G∗, provided that G∗ is strictly convex on a set of points that
is dense in the set of all points where G∗ is finite.

Identification of Λ∗:
By Theorem 5 of Rockafellar (1971), we can write Λ∗ as

Λ∗(µ) = µV (L∗ ◦ hµ) + r(1)µs(R),

where L∗ is the convex dual of L and r its recession function and dµ = hµ · dµV + dµs is the
Lebesgue-decomposition of µ with respect to µV . The expression of L∗ is given in (1.16). The
recession function is

r(x) = sup{xy | L(y) <∞} = x.

for nonnegative x. We obtain

Λ∗(µ) = −
∫

log (hµ) dµV − 1 +

∫
hµ dµV + µs(R)

= −
∫

log (hµ) dµV − 1 + µ(I)

= K(µV |µ)− 1 + µ(I) .

Now Λ∗ is strictly convex at µ if there exists a f ∈ Cb(I), called an exposing hyperplane, such
that

Λ∗(µ)−
∫
fdµ < Λ∗(ν)−

∫
fdν(4.17)
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for any ν 6= µ. Suppose dµ = hµ · dµV is absolutely continuous with respect to µV with a density
hµ positive on I and choose f = 1− h−1

µ . Then (4.17) is equivalent to∫
log(hµ/hν)dµV >

∫
dµV −

∫
h−1
µ dν,

The last inequality follows from log(x) > 1− x−1 , (x > 0, x 6= 1). Indeed,∫
log(hµ/hν)dµV ≥

∫
(1− h−1

µ · hν)dµV ≥
∫
dµV −

∫
h−1
µ dν,

where the first inequality is strict unless µV -almost everywhere h = hν and the second one is
strict unless νs = 0. So if ν 6= µ at least one inequality is strict, i.e. Λ∗ is strictly convex at all
points dµ = h · dµV , which are dense in the set of nonnegative measures on I. Consequently,
(µ̃

(n)
I(j), λ

±
M(j)) satisfies an LDP with speed β′n and rate function

I(µ, x±) = K(µV |µ) + µ(I)− 1 + IM,λ±(x±).

Extending the LDP to untruncated eigenvalues:
From the LDP for (λ+(j), λ−(j)) the exponential tightness of the (unrestricted) extremal eigen-
values holds (see Section 5.2.2). This implies

lim
M→∞

lim sup
n→∞

1

n
logP

(
λ±M(j) 6= λ±(j)

)
= −∞,

so that as M → ∞, the truncated eigenvalues are exponentially good approximation of the
unrestricted ones. In fact, (µ̃

(n)
I(j), λ

±
M(j)) are exponentially good approximations of (µ̃

(n)
I(j), λ

±(j)).
Since the rate function of the untruncated eigenvalues can be recovered as the pointwise limit

Iλ±(λ±) = lim
M→∞

IM,λ±(λ±),

we get from Theorem 4.2.16 in Dembo and Zeitouni (1998) that (µ̃
(n)
I(j), λ

±(j)) satisfies the LDP

with speed β′n and rate function

I(µ, x±) = K(µV |µ) + µ(I)− 1 + Iλ±(x±) = K(µV |µ) + µ(I)− 1 +

j∑
i=1

F+(x+
i ) + F−(x−i ) ,

which ends the proof of Theorem 4.2.

4.3 LDP for the projected measure

Recall the definition of the projections πj in (4.4).

Theorem 4.3 For any fixed j, the sequence of projected spectral measures πj(µ̃
(n)) as elements

of S with topology (4.3) satisfies under Q̃V
n the LDP with speed β′n and rate function

Ĩj(µ̃) = K(µV | µ̃) + µ̃(I)− 1 +

N+∧j∑
i=1

(
F+
V (λ+

i ) + γ+
i

)
+

N−∧j∑
i=1

(
F−V (λ−i ) + γ−i

)
.
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Proof: This result is a direct consequence of Theorem 4.2 and the contraction principle. Again,
suppose that the first case of Theorem 4.2 holds, otherwise N+ or N− is 0 and we may omit
the largest and/or smallest eigenvalues and weights. By the independence of the weights γk
and independence of weights and eigenvalues, the collection of weights (γ+(j), γ−(j)) is inde-

pendent of (µ̃
(n)
I(j), λ

+(j), λ−(j)). Recall that (γ+(j), γ−(j)) contains a collection of independent

Gamma(β′, (β′n)−1) distributed random variables and then satisfies an LDP with speed β′n and
rate function

Iγ(y+, y−) =

j∑
i=1

(y+
i + y−i )

for y+
i , y

−
i ≥ 0 and Iγ(y+, y−) =∞ otherwise (see (1.17)). Thus,(

µ̃
(n)
I(j), λ

+(j), λ−(j), γ+(j), γ−(j)
)

(4.18)

satisfies the LDP with speed β′n and rate function

I(µ, x+, x−, y+, y−) = K(µV |µ) + µ(I)− 1 +

j∑
i=1

F(x+
i ) + F(x−i ) + y+

i + y−i .

By definition of the projections πj, we can write

πj(µ̃
(n)) = C(µ̃(n)

I(j), λ
+(j), λ−(j), γ+(j), γ−(j)) = µ̃

(n)
|I +

N+∧j∑
i=1

γ+
i δλ+i +

N−∧j∑
i=1

γ−i δλ−i

with a continuous C, defined by

C(µ, x+, x−, y+, y−) = µ+

j∑
i=1

y+
i δx+i +

j∑
i=1

y−i δx−i

Note that C is not a bijection: point masses in I may come from µ or from the points x+, x−.
However, for a given µ̃ ∈ S, we may still easily calculate

Ĩj(µ̃) = inf
{
I(µ, x+, x−, y+, y−)| C(µ, x+, x−, y+, y−) = µ̃

}
as the minimum is attained by choosing µ = µ̃|I(j) and λ+

i = α+ and γ+
i = 0 if i > N+ and

λ−i = α− and γ−i = 0 if i > N−. Therefore

Ĩj(µ̃) = K(µV | µ̃) + µ̃(I)− 1 +

N+∧j∑
i=1

(
F(λ+

i ) + γ+
i

)
+

N−∧j∑
i=1

(
F(λ−i ) + γ−i

)
which, by the contraction principle, is the rate function of πj(µ̃

(n)).
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4.4 Projective limit and normalization

From Theorem 4.3, the projective method of the Dawson-Gärtner theorem, p. 162 in the book of

Dembo and Zeitouni (1998), yields the LDP for µ̃(n) under Q̃V
n with speed β′n and rate function

Ĩ(µ̃) = sup
j
Ĩj(µ̃) = K(µV | µ̃) + µ̃(R)− 1 +

N+∑
i=1

F(λ+
i ) +

N−∑
i=1

F(λ−i ),(4.19)

defined for µ̃ ∈ S. Recalling (4.6), we want to come back to a normalized measure µ ∈ S1.
It would be natural to apply the mapping µ̃ 7→ µ̃

µ̃(R)
but unfortunately, this mapping is not

continuous in our topology induced by (4.3). As a workaround, note that from the LDP for
πj(µ̃

(n)), we also get the joint LDP of(
πj(µ̃

(n)), πj(µ̃
(n))(R)

)
as the mapping

πj(µ̃) 7−→ πj(µ̃
(n))(R) = µ̃(n)(I) +

N+∧j∑
i=1

γ+
i +

N−∧j∑
i=1

γ−i

is continuous in our topology for any j. Thus, applying the projective method to
(πj(µ̃

(n)), πj(µ̃
(n))(R)), we get the LDP for the pair (µ̃(n), µ̃(n)(R)) with rate function

I(µ̃, κ) =

{
Ĩ(µ̃) if µ̃(R) = κ

∞ otherwise.

Now we are able to recover the original spectral probability measures µ(n) from the unnormalized
measures µ̃(n), by applying to the pair (µ̃(n), µ̃(n)(R)) the (continuous) mapping (µ̃, κ) 7→ κ−1µ̃.

The contraction principle yields then the LDP for µ(n) under Q̃V
n (hence under QV

n ) with rate
function

I(µ) = inf
ν=κ·µ, κ>0

Ĩ(ν) = inf
κ>0
Ĩ(κ · µ)

By (4.19), we need to minimize over κ the function

−
∫

log

(
κ
dµ

dµV

)
dµV − 1 + κ+

N+∑
i=1

F(λ+
i ) +

N−∑
i=1

F(λ−i ).

The term κ − 1 − log κ = L∗(κ) attains its minimal value 0 for κ = 1. We obtain therefore the
following LDP.

Theorem 4.4 The sequence of spectral measures µ(n) under QV
n , as a random element of S1

equipped with the topology induced by (4.3), satisfies the LDP with speed β′n and rate function

IV (µ) = K(µV | µ) +
N+∑
i=1

F(λ+
i ) +

N−∑
i=1

F(λ−i ).
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4.5 Topological considerations

It remains to show that the LDP in Theorem 4.4 holds in the weak topology and can be extended
from S1 to P1. This step is a consequence of the following two lemmas. Their proofs are postponed
to the appendix.

Lemma 4.5 The weak topology on S1 is coarser than the topology induced by (4.3).

Lemma 4.6 The function IV , extended to P1 by setting IV (µ) = ∞ if µ /∈ S1, is lower semi-
continuous in the weak topology.

By Lemma 4.5, the LDP of Theorem 4.4 holds with the weak topology on S1, and by Lemma
4.6, the LDP can by extended to P1. This completes the proof of Theorem 3.1.

5 Appendix 1: Proof of Theorem 4.1

5.1 Comments on the assumptions

In Benaych-Georges et al. (2012), the result is proved under their assumption 2.9, which consists
of three requirements: confinement, technical condition and convergence of extreme eigenvalues.
We may also refer to Auffinger et al. (2013) for a general result in the same vein. For the sake of
completeness let us shortly discuss the three requirements.

1. Confinement

(B1) lim inf
|x|→∞

V (x)

2 log |x|
> 1

which differs from (A1) in the case β < 1. Actually, the proof of the LDP for the empirical

spectral distribution µ
(n)
u of Anderson et al. (2010) does require max(β−1, 1) instead of 1

since it is used to warrant the finiteness of
∫
e−β

′V (x)dx. Recently, Serfaty (2014) proved

the LDP for µ
(n)
u under the assumption

(S1) lim
|x|→∞

V (x)− 2 log |x| =∞ .

The proof is completely different, using the notion of Γ-convergence. Besides, with another
method (carrying everything on the unit circle by the Cayley transform), the LDP for µ

(n)
u

was proved in Hardy (2012) under the weak confinement assumption

(H1) lim inf
|x|→∞

V (x)− 2 max(1, β−1) log |x| > −∞ .
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Of course, when β ≥ 1
(A1) = (B1)⇒ (S1) and (H1) ,

but when β < 1 and lim inf V (x)
2 log |x| ∈ (1, β−1), (S1) is satisfied but not (H1).

Since we use several times arguments taken from the proof of the LDP for µ
(n)
u in Anderson

et al. (2010), we did not weaken our hypothesis (A1) into (B1) to avoid a complete rewriting,
though we conjecture that this β−1 is an artefact.

2. Technical condition.

(B2) For every p ≥ 1, the limit lim
n→∞

1

n
log

Zn−p
n
n−pV

Zn
nV

exists .

3. Convergence of extreme eigenvalues.

(AGZ) Under PnV , the largest (resp. lowest) eigenvalue converges to α± almost surely2.

In Anderson et al. (2010) the LDP for λmin is proved under (B2) with p = 1. Later, in an
erratum3, the authors claimed that the proof of the LDP needs one more assumption: either
a slight modification of (AGZ) (replace PnV by PnnV/(n−1)) or (A3) (control of large deviations).

Later again, in Borot and Guionnet (2013b) a proof for p = 1 is given under assumption (A3)
alone, without (AGZ). It is worthwhile to mention the papers Borot and Guionnet (2013a) and
Fan et al. (2014) on connected topics.

To update the proof of Benaych-Georges et al. (2012) with the tools of Borot and Guionnet
(2013b) adapted to the case p > 1 and for the sake of completeness, we give now the detailed
scheme. We will use three lemmas whose proofs are postponed.

The first statement is a fact often mentioned (for instance Anderson et al. (2010) pp. 83-84 or
Benaych-Georges et al. (2012) p.744) but (as far as we know) never checked explicitly. We set it
as a lemma and for which we give a complete proof in Section 5.3.1 for convenience of the reader.

Lemma 5.1 Let V be a potential satisfying the confinement condition (A1) and let r be a fixed
integer. If PnVn is the probability measure associated to the potential Vn = n+r

n
V , then the law of

µ
(n)
u under PnVn satisfies the LDP with speed β′n2 with good rate function

(5.1) µ 7→ E(µ)− inf
ν
E(ν)

where E is defined in (1.11).

Lemma 5.2 If the potential V is finite and continuous on a compact set and infinite outside, we
have, for every p ≥ 1

(5.2) lim
n→∞

1

n
log

Zn
V

Zn−p
n
n−pV

= − inf
x1,...,xk

p∑
k=1

JV (xk) = −p inf
x
JV (x) .

2see footnote 1
3available online http://www.wisdom.weizmann.ac.il/∼zeitouni/cormat.pdf.
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Lemma 5.3 Under Assumption (A1) and (A3), the largest (resp. lowest) eigenvalue converges
in probability to α+ (resp. α−).

5.2 Proof

5.2.1 Outline

First notice that Iλ± is a good rate function: it is lower semicontinuous as proved in Borot and
Guionnet (2013b) A.1.p.478. From the same reference, F+

V and F−V have compact level sets, so
that Iλ± has compact level set by the union bound. The exponential tightness proved below
implies that the weak LDP for the extreme eigenvalues will be sufficient for the statement of
Theorem 4.1. Throughout this proof, we will assume ` = j, the generalization is straightforward.
The weak LDP will follow from the upper bound

lim sup
n→∞

(β′n)−1 logPnV (λ±(j) ∈ F+ × F−) ≤ − inf
(x+,x−)∈F+×F−

Iλ±(x+, x−)(5.3)

for sets F+ = F+
1 × · · · ×F+

j and idem for F−, which generate the topology on R2j and from the
lower bound

lim inf
n→∞

(β′n)−1 logPnV (λ±(j) ∈ G) ≥ −Iλ±(x+, x−),(5.4)

for open sets G containing (x+, x−).

5.2.2 Exponential tightness

We define the compact set

HM = {x ∈ [−M,M ] : V (x) ≤M}(5.5)

and have to show that for every j

lim sup
M→∞

lim sup
n→∞

n−1 logPnV
(
(λ−(j), λ+(j)) /∈ H2j

M

)
= −∞.(5.6)

But as

PnV
(
(λ−(j), λ+(j)) /∈ H2j

M

)
≤ PnV

(
λ+

1 > M
)

+ PnV
(
λ−1 < −M

)
,

exponential tightness reduces to the case j = 1 and further (by symmetry), we only have to prove

(5.7) lim sup
M→∞

lim sup
n→∞

n−1 logPnV
(
λ+

1 > M
)

= −∞ .

By exchangeability, we have,

PnV (λ+
1 ≥M) = nPnV (λ1 ≥M and λk ≤ λ1 for k = 2, . . . , n) ≤ nPnV (λ1 ≥M)
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Now

(5.8) PnV (λ1 ≥M) ≤ Zn−1
V

Zn
V

∫
{x≥M}

e−nβ
′V (x)

∫ n∏
k=2

(
|x− λk|βe−β

′V (λk)
)
dPn−1

V (λ2, . . . , λn)dx

Since y 7→ yβ is convex on [0,∞) for β > 1 and concave and subadditive for β < 1, we have

|x− λ|β ≤ (|x|+ |λ|)β ≤ a(β)(|x|β + |λ|β)

with a(β) = 2(β−1)+ , and then

|x− λ|βe−β′V (λ) ≤ a(β)(|x|β + |λ|β)e−β
′V (λ) .

From the confinement assumption (A1) there exists η > 0 such that

lim inf
|λ|→∞

V (λ)

2 log |λ|
= 1 + 2η

and then there exists M0 such that for |λ| ≥M0 we have

(5.9)
V (λ)

2 log |λ|
≥ 1 + η

so that

|λ|βe−β′V (λ) ≤ |λ|−βη(5.10)

(for |λ| ≥ M0) and then |λ|βe−β′V (λ) is bounded by a constant M1 uniformly in λ. Now, V is
bounded from below, say by M2, and then

|x− λ|βe−β′V (λ) ≤ a(β)(e−M2xβ +M1)

and since 1 ≤ xβM−β
0 for x ≥M0, we get

|x− λ|βe−β′V (λ) ≤ b(β)xβ ≤ b(β)e
β′

1+η
V (x)

with b(β) = a(β)(e−M2 +M1M
−β
0 ) (the last inequality follows from (5.10)).

Plugging this bound into (5.8) we get

PnV (λ1 ≥M) ≤ Zn−1
V

Zn
V

[b(β)](n−1)

∫ ∞
M

exp

(
−β′

(
ηn

1 + η

)
V (x)

)
dx

Since for n large, β′ηn > (1 + η)/2 we may write∫ ∞
M

exp

(
−β′

(
ηn

1 + η

)
V (x)

)
dx ≤ exp

(
−
(
β′

ηn

1 + η
− 1

2

)
C(M)

)
×
∫ ∞
M

e−
V (x)

2 dx

where C(M) = inf{V (x) : |x| > M}. This last integral is finite in view of (5.9).

We need the following lemma.
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Lemma 5.4

lim sup
n→∞

n−1 log
Zn−1
V

Zn
V

:= c1 <∞ .

Assuming the result of this lemma, we may write

lim sup
n→∞

n−1 logPnV (λ+
1 ≥M) = lim sup

n→∞
n−1 logPnV (λ1 > M) ≤ c1 + log b(β)− C(M)

β′η

1 + η

which ends the proof of exponential tightness since C(M)→∞ when M →∞.

The proof of Lemma 5.4 is in Borot and Guionnet (2013b) p. 478 and makes use of the exponential

tightness of (µ
(n)
u )n under assumption (A1).

5.2.3 Upper bound

From the above paragraph, we may assume that all the F±k are subsets of HM . Furthermore,
it suffices to consider F+

k subsets of [α+,M ] ∩ HM and F−k subsets of [−M,α−] ∩ HM , as an

extreme eigenvalue contained in (α− + ε, α+ − ε) implies that the distance of µ
(n)
u to µV in the

weak topology is at least some δ > 0. From the LDP for µ
(n)
u with speed n2 (Theorem 1.2), this

event has negligible probability on our scale of speed n.
As before, we write x± for the vector (x+

1 , . . . , x
+
j , x

−
1 , . . . , x

−
j ). After permutation, we may assume

that the extreme eigenvalues are not among the eigenvalues λ0 = (λ1, . . . , λn−2j). Again to
simplify notation and to omit several indicator functions, we will not assume throughout this
proof that x+

1 , . . . , x
+
j or x−1 , . . . x

−
j are in the right order. The assertion for the ordered eigenvalues

follows directly from the contraction principle.

We have the representation:

PnV (λ±(j) ∈ F+ × F−) =
1

Zn
V

n!

(j!)2(n− 2j)!

∫
F+×F−

Υn,j(x
±) dx±(5.11)

where

Υn,j(x
±) = H(x±)Ξn,j(x

±)e−β
′n

∑2j
1 V (x±k )(5.12)

with
H(x±) =

∏
1≤r<s≤2j

|x±r − x±s |β

and, setting ∆(x±) = (max x−i ,minx+
i )n−2j,

Ξn,j(x
±) =

∫
∆(x±)

2j∏
r=1

n−2j∏
s=1

|x±r − λs|β
n−2j∏
r=1

e−nβ
′V (λr)

∏
1≤r<s≤n−2j

|λr − λs|βdλ0

For M large enough we may replace V by VM defined by

VM =

{
V (x) if x ∈ HM ,

∞ otherwise.
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without any change (note that V is necessarily bounded on [α−, α+]). We have then

(5.13) Ξn,j(x
±) = Zn−2j

n
n−2j

VM

∫
∆(x±)

2j∏
r=1

n−2j∏
s=1

|x±r − λs|βdP
n−2j
n

n−2j
VM

(λ0)

Set finally

Y M
n,n−2j =

Zn
V

Zn−2j
n

n−2j
VM

.

We first find an upper bound for Υn,j(x
±). Let Bκ = {λ0 ∈ Rn−2j : d(µ

(n−2j)
u , µV ) ≤ κ}. On

∆(x±) the integrand in (5.13) is bounded by ec1n for some c1 = c1(M) ≥ 0, so that(
Zn−2j

n
n−2j

VM

)−1

Ξn,j(x
±) ≤

∫
∆(x±)∩Bκ

2j∏
r=1

n−2j∏
s=1

|x±r − λs|βdP
n−2j
n

n−2j
VM

(λ0)(5.14)

+ ec1nPn−2j
n

n−2j
VM

(Bc
κ) .

One has to use Lemma 5.1. Since the rate function of the LDP for µ
(n−2j)
u has a unique minimizer,

Lemma 5.1 yields for the second term in the bound (5.14)

ec1n Pn−2j
n

n−2j
VM

(Bc
κ) ≤ c2e

−c3n2

for some positive constants c2, c3. The right hand side of the first line in (5.14) is bounded by

exp

{
β(n− 2j) sup

µ: d(µ,µV )≤κ

2j∑
r=1

∫
log |x±r − η|dµ(η)

}
and then (

Zn−2j
n

n−2j
VM

)−1

Υn,j(x
±)(5.15)

≤ H(x±) exp

{
β′n

(
−

2j∑
r=1

V (x±r ) + 2 sup
µ: d(µ,µV )≤κ

∫
log |x±r − η|dµ(η)

)}
+ e−c4n

2

.

Recall the expression (1.12) of the effective potential

JV (x) = V (x)− 2

∫
log |x− ξ|dµV (ξ)

and use the bound

lim sup
κ↓0

sup
ξ∈F

sup
d(µ,µV )≤κ

(
2

∫
log |ξ − η|dµ(η)− V (x)

)
≤ − inf

ξ∈F
JV (ξ)(5.16)

(see Borot and Guionnet (2013b) p. 480) we get, for any η > 0 and n large enough(
Zn−2j

n
n−2j

VM

)−1

sup
x±∈F±

Υn,j(x
±) ≤ exp β′n

(
η − inf

x±∈F±

2j∑
r=1

JV (x±r )

)
,(5.17)
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and then, owing to (5.11) and (5.13), we get for any η > 0

lim sup
n→∞

(β′n)−1 logPnV (λ±(j) ∈ F±) ≤ β′η − β′ inf
x±∈F±

2j∑
r=1

JV (x±r )− lim inf
n→∞

(β′n)−1 log Y M
n,n−2j .

so that, since η is arbitrary

lim sup
n→∞

(β′n)−1 logPnV (λ±(j) ∈ F±) ≤ − inf
x±∈F±

2j∑
r=1

JV (x±r )− lim inf
n→∞

(β′n)−1 log Y M
n,n−2j .(5.18)

It remains to find a lower bound for Y M
n,n−2j. We start from

Y M
n,n−2j =

Zn
V

Zn−2j
n

n−2j
VM

≥
Zn
VM

Zn−2j
n

n−2j
VM

and we use the result of the Lemma 5.2, noticing that that for M large enough the equilibrium
measure is still µV and also that inf JV (x) = inf JVM (x) for M large enough.

Coming back to (5.18) yields to the expected upperbound (5.3).

5.2.4 Lowerbound for large deviations

We start from an open ball B = B(ξ±, ε) centered at ξ± ∈ R2j with radius ε in the sup-norm.
Without loss of generality we may assume that it is included in (α+,M)j × (−M,α−)j as well as
in {x ∈ R2j|V (xi) ≤M for all i}. We have again

Zn
V PnV (λ±(j) ∈ B) =

∫
B

Υn,j(x
±)dx±

Let us consider the probability measure χMj on Rn, defined by

dχMj (x±, λ) := (κMn,j)
−1
1B(x±)1∆(x±)(λ0)dx±dPn−2j

n
n−2j

VM
(λ0)

where κMn,j is the normalizing constant. We have∫
B

Υn,j(x
±)dx± = Zn−2j

n
n−2j

VM
κn,jI

M
n,j

where

IMn,j :=

∫
H(x±)e−β

′n
∑2j
k=1 VM (x±k )

(
n−2j∏
k=1

|x±r − λk|β
)
dχMj (x±, λ)

Jensen’s inequality gives,

1

β′
log IMn,j ≥ nI(1)

n + 2I(2)
n + 2(n− 2j)I(3)

n ,
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where

I(1)
n = −

∫ 2j∑
k=1

VM(x±k )dχMj (x±, λ),

I(2)
n =

∫ ∑
1≤r<s≤2j

log |x±r − x±s |dχMj (x±, λ),

I(3)
n =

1

n− 2j

∫ n−2j∑
r=1

j∑
k=1

log |x±k − λr|dχ
M
j (x±, λ) .

Lemma 5.3 implies that for x± ∈ B (recall that points in B are bounded away from the support
of µV ),

Pn−2j
n

n−2j
VM

(λ0 ∈ ∆(x±)) −−−→
n→∞

1(5.19)

and then

(5.20) κMn,j −−−→
n→∞

∫
B

dx± = (2ε)2j

We have that
∑

k V (x±k ) is uniformly bounded on B. So that, from (5.19) and (5.20)

lim
n→∞

1

β′n
I(1)
n = (2ε)−2j

∫
B

2j∑
k=1

V (x±k ) dx± .(5.21)

For the second term we may assume without loss of generality that B is tie-free. Hence, we get
a similar conclusion

lim
n→∞

I(2)
n = (2ε)−2j

∫
B

∑
1≤r<s≤2j

log |x±r − x±s | dx± .(5.22)

Now for the third term, we first bound by below 1z>0 log z by logM(z) := (log z)10<z≤M and set

`M,B(t) :=

∫
B

2j∑
k=1

logM |x±k − t| dx
± ,

so that

I(3)
n ≥ (κMn,j)

−1

∫ ∫
`M,B(z)dµ(n−2j)

u (z)dPn−2j
n

n−2j
VM

(λ0) .

Since `M,B is continuous and bounded as the convolution of a L1 and a L∞ function, the above
bound converges to (2ε)−2j

∫
`M,B(z)dµV (z) as n → ∞. Let us notice that since the support of

µV is compact, and B is fixed, we can choose M large enough so that x −M ≤ t ≤ x + M for
every x ∈ B and t in the support of µV . We get

∫
`M,B(z)dµV (z) =

∫
`B(z)dµV (z) where

`B(t) =

∫
B

2j∑
k=1

log |x±k − t|dx
± .
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At this stage, we have :

lim inf
n→∞

1

β′n
log IMn,j ≥ −(2ε)−2j

∫
B

2j∑
k=1

V (x±k )dx± + 2(2ε)−2j

∫
`B(z)dµV (z) .

Going back to PnV (λ±(j) ∈ B) we get

lim inf
n→∞

1

β′n
logPnV (λ±(j) ∈ B) ≥ − lim sup

n→∞

1

β′n
log

Zn
V

Zn−2j
n

n−2j
VM

− (2ε)−2j

∫
B

2j∑
k=1

V (x±k )dx±

+ 2(2ε)−2j

∫
`B(z)dµV (z) .(5.23)

Splitting into two parts the integral defining Zn
V we have

Zn
V = Zn

VM
+ Zn

V PnV (λ±1 /∈ HM)

and from the exponential tightness,

Zn
V

Zn−p
nVM/n−p

≤ 1

1− e−nC(M)

Zn
VM

Zn−p
nVM/n−p

Now we apply Lemma 5.2

lim sup
n→∞

1

β′n
log

Zn
V

Zn−2j
n

n−2j
VM

≤ − inf
x±

2j∑
k=1

J (x±k )

which, plugged into (5.23), yields

lim inf
n→∞

1

β′n
logPnV (λ±(j) ∈ B) ≥ inf

x±

2j∑
k=1

J (x±k )− (2ε)−2j

∫
B

2j∑
k=1

V (x±k )dx±

+ 2(2ε)−2j

∫
`B(z)dµV (z) .(5.24)

Remembering that B has volume (2ε)2j, and letting ε→ 0 we obtain

lim inf
n→∞

1

β′n
logPnV (λ±(j) ∈ B) ≥ inf

x±

2j∑
k=1

J (x±k )−
2j∑
k=1

V (ξ±k ) + 2

∫ 2j∑
k=1

log |ξ±k − t|dµV (t).

This yields the lower bound (5.4) and completes the proof of Theorem 4.1.
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5.3 Proofs of Lemmas of Section 5.1

5.3.1 Proof of Lemma 5.1

Notice that

(5.25)
dPnVn
dPnV

=
Zn
V

Zn
Vn

exp
(
−β′rnµ(n)

u (V )
)

We need the following lemma.

Lemma 5.5

lim
n→∞

1

n2
log

Zn
Vn

Zn
V

= 0

Admitting the result of this lemma, we follow the steps of Anderson et al. (2010) Section 2.6.

Exponential tightness:
We have

PnVn(µ(n)
u (V ) > t) =

Zn
V

Zn
Vn

∫
{µ(n)u (V )>t}

exp
(
−β′rnµ(n)

u (V )
)
dPnV

≤ Zn
V

Zn
Vn

e−nβ
′rtPnV

(
µ(n)
u (V ) > t)

)
which yields

lim sup
n→∞

1

n2
logPnVn(µ(n)

u (V ) > t)) ≤ lim sup
n→∞

1

n2
logPnV (µ(n)

u (V ) > t))

and we may refer to the classical case.

Large Deviation upper bound:
Let µ be any probability measure on R. We start from

(5.26) PnVn(d(µ(n)
u , µ) ≤ ε) =

Zn
V

Zn
Vn

∫
{d(µ

(n)
u ,µ)≤ε}

exp
(
−β′rnµ(n)

u (V )
)
dPnV

Since V is bounded below by Vmin, we get the upper bound

PnVn(d(µ(n)
u , µ) ≤ ε) ≤ Zn

V

Zn
Vn

e−β
′rnVminPnV (d(µ(n)

u , µ) ≤ ε)

so that

lim sup
n→∞

1

n2
logPnVn(d(µ(n)

u , µ) ≤ ε) ≤ lim sup
n→∞

1

n2
logPnV (d(µ(n)

u , µ) ≤ ε)

and we may refer to the classical case.
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Large deviations lower bound:
We start again from (5.26) and get, for every t > 0, the bound

PnVn(d(µ(n)
u , µ) ≤ ε) ≥ Zn

V

Zn
Vn

e−β
′rntPnV (d(µ(n)

u , µ) ≤ ε, µ(n)
u (V ) ≤ t)

Now,

PnV (d(µ(n)
u , µ) ≤ ε, µ(n)

u (V ) ≤ t) ≥ PnV (d(µ(n)
u , µ) ≤ ε)− PnV (µ(n)

u (V ) > t)

From the previous consideration of exponential tightness, it is possible to choose t large enough
so that

lim inf
n→∞

1

n2
logPnV (d(µ(n)

u , µ) ≤ ε, µ(n)
u (V ) ≤ t) ≥ lim inf

n→∞

1

n2
logPnV (d(µ(n)

u , µ) ≤ ε)

and refer to the classical case. This ends the proof of Lemma 5.1.

Proof of Lemma 5.5:

We have
Zn
Vn

Zn
V

=

∫
exp

(
−β′rnµ(n)

u (V )
)
dPnV

On the one hand, we observe that since V is bounded from below by a constant Vmin, we have

Zn
Vn

Zn
V

≤ exp (−β′rnVmin)

so that

(5.27) lim sup
n→∞

1

n2
log

Zn
Vn

Zn
V

≤ 0 .

On the other hand, for every t > 0

Zn
Vn

Zn
V

≥ e−β
′rntPnV

(
µ(n)
u (V ) ≤ t

)
From (2.6.21) in Anderson et al. (2010), we know that limn→∞ PnV

(
µ

(n)
u (V ) ≤ t

)
= 1 for t large

enough. We easily deduce

(5.28) lim inf
n→∞

1

n2
log

Zn
Vn

Zn
V

≥ 0 ,

which ends the proof of Lemma 5.5.
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5.3.2 Proof of Lemma 5.2

Let

Yn,n−p :=
Zn
V

Zn−p
n
n−pV

.

Lower bound:

Zn
V

Zn−p
n
n−pV

=

∫ ∫ p∏
r=1

(
e−β

′nV (xr)

n−p∏
k=1

|xr − λk|β
)
H(x) dx dPn−pn

n−pV
(λ0)

≥
∫
B(ξ,ε)

∫ p∏
r=1

(
e−β

′nV (xr)

n−p∏
k=1

|xr − λk|β
)
H(x) dx dPn−pn

n−pV
(λ0)

where ξ is a point in Rp with tie-free entries and B(ξ, ε) a ball of radius ε in the sup-norm.
We may assume that B(ξ, ε) ⊂ {x ∈ R2j|V (xi) < ∞ for all i}. On B(ξ, ε) the potential V is
uniformly continuous and we may replace each xk by ξk and get for ε small enough

H(x)

p∏
r=1

e−β
′nV (xr) ≥

p∏
r=1

e−β
′nV (ξr)−β′nδε

for some δε > 0. Set

`ε(y, λ) = (2ε)−1

∫ y+ε

y−ε
log |t− λ|dt

Applying Jensen’s inequality (the exponential is convex and we integrate over
(2ε)p

∏p
r=1 1|xr−ξr|≤εdxk) we get

Yn,n−p ≥ (2ε)p

(
p∏
r=1

e−β
′nV (ξr)−β′nδε

)∫
exp

(
2β′(n− p)

p∑
r=1

∫
`ε(ξr, z)dµ

(n−p)
u (z)

)
dPn−pn

n−pV
(λ0).

(5.29)

The function λ 7→ `ε(y, λ) is continuous and bounded (all variables live in a compact set). We
can bound the integral in (5.29) from below by∫

{λ0:d(µ
(n−2j)
u ,µV )≤κ}

exp

(
2β′(n− p)

p∑
r=1

∫
`ε(ξr, z)dµ

(n−p)
u (z)

)
dPn−pn

n−pV
(λ0)

≥ Pn−pn
n−pV

(
d(µ(n−p)

u , µV ) ≤ ε
)

exp

(
2β′(n− p)

p∑
r=1

∫
`ε(ξr, z)dµV (z)− β′δ′εn

)
with δ′ε > 0, hence

Yn,n−p ≥ (2ε)p

(
p∏
r=1

e−β
′nV (ξr)−β′nδε

)
Pn−pn
n−pV

(
d(µ(n−p)

u , µV ) ≤ ε
)

× exp

(
2β′(n− p)

p∑
r=1

∫
`ε(ξr, z)dµV (z)

)
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According to Lemma 5.1, we know that Pn−pn
n−pV

(
d(µ

(n−p)
u , µV ) ≤ ε

)
→ 1. Since the logarithmic

potential t 7→
∫

log |t− λ|dµV (λ) is continuous, we may write∫
`ε(ξr, z)dµV (z) ≥

∫
log |ξr − z|dµV (z)− δ′′ε ,

where δ′′ε may depend on ξ but tends to zero with ε. We have then, for ξ fixed, for every ε > 0

lim inf
n→∞

(β′n)−1 log Yn,n−p ≥ −
p∑
r=1

J (ξr)− 2p(δ′ε + δ′′ε )

Since it is true for every ε, after optimizing in ξ we may conclude

lim inf
n→∞

(β′n)−1 log Yn,n−p ≥ − inf
ξ

p∑
r=1

J (ξr) .(5.30)

Upper bound:
We have

Yn,n−p =

∫
H(x)

p∏
r=1

e−β
′n

∑p
1 V (xr)

(∫ n−p∏
k=1

|xr − λk|β dPn−pn
n−pV

(λ0)

)
dx

Recall the definition Bκ = {λ0 ∈ Rn−2j : d(µ
(n−2j)
u , µV ) ≤ κ}. Since all variables live on a compact

set,
∏

k |xr − λk|β is bounded by ec1n for some c1 > 0, and then∫ n−p∏
k=1

|xr − λk|β dPn−pn
n−pV

(λ0) ≤
∫
Bκ

n−p∏
k=1

|xr − λk|βdPn−pn
n−pV

(λ0) + ec1nPn−pn
n−pV

(Bc
κ) .(5.31)

Since the rate function of the LDP has a unique minimizer, Proposition 5.1 yields

ec1n Pn−pn
n−pV

(Bc
κ) ≤ c2e

−c3n2

for some positive constants c2, c3. The integral on the right hand side of (5.31) is bounded by

exp

{
β(n− p) sup

µ: d(µ,µV )≤κ

p∑
r=1

∫
log |xr − η|dµ(η)

}
and then, since we integrate over a compact set,

Yn,n−p ≤
∫
H(x) exp

{
β′n

(
−

p∑
r=1

V (xr) + 2 sup
µ: d(µ,µV )≤κ

∫
log |xr − η|dµ(η)

)}
dx(5.32)

+ c4e
−c5n2

.

If we use again the bound (5.16) we get, for any η > 0 and n large enough

Yn,n−p ≤ exp β′n

(
η − inf

x

p∑
r=1

JV (xr)

)
,(5.33)

and then

lim sup
n→∞

1

β′n
log Yn,n−p ≤ − inf

x

p∑
r=1

JV (xr) .
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5.3.3 Proof of Lemma 5.3

From the LDP for extreme value of Borot and Guionnet (2013b), the rate function is JV −
infx JV (x). So, if this rate function which vanishes on the support of µV does not vanish outside,
that means that the probability that λ+

1 is greater than α+ε is exponentially small, and similarly
for λ−1 .

6 Appendix 2 : Proof of Lemma 4.5 and Lemma 4.6

6.1 Proof of Lemma 4.5

Let µn → µ in S1 equipped with the topology induced by (4.3). Let f be continuous and bounded
and ε > 0. Since µ is normalized, we may choose N so large that

µ(I) +
N∧N+∑
i=1

γ+
i +

N∧N−∑
i=1

γ−i > 1− ε.

Note that N may be 0. Given this N , choose n0 so large such that for all n ≥ n0

dn :=

∣∣∣∣∫ gdµn|I −
∫
gdµ|I

∣∣∣∣+
N∧N+∑
i=1

|γ+
i,ng(λ+

i,n)− γ+
i g(λ+

i )|+
N∧N−∑
i=1

|γ−i,ng(λ−i,n)− γ−i g(λ−i )| < ε

for g ∈ {1, f}, which is possible thanks to our topology on S. This implies in particular

N+∑
i=N∧N++1

|γ+
i,n|+

N−∑
i=N∧N−+1

|γ−i,n| ≤ 2ε.

Then we have∣∣∣∣∫ fdµn −
∫
fdµ

∣∣∣∣
≤ dn +

N+∑
i=N∧N++1

|γ+
i,nf(λ+

i,n)|+
N−∑

i=N∧N−+1

|γ−i,nf(λ−i,n)|+
N+∑

i=N∧N++1

|γ+
i f(λ+

i )|+
N−∑

i=N∧N−+1

|γ−i f(λ−i )|

≤ dn + 2ε||f ||∞ + ε||f ||∞ ≤ ε+ 3ε||f ||∞

for all n ≥ n0.

6.2 Proof of Lemma 4.6

We need to show that for measures µn ∈ S1 with µn → µ ∈ P1 \ S1 weakly, we have IV (µ)→∞.
If µ /∈ S1, then either µ has a nondiscrete part outside of [α−, α+] or an infinite number of atoms
outside of [α− − ε, α+ + ε] for some ε > 0.
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Now, the only way for µn to be arbitrarily close to such a measure µ in the weak topology is if
there exists a number `(n) of atoms x1, . . . , x`(n) that are not lying in [α− − ε, α+ + ε] for some
ε > 0 and `(n) → ∞. This implies F(xi) > δ for some positive δ for all i ≤ `(n) and then
IV (µ)→∞.
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Benaych-Georges, F., Guionnet, A., and Mäıda, M. (2012). Large deviations of the extreme
eigenvalues of random deformations of matrices. Probability Theory and Related Fields, 154(3-
4):703–751.

Borot, G. and Guionnet, A. (2013a). Asymptotic expansion of β matrix models in the multi-cut
regime. arXiv preprint arXiv:1303.1045.

Borot, G. and Guionnet, A. (2013b). Asymptotic expansion of β matrix models in the one-cut
regime. Comm. Math. Phys., 317(2):447–483.

Bourgade, P., Nikeghbali, A., and Rouault, A. (2009). Circular Jacobi ensembles and deformed
Verblunsky coefficients. Int. Math. Res. Notices, (23):4357–4394.

45



Damanik, D., Killip, R., and Simon, B. (2010). Perturbations of orthogonal polynomials with
periodic recursion coefficients. Annals of mathematics, 171(3):1931–2010.

Deift, P., Kriecherbauer, T., McLaughlin, K., Venakides, S., and Zhou, X. (1999). Uniform asymp-
totics for polynomials orthogonal with respect to varying exponential weights and applications
to universality questions in random matrix theory. Comm. Pure Appl. Math., 52(11):1335–1425.

Dembo, A. and Zeitouni, O. (1998). Large Deviations Techniques and Applications. Springer.

Dette, H. and Studden, W. (1997). The theory of canonical moments with applications in statis-
tics, probability, and analysis. Wiley Series in Probability and Statistics,.

Dumitriu, I. and Edelman, A. (2002). Matrix models for beta ensembles. J. Math. Phys.,
43(11):5830–5847.

Fan, C., Guionnet, A., Song, Y., and Wang, A. (2014). Convergence of eigenvalues to the support
of the limiting measure in critical β matrix models. arXiv preprint arXiv:1402.1796.

Gamboa, F. and Lozada-Chang, L.-V. (2004). Large deviations for random power moment prob-
lem. The Annals of Probability, 32(3B):2819–2837.

Gamboa, F., Nagel, J., Rouault, A., and Wagener, J. (2012). Large deviations for random
matricial moment problems. J. Multivariate Anal., 106:17–35.

Gamboa, F. and Rouault, A. (2010). Canonical moments and random spectral measures. J.
Theoret. Probab., 23:1015–1038.

Gamboa, F. and Rouault, A. (2011). Large deviations for random spectral measures and sum
rules. Appl. Math. Res. Express AMRX, (2):281–307.

Hardy, A. (2012). A note on large deviations for 2D Coulomb gas with weakly confining potential.
Electron. Commun. Probab, 17(19):1–12.

Johansson, K. (1998). On fluctuations of eigenvalues of random hermitian matrices. Duke Math.
J., 91(1):151–204.

Killip, R. (2007). Spectral theory via sum rules. In Spectral theory and mathematical physics: a
Festschrift in honor of Barry Simon’s 60th birthday, volume 76 of Proc. Sympos. Pure Math.,
pages 907–930. Amer. Math. Soc., Providence, RI.

Killip, R. and Nenciu, I. (2004). Matrix models for circular ensembles. Int. Math. Res. Not.,
(50):2665–2701.

Killip, R. and Simon, B. (2003). Sum rules for Jacobi matrices and their applications to spectral
theory. Ann. of Math., 158(1):253–321.

Krishnapur, M., Rider, B., and Virag, B. (2013). Universality of the Stochastic Airy Operator.
arXiv 1306.4832v1.

46



Kupin, S. (2005). Spectral properties of Jacobi matrices and sum rules of special form. Journal
of Functional Analysis, 227(1):1 – 29.

Nazarov, F., Peherstorfer, F., Volberg, A., and Yuditskii, P. (2005). On generalized sum rules for
Jacobi matrices. Int. Math. Res. Not., (3):155–186.

Rockafellar, R. (1971). Integrals which are convex functionals, II. Pacific J. Math., 39(2):439–469.

Saitoh, N. and Yoshida, H. (2001). The infinite divisibility and orthogonal polynomials with a
constant recursion formula in free probability theory. Probab. Math. Statist., 21(1, Acta Univ.
Wratislav. No. 2298):159–170.

Serfaty, S. (2014). Coulomb gases and Ginzburg-Landau vortices. arXiv 1403.6860v1.

Simon, B. (2007). Orthogonal polynomials with exponentially decaying recursion coefficients. In
Probability and mathematical physics, pages 453–463.
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