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F-14050 Caen, France

Sebastien.Fourey@greyc.ensicaen.fr, Luc.Brun@greyc.ensicaen.fr

Abstract. Combinatorial maps define a general framework which al-
lows to encode any subdivision of an n-D orientable quasi-manifold with
or without boundaries. Combinatorial pyramids are defined as stacks
of successively reduced combinatorial maps. Such pyramids provide a
rich framework which allows to encode fine properties of objects (either
shapes or partitions). Combinatorial pyramids have first been defined in
2D. This first work has later been extended to pyramids of n-D gener-
alized combinatorial maps. Such pyramids allow to encode stacks of non
orientable partitions but at the price of a twice bigger pyramid. These
pyramids are also not designed to capture efficiently the properties con-
nected with orientation. This work presents the design of pyramids of
n-D combinatorial maps and important notions for their encoding and
processing.
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1 Introduction

Pyramids of combinatorial maps have first been defined in 2D [1], and later
extended to pyramids of n-dimensional generalized maps by Grasset et al. [8].
These last pyramids extend the irregular pyramid [13] framework made of simple
graphs to the encoding of subdivisions of orientable but also non-orientable quasi-
manifolds [11] at the expense of twice the data size of the one required for
combinatorial maps. For practical use (for example in image segmentation), this
may have an impact on the efficiency of the associated algorithms or may even
prevent their use. Furthermore, properties and constrains linked to the notion
of orientation may be expressed in a more natural way with the formalism of
combinatorial maps. For these reasons, we are interested here in the definition
of pyramids of n-dimensional combinatorial maps. Note that Illetschko [9, 10]
achieved a first study of the encoding of 3D combinatorial pyramids, as well as
the associated memory requirement issues.

The key notion for the definition of pyramids of maps is the operation of
simultaneous removal or contraction of cells. These two notions have been defined
in [5] (see also [6]) where the definitions have been related to the ones given in



[3] for generalized maps. Their validity was indeed proved using the link between
maps and generalized maps established by Lienhardt [11].

The notions of reduction window and receptive field are two basic concepts
within the regular pyramid framework [2]. A reduction window relates a pixel
of a pyramid to a set of pixels in the level below while the receptive field corre-
sponds to the transitive closure of the father child relationship induced by the
reduction window. After recalling some preliminaries about combinatorial maps
and the main results obtained in [5], we define the objects which generalize the
notions of reduction window and receptive field within the combinatorial pyra-
mid framework: connecting walks and connecting darts sequences. These objects
have interesting properties that should allow us to derive, in future works, effi-
cient encoding schemes and operations on pyramids of n-D maps the same way
Brun and Kropatsch did for 2-dimensional combinatorial pyramids [1]. Connect-
ing walks which are introduced in Section 4, somehow fill the gap between two
consecutive levels of the pyramid. We first provide a definition of connecting
walks in generalized maps and establish a link (Proposition 5) with the defini-
tion we give for such walks in combinatorial maps. On the other hand, connecting
dart sequences (Section 5) link a level of a pyramid of maps to any of its lower
levels. The definition of the latter sequence as well as a discussion of its expected
use are given in Section 5.

2 Maps and generalized maps in dimension n

An n-dimensional generalized map (or n-G-map) is defined by a set of basic
abstract elements called darts connected by (n+ 1) involutions. More formally:

Definition 1 (n-G-map [11]) Let n ≥ 0, an n-G-map is defined as an (n+2)-
tuple G = (D, α0, . . . , αn) where:

– D is a finite non-empty set of darts;
– α0, . . . , αn are involutions on D (i.e. ∀i ∈ {0, . . . , n}, α2

i (b) = b) such that:
• ∀i ∈ {0, . . . , n− 1}, αi is an involution without fixed point (i.e. ∀b ∈ D,
αi(b) 6= b);

• ∀i ∈ {0, . . . , n− 2}, ∀j ∈ {i+ 2, . . . , n}, αiαj is an involution1.

The dual of G, denoted by G, is the n-G-map G = (D, αn, . . . , α0). If αn is
an involution without fixed point, G is said to be without boundaries or closed.
In the following we only consider closed n-G-maps with n ≥ 2.

Figure 2(a) shows a 2-G-map G = (D, α0, α1, α2) whose set of darts D
is {1, 2, 3, 4, −1,−2,−3,−4}, with the involutions α0 = (1,−1)(2,−2)(3,−3)
(4,−4), α1 = (1, 2)(−1, 3)(−2,−3)(4,−4), and α2 = (1, 2)(−1,−2)(3, 4)(−3,−4).

Let Φ = {φ1, . . . , φk} be a set of permutations on a set D. We denote by <Φ>
the permutation group generated by Φ, i.e. the set of permutations obtained by
any composition and inversion of permutations contained in Φ. The orbit of

1 Given two involutions αi, αj and one dart d, the expression dαiαj denotes αj ◦αi(d).



d ∈ D relatively to Φ is defined by <Φ>(d) =
{
φ(d)

∣∣ φ ∈<Φ>}
. Furthermore,

we extend this notation to the empty set by defining <∅> as the identity map.
If Ψ = {ψ1, . . . , ψh} ⊂ Φ we denote <ψ1, . . . , ψ̂j , . . . , ψh>(d) =<Ψ \ {ψj}>(d).
Moreover, when there will be no ambiguity about the reference set Φ we will
denote by <ψ̂1, ψ̂2, . . . , ψ̂h>(d) the orbit <Φ \ Ψ>(d).

Definition 2 (Cells in n-G-maps [11]) Let G = (D, α0, . . . , αn) be an n-G-
map, n ≥ 1. Let us consider d ∈ D. The i-cell (or cell of dimension i) that con-
tains d is denoted by Ci(d) and defined by the orbit: Ci(d) =<α0, . . . , α̂i, . . . , αn>
(d).

Thus, the 2-G-map of Fig. 2(a) counts 2 vertices (v1 =<α1, α2>(1) = {1, 2}
and v2 = {−1, 3, 4,−4,−3,−2}), 2 edges (e1 =< α0, α2> (1) = {1,−1, 2,−2}
and e2 = {3, 4,−3,−4}), and 2 faces (the one bounded by e2 and the outer one).

Definition 3 (n-map [11]) An n-map (n ≥ 1) is defined as an (n + 1)-tuple
M = (D, γ0, . . . , γn−1) such that:

– D is a finite non-empty set of darts;
– γ0, . . . , γn−2 are involutions on D and γn−1 is a permutation on D such that:
∀i ∈ {0, . . . , n− 2}, ∀j ∈ {i+ 2, . . . , n}, γiγj is an involution.

The dual of M , denoted by M , is the n-map M = (D, γ0, γ0γn−1, . . . , γ0γ1).
The inverse of M , denoted by M−1 is defined by M−1 = (D, γ0, . . . , γn−2, γ

−1
n−1).

Note that Damiand and Lienhardt introduced a definition of n-map as an (n+1)-
tuple (D, βn, . . . , β1) defined as the inverse of the dual of our map M . If we forget
the inverse relationships (which only reverses the orientation), we have γ0 = βn

and βi = γ0γi for i ∈ {1, . . . , n − 1}. The application β1 is the permutation of
the map while (βi)i∈{2,...,n} defines its involutions.

Definition 4 (Cells in n-maps [11]) Let M = (D, γ0, . . . , γn−1) be an n-map,
n ≥ 1. The i-cell (or cell of dimension i) of M that owns a given dart d ∈ D is
denoted by Ci(d) and defined by the orbits:

∀i ∈ {0, . . . , n− 1} Ci(d) = < γ0, . . . , γ̂i, . . . , γn−1 > (d)
For i = n Cn(d) = < γ0γ1, . . . , γ0γn−1 > (d)

In both an n-map and an n-G-map, two cells C and C′ with different dimen-
sions will be called incident if C ∩ C′ 6= ∅. Moreover, the degree of an i-cell C

is the number of (i + 1)-cells incident to C, whereas the dual degree of C is the
number of (i−1)-cells incident to C. An n-cell (resp. a 0-cell) has a degree (resp.
dual degree) equal to 0.

An n-map may be associated to an n-G-map, as stated by the next definition.
This direct link between the two structures has been used in [5] to show that the
removal operation in maps which we present in Section 3 is properly defined.

Definition 5 (Map of the hypervolumes) Let G = (D, α0, . . . , αn) be an n-
G-map, n ≥ 1. The n-map HV (G) = (D, δ0 = αnα0, . . . , δn−1 = αnαn−1) is
called the map of the hypervolumes of G.



A connected component of a map (D, γ0, . . . , γn−1) is a set<γ0, . . . , γn−1>(d)
for some d ∈ D. Lienhardt [12] proved that if an n-G-mapG is orientable,HV (G)
has two connected components. In the following we only consider orientable n-
G-maps.

3 Cells removal in maps and G-maps

We recall here the main definitions and results about the simultaneous removal
of cells in (G-)-maps that have been presented in [5].

3.1 Cells removal in G-maps

As the number of (i + 1)-cells that are incident to it, the degree of an i-cell C

in an n-G-map G = (D, α0, . . . , αn) is the number of orbits in the set ∆ =
{
<

α̂i+1 > (d)
∣∣ d ∈ C

}
. As part of a criterion for cells that may be removed from a

G-map, we need a notion of degree that better reflects the local configuration of
a cell: the local degree. A detailed justification for the following definition may
be found in [6].

Definition 6 (Local degree in G-maps) The local degree of an i-cell C in
an n-G-map, 0 ≤ i < n, is the number

∣∣{< α̂i, α̂i+1>(b)
∣∣ b ∈ C

}∣∣. The local
degree of an n-cell is 0.

Intuitively, the local degree of an i-cell C is the number of (i + 1)-cells that
locally appear to be incident to C. It is called local because it may be different
from the degree since an (i+1)-cell may be incident more than once to an i-cell,
as illustrated in Fig. 2 where the 1-cell e2 is multi-incident to the 0-cell v2, hence
the cell v2 has a degree 2 and a local degree 3.

It is known since [3] that cells that may be removed or contracted in a G-map
must satisfy a criterion which, although correct, was mistakenly called “having a
local degree 2”. In [6, 5], the notion of regularity, recalled below, was introduced
in order to state a new criterion based on the correct definition of the local
degree (Definitions 6 and 10).

Definition 7 (Regular cell) An i-cell (i ≤ n − 2) in an n-G-map is said to
be regular if it satisfies the two following conditions:

a) ∀d ∈ C, dαi+1αi+2 = dαi+2αi+1 or dαi+1αi+2 6∈<α̂i, α̂i+1>(dαi+2αi+1),
and
b) ∀b ∈ C, bαi+1 /∈<α̂i, α̂i+1>(b)

Any (n− 1)-cell is said to be regular.

The following theorem shows that the criterion given by Damiand et al.
(which corresponds to condition ii)) is more restrictive than the actual notion
of local degree. (Condition i) merely excludes cells with local degree 1.)



Theorem 1 For any i ∈ {0, . . . , n − 2}, an i-cell C is a regular cell with local
degree 2 if and only if

i) ∃b ∈ C, bαi+1 /∈< α̂i, α̂i+1 > (b), and
ii) ∀b ∈ C, bαi+1αi+2 = bαi+2αi+1

An illustration of Definition 7 and Theorem 1 is provided in [6]. Figure 1
depicts a vertex with local degree 2 in a 3-G-map, vertex which is not regular
according to Definition 7. Following Grasset et al.’s criterion, such a vertex is not
considered as removable because it does not have a local degree two (according
to their definition of the local degree). In our case, this vertex actually has a
local degree two but is still excluded because it is not regular.

We may know describe families of sets of cells to be removed, which we call
removal kernels, and for which the simultaneous removal operation is properly
defined.

Definition 8 (Removal kernel) Let G be an n-G-map. A removal kernel Kr

in G is a family of sets {Ri}0≤i≤n where Ri, 0 ≤ i ≤ n, is a set of regular
i-cells (Definition 7) with local degree 2 (Definition 6), Rn = ∅, and all cells of
R = ∪n

i=0Ri are disjoint. We denote by R∗ = ∪C∈RC, the set of all darts in Kr.

The following definition for the simultaneous removal of cells is slightly sim-
pler and was proved to be equivalent ([6, Proposition 10]) to the one used in [3,
8].

Definition 9 (Cells removal in n-G-maps [5, 3]) Let G = (D, α0, . . . , αn)
be an n-G-map and Kr = {Ri}0≤i≤n−1 be a removal kernel in G. The n-G-map
resulting of the removal of the cells of R is G′ = (D′, α′0, . . . , α′n) where:

1. D′ = D \R∗;
2. ∀d ∈ D′, dα′n = dαn;
3. ∀i, 0 ≤ i < n, ∀d ∈ D′, dα′i = d′ = d(αiαi+1)kαi where k is the smallest

integer such that d′ ∈ D′.
We denote G′ = G \Kr or G′ = G \R∗.

Fig. 1. A solid representation of a part of a 3-G-map where a vertex has a local degree
2 but is not regular. (The vertex is made of all the depicted darts.)



3.2 Cells removal in n-maps

We recall here the definition of the simultaneous removal of cells in an n-map,
which was proved to be valid as it actually defines a map [5, Theorem 6]. As for
G-maps, we need a notion of local degree in a map.

Definition 10 (Local degree in maps) Let C be an i-cell in an n-map. The
local degree of C is the number

|{< γ̂i, γ̂i+1 > (b) | b ∈ C}| if i ∈ {0, . . . , n− 2}
|{< γ0γ1, . . . , γ0γn−2 > (b) | b ∈ C}| if i = n− 1

The local degree of an n-cell is 0.

A notion of regular cell in an n-map which derives from the same notion in G-
maps (Definition 7) has also been defined ([6, Definition 16]). With Definition 10
for the local degree, it allows us to define removal kernels in maps the same way
we did for G-maps (see Definition 8), i.e. families of sets of non-intersecting
regular cells with local degree 2.

Definition 11 (Cells removal in n-maps [5]) Let M = (D, γ0, . . . , γn−1) be
an n-map and Sr = {Ri}0≤i≤n−1 a removal kernel in M . We define the (n−1)-
tuple M \ Sr = (D′, γ′0, . . . , γ′n−1) obtained after removal of the cells of Sr by:

– D′ = D \R∗;
– ∀i ∈ {0, . . . , n − 2}, ∀d ∈ D′, dγ′i = d(γiγ

−1
i+1)

kγi, where k is the smallest
integer such that d(γiγ

−1
i+1)

kγi ∈ D′.
– For i = n− 1, ∀d ∈ D′, dγ′n−1 = dγk+1

n−1 where k is the smallest integer such
that dγk+1

n−1 ∈ D′.
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Fig. 2. (a) A 2-G-map. (b) A 2-G-map G (top row) from which the two white vertices
are to be removed, yielding a map G′ (bottom row). The connecting walks CW0

G,G′(b) =

(b = b0, b1, b2) (second row) and CW0
G,G′(d) = (d = d0, d1, d2) (third row).



4 Connecting walks

The permutations or involutions which define the map resulting from a removal
operation are obtained by somehow following a path in the original map until a
surviving dart has been found (Definitions 9 and 11). This leads to the notion of
the so called connecting walks which we define here and whose main properties
are described. Proof of the results presented in this section may be found in [6].

In the sequel, if S = (d1, d2, . . . , dp) and S′ = (b1, b2, . . . , bq) are sequences
of darts in a (G-)map for {p, q} ⊂ N, we denote by S◦ the sequence (d2, . . . , dp)
(i.e. S without its first dart), and by reverse(S) the sequence (dp, dp−1 . . . , d1).
Furthermore, we denote S · S′ = (d1, . . . , dp, b1, . . . , bq). We also denote by S∗

the set {d1, d2, . . . , dp} and by last(S) the last dart of S.

4.1 Connecting walks in generalized maps

Definition 12 (Connecting walk in n-G-maps) Let G = (D, α0, . . . , αn) be
an n-G-map and Kr = {Ri}0≤i≤n be a removal kernel in G. Let G′ = G \
Kr = (D′, α′0, . . . , α′n). The i-connecting walk associated to a dart d ∈ D′ for
i ∈ {0, . . . , n}, denoted by CWi

G,G′(d), is the sequence of darts of D defined by:

CWi
G,G′(d) = (d0 = d, d1, . . . , dp)

where du = d(αiαi+1)u for all u ∈ {0, . . . , p} and p = Min
{
k ∈ N|dkαi ∈ D′

}
.

The above definition is clearly linked to the one of the removal operation
(Definition 9). To make this link explicit, we may first prove the following prop-
erty which states that darts of an i-connecting walk are, except for the first one,
darts of i-cells that have been removed ([4]). This property as well as the next
one is illustrated by Figure 2(b), in the 2D case for the ease of visualization.

Property 1 With the notations of Definition 12, for all d ∈ D′ such that
CWi

G,G′(d) = (d0, d1, . . . , dp) we have:

∀k ∈ {1, . . . , p}, dk−1αi ∈ R∗i and dk ∈ R∗i
Using Property 1, it is clear from Definition 9 that we also have the following

property, which relates i-connecting walks to the corresponding involution α′i in
the resulting map.

Property 2 Let G = (D, α0, . . . , αn) be an n-G-map, Kr be a removal kernel
in G, G′ = G \Kr = (D′, α′0, . . . , α′n) and d ∈ D′. For all i ∈ {0, . . . , n} we have

dα′i = last(CWi
G,G\Kr

(d))αi

In [7], Grasset defines connecting walks in G-maps in a slightly different
way. A first difference is that in Grasset’s definition, d does not appear at the
beginning of the sequence that defines CWi

G,G′(d), whereas the dart dpαi of
Definition 12 is added at the end of the sequence. On the other hand, consecutive



darts in a connecting walk as defined by Grasset are linked by alternately either
an αi or an αi+1 involution when they are always linked by the permutation
αiαi+1 in our definition. Thus, a connecting walk for a given dart and a given
dimension counts ((k−1)/2)+1 darts when the corresponding one with Grasset’s
definition has k ones.

Following the definition of [7], connecting walks that are distinct (up to re-
verse ordering and after removal of their last dart) are always disjoint [7, Proposi-
tion 22]. With our definition the property simply becomes that connecting walks
are either equal or disjoint. In other words, a removed dart belongs to at most
one connecting walk for some i ∈ {0, . . . , n}. This property, stated by the follow-
ing proposition, induces a father-child relationship between darts of consecutive
levels similar to the reduction windows in the context of regular pyramids.

Proposition 1 Let G = (D, α0, . . . , αn) be an n-G-map, Kr be a removal kernel
in G, and d be a dart of R∗i for 0 ≤ i ≤ n. The dart d belongs to at most one
connecting walk. In other words, the two following properties hold:

i) d ∈ ⋃
b∈D′ CWi

G,G\Kr
(b)∗ ⇒ ∃! b ∈ D′, d ∈ CWi

G,G\Kr
(b)◦∗

ii) ∀j ∈ {0, . . . , n} \ {i}, ∀b ∈ D′, d /∈ CWj
G,G\Kr

(b)◦∗

Where
⋃

b∈D′ CWi
G,G\Kr

(b)∗ represents the set of darts belonging to at least one
connecting walk.

Furthermore, there exists a one-to-one correspondence between connecting
walks, as any i-connecting walk associated with a dart d ∈ D′ may be built from
the connecting walk associated with dα′i (with the notations of Definition 9).
This is illustrated on Figure 2(b). In fact, the above mentioned correspondence
coincides with the application of an involution ; it is therefore itself an involution
on the set of connecting walks.

Property 3 Let G be an n-G-map and Kr be a removal kernel in G. Let
G′ = G \ Kr = (D′, α′0, . . . , α′n). For all i ∈ {0, . . . , n − 1} and all d ∈ D′ ;
if CWi

G,G′(d) = (d0 = d, d1, . . . , dp) we have:

CWi
G,G′(dα

′
i) = (b0 = dα′i, b1, . . . , bp) where bk = dp−kαi for 0 ≤ k ≤ p

Since Property 1 does not guarantee that a dart always belong to a connect-
ing walk, all darts that have been removed may not be traversed by following
all the connecting walks. Hence we say that a removal kernel Kr is simple if the
following property holds:

∀i ∈ {0, . . . , n− 1}, ∀d ∈ Ri, ∃s ∈ D′
∣∣ d ∈ CWi

G,G′(s)
◦∗

By Proposition 1 the dart s is necessarily unique and we deduce the following
property.



Property 4 If G is an n-G-map and Kr is a simple removal kernel in G, then
we have

D = D′ t

 ⊔

d∈D′, 0≤i≤n−1

CWi
G,G′(d)

◦∗




where
⊔

denotes the union of disjoint sets.

When Property 4 applies, the traversal of the connecting walks of all the
darts of D′ is guarantied to visit all darts of D. In a pyramid, this means that a
level may be rebuilt with no hole from the level above it ; in other words there
is no loss of information when reducing a map using a simple kernel. Simple
removal kernels may be characterized, in a computationally more efficient way,
using the following proposition:

Proposition 2 A removal kernel Kr = {Ri}i=0,...,n in an n-G-map G is simple
if and only if:

∀i ∈ {0, . . . , n− 1}, ∀d ∈ R∗i , <αiαi+1>(d) ∩ D′ 6= ∅
where D′ is the set of darts of G \Kr.

Not all removal kernel may be decomposed into simple ones. However, using
Proposition 2 some removal operations may be delayed in order to obtain a
simple kernel between two specified levels.

4.2 Connecting walks in maps

Definition 13 (Connecting walk in n-maps) Let M = (D, γ0, . . . , γn−1) be
an n-map and Kr = {Ri}0≤i≤n be a removal kernel in M . Let M = M \Kr =
(D′, γ′0, . . . , γ′n−1). The i-connecting walk associated to a dart d ∈ D′ for i ∈
{0, . . . , n− 1}, denoted by CWi

M,M ′(d), is the sequence of darts of D defined by

CWi
M,M ′(d) = (d0 = d, d1, . . . , dp)

where – For i ∈ {0, . . . , n− 2},
∀u, 0 ≤ u ≤ p, du = d(γiγ

−1
i+1)

u and p = Min
{
k ∈ N

∣∣ dkγi ∈ D′
}

– For i = n− 1,
∀u, 0 ≤ u ≤ p, du = dγu

n−1 and p = Min
{
k ∈ N ∣∣ dkγn−1 ∈ D′

}

Again, we have the two following properties which link the definition of the
removal operation of cells with the one of connecting walks.

Property 5 With the notations of Definition 13, for all d ∈ D′ such that
CWi

M,M ′(d) = (d0, d1, . . . , dp) we have:

∀k ∈ {1, . . . , p}, dk−1γi ∈ R∗i and dk ∈ R∗i
Property 6 Let M = (D, γ0, . . . , γn−1) be an n-map, Kr be a removal kernel
in M , M ′ = M \Kr = (D′, γ0, . . . , γ

′
n−1) and d ∈ D′. For all i ∈ {0, . . . , n} we

have dγ′i = last(CWi
M,M\Kr

(d))γi.



As for G-map, connecting walks within maps also provide a father-child rela-
tionship, as stated by the following proposition whose precise statement follows
the one of Proposition 1 (see also [4, Proposition 27 ]).

Proposition 3 Let M be an n-map, Kr be a removal kernel in M , and d be a
dart of R∗i for 0 ≤ i < n. The dart d belongs to at most one connecting walk.

This property together with Proposition 1 shows that the time required to
compute a reduced map given a removal kernel and a set of surviving darts
is bounded by the size of the reduced map or G-map. The time required to
compute a reduced map or G-map is thus bounded by twice the number of
initial darts. As we claimed in our introduction, generalized maps do not allow
to manipulate easily notions related with the orientation over the underlying
quasi-manifold, when the latter is orientable. This in due, in part, to the fact
that in this case a G-map, by using twice as many darts as really needed, actually
encodes the two possible orientations at the same time. A connecting walk in a
G-map G, as defined in this paper, uses a fixed orientation by skipping darts.
Indeed, all darts of the walk thus belong to a single connected component of
the map of the hypervolumes HV (G) associated to the G-map G (Definition 5).
It is therefore consistent with respect to the orientation property since each
component of HV (G) corresponds to one orientation of G. These remarks are
based on Proposition 5, for which Proposition 4 is an important intermediary
result.

Proposition 4 With the notations of Definition 13, for all d ∈ D′ and all
i ∈ {0, . . . , n− 2}, if CWi

M,M ′(d) = (d0, d1, . . . , dp) we have

∀r ∈ {0, . . . , p}, dr = d0(γiγi+1)r

Compared to Definition 13, Proposition 4 states that both permutations γiγ
−1
i+1

and γiγi+1 may be used to define a connecting walk.

Proposition 5 Let G = (D, α0, . . . , αn) be an n-G-map and M = HV (G) be
its n-map of the hypervolumes. Let Kr be a removal kernel in G, let G′ = G\Kr

and M ′ = M \ HV (Kr) = (D′, γ′0, . . . , γ′n−1). For any dart d ∈ D and any
i ∈ {0, . . . , n − 2}. The i-connecting walks of d respectively in G and M (with
respect to Kr and HV (Kr)) satisfy

CWi
G,G′(d) = CWi

M,M ′(d)

Furthermore, we have CW(n−1)
G,G′ (d)◦ = reverse(CW(n−1)

M,M ′(dγ′−1
n−1)

◦).

As shown by the the next property, we also proved that an involution may
be defined on the set of i-connecting walks in a map, for i < n− 1.

Property 7 Let M be an n-map and Kr be a removal kernel in M . Let M ′ =
M \ Kr = (D′, γ′0, . . . , γ′n−1). For i ∈ {0, . . . , n − 2}, d ∈ D′, and b = dγ′i ; if
CWi

M,M ′(d) = (d0 = d, d1, . . . , dp) we have CWi
M,M ′(b) = (b0 = b, b1, . . . , bp)

where bk = dp−kγi for 0 ≤ k ≤ p.



5 n-D Combinatorial pyramids

In this section we define pyramids of combinatorial n-maps and introduce the
connecting dart sequences which will be used to derive a concise encoding of
pyramids.

Definition 14 (Pyramid of n-maps) A pyramid of n-maps with height h ∈ N
is an h-tuple (M0,K1, . . . ,Kh) where M0 is an n-map and Kl, l ∈ {1, . . . , h},
is a removal kernel for the map Ml−1, which is defined by Ml = Ml−1 \Kl for
l ∈ {1, . . . , h}.

When dealing with a pyramid of n-maps (M0,K1, . . . ,Kh), h ∈ N∗, we usu-
ally denote Ml = (Dl, γl,0, . . . , γl,n−1) for l ∈ {0, . . . , h}, and when no confusion
may arise we simply refer to a permutation ofMl as γl,i for i ∈ {0, . . . , n−1} with-
out mentioning the map Ml. We also shorten γ0,i as γi for all i ∈ {0, . . . , n− 1}.
Eventually, we denote Kl = {Rl,i}i=1,...,n.

We may now give the definition of a connected dart sequence which makes
the link, as shown by two propositions given further on, between any tow levels
of a pyramid the same way a connecting walk does between two consecutive
levels.

Definition 15 (Connecting dart sequence) Let (M0,K1, . . . ,Kh) be a pyra-
mid of n-maps and d be a dart of Dl for l ∈ {0, . . . , h}. If CWi

Ml−1,Ml
(d) = (d =

d0, . . . , dp) for i ∈ {0, . . . , n − 1}, we define the i-connecting dart sequence as-
sociated to d at level l, denoted by CDSi

l(d), as follows:

– For l = 0, CDSi
0(d) = (d), and

– for l ∈ {1, . . . , h}
• If i ≤ n− 2, CDSi

l(d) = GLi
l−1(d0) ·GLi

l−1(d1) · . . . ·GLi
l−1(dp)

where
{∀r ∈ {0, . . . , p− 1}, GLi

l−1(dr) = CDSi
l−1(dr) · CDSi+1

l−1(drγl−1,i)
GLi

l−1(dp) = CDSi
l−1(dp)

• If i = n− 1, CDSn−1
l (d) = CDSn−1

l−1 (d0) · CDSn−1
l−1 (d1) · . . . · CDSn−1

l−1 (dp).

Note that for any d ∈ D1, such that CW i
M0,M1

(d) = (d0, . . . , di, . . . , dp),
CDSi

1(d) = (d0, d0γ0,i, . . . , di, diγ0,i, . . . , dp). The sequence CDSi
1(d) has thus

twice as many darts as CW i
M0,M1

(d). This is a major difference with the 2D
case, due to the fact that the straightforward extension of 2D connecting dart
sequences to the nD case may induce important gaps within such sequences.

One may obviously not expect the darts of a such defined connecting dart
sequence to belong to removed cells of a single dimension, as it is the case for
connecting walks (Propositions 1 and 5). For example, darts of the connecting
dart sequence CDS0

2(b) in Figure 3 belong to both 1-cells and 0-cells which have
been removed from M0 and M1, respectively. Still, the first dart of a connecting
dart sequence at level l is the only dart belonging to Dl. Indeed, we have the
following proposition.
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Fig. 3. A 3D combinatorial pyramid (M0, K1, K2). (a) The 3-map M0. (b) The 3-
map M1 obtained after removal of the edges e1 and e2 from M0. (c) The map M2

obtained after removal of the vertices v1, v2, and v3 from M1. Four involutions γ0 are
materialized by two dotted lines. (d) The connecting walk CW 1

M0,M1(b
′)(black darts).

(e) The connecting dart sequence CDS0
2(b) (black darts).

Proposition 6 Let (M0,K1, . . . ,Kh) be a pyramid of n-maps and l ∈ {1, . . . , h}.
For all dart d ∈ Dl and i ∈ {0, . . . , n− 1} we have CDSi

l(d)
◦∗ ∩ Dl = ∅.

Connecting dart sequences also share with connecting walks the property
that the last dart of an i-connecting dart sequence associated with a dart d at
level l is linked with the dart dγl,i by the permutation γi.

Proposition 7 Let (M0,K1, . . . ,Kh) be a pyramid of n-maps for h ∈ N∗, with
the notations of Definition 15. Let d ∈ Dl for l ∈ {1, . . . , h}. We have

last(CDSi
l(d))γ0,i = dγl,i

6 Conclusion

Using the definition given in [6] for the simultaneous removal of cells in an n-
map, we have defined here n-dimensional combinatorial pyramids the way Brun
and Kropatsch did in the two-dimensional case ([1]) and following the works
of Grasset et al. about pyramids of generalized maps ([8]). We have defined
connecting walks in both maps and G-maps, and established a link between the
two definitions. Such walks are analogous to the reduction windows of regular
pyramids. Connecting dart sequences, which are analogous to the receptive fields
within regular pyramids, have also been defined.

The next step of this work consists in the definition of an implicit encoding
of n-dimensional combinatorial pyramids (see [1]). This last result will allow
us to studdy several application fields such as 3D hierarchical segmentation of
medical images given an initial segmentation to reduce the amount of data and
video analysis using time as a third or fourth dimension.
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Poitiers, 2006.

8. C. Grasset-Simon, G. Damiand, and P. Lienhardt. nD generalized map pyramids:
Definition, representations and basic operations. Pattern Recognition, 39(4):527–
538, 2006.

9. T. Illetschko. Minimal combinatorial maps for analyzing 3d data. Master’s thesis,
Vienna University of Technology, 2006. PRIP-TR-110.

10. T. Illetschko, A. Ion, Y. Haxhimusa, and W.G. Kropatsch. Effective programming
of combinatorial maps using COMA – a c++ framework for combinatorial maps.
Technical report, Pattern Recognition and Image Processing Group, Institute of
Computer Aided Automation, Vienna University of Technology, Austria, October
2006.

11. P. Lienhardt. Topological models for boundary representation: a comparison with
n-dimensional generalized maps. Computer-Aided Design, 23(1):59–82, 1991.

12. P. Lienhardt. N-dimensional generalized combinatorial maps and cellular quasi-
manifolds. International Journal of Computantional Geometry & Applications,
4(3):275–324, 1994.

13. Annick Montanvert, Peter Meer, and Azriel Rosenfeld. Hierarchical image analysis
using irregular tessellations. IEEE PAMI, 13(4):307–316, April 1991.


