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CELLS AND CACTI

by

CEDRIC BONNAFE

Abstract. — Let (W, S) be a Coxeter system, let ¢ be a weight function on S and let
Cactyy denote the associated cactus group. Following an idea of I. Losev, we construct
an action of Cacty, x Cacty, on W which has nice properties with respect to the parti-
tion of W into left, right or two-sided cells (under some hypothesis, which hold for
instance if ¢ is constant).It must be noticed that the action depends heavily on ¢.

Let (W, S) be a Coxeter system with S finite and let ¢ be a positive weight func-
tion on S as defined by Lusztig [Lu2]. We denote by Cacty, the Cactus group as-
sociated with W, as defined for instance in [Lo] (see also Section 5). In [Lo], L.
Losev has constructed, whenever W is a finite Weyl group and ¢ is constant, an
action of Cacty, x Cacty, on W which satisfies some good properties with respect
to the partition of W into cells. His construction is realized as the combinatorial
shadow of wall-crossing functors on the category 0.

In [Lo, §5.1], I. Losev suggested that this action could be obtained without any
reference to some category 0, and thus extended to other types of Coxeter groups
and general weight functions ¢, using some recent results of Lusztig [Lu3]. This
is the aim of this paper to show that Losev’s idea works, by using slight exten-
sions of results from [BoGe] and assuming that some of Lusztig’s Conjectures
in [Lu2, §14.2] hold, as in [Lu3]. Note that, if ¢ is constant, then these Conjectures
hold, so this provides at least an action in the equal parameter case: if moreover
W is a Weyl group, this action coincides with the one constructed by Losev [Lo].

Let us now state our main result. If I c S, we denote by W, the subgroup
generated by I and by ¢, the restriction of ¢ to I. If C is a left (respectively right)
cell, then #*[C] (respectively #%[C]) denotes the associated left (respectively
right) -module and c! (respectively c®) denotes the image of the Kazhdan-
Lusztig basis element C,, in this module (see §1.A). Finally, we set u, = {1,—1}.

The author is partly supported by the ANR (Project No ANR-12-JS01-0003-01 ACORT).



2 C. BONNAFE

Theorem.— Assume that Lusztig’s Conjectures P1, P4, P8 and P9 in [Lu2, §14]
hold for all triples (W, 1, ;) such that W, is finite. Then there exists an action
of Cacty x Cacty, on the set W such that, if we denote by Té (respectively Tf;) the
permutation of W obtained through the action of (,1) € Cacty, x Cacty, (respectively
(1, 7)€ Cacty, x Cacty,), then:

(a) If C is a left cell, then TL(C ) is also a left cell. Moreover, there exists a sign map
n,?: W — u, such that the A-linear map #"[C]— %”L[TL(C)] ckomyt ek

LwTL w)

is an isomorphism of left #-modules.
(@') If C is a right cell, then TR(C ) is a also right cell. Moreover, there exists a sign map

Ny’ : W — u, such that theA linear map #"[C]— %”R[T (C)), ¢t —ny wcTR w)
12
is an isomorphism of right -modules.
b) If w e W, then Té(w)va w and Tg(w)wL w.

Commentary.— Lusztig [Lu2, §14.2] proposed several Conjectures relating the
so-called Lusztig’s a-function and the partition of W into cells. Throughout this
paper, the expression Lusztig’s Conjecture Pi will refer to [Lu2, §14.2, Conjecture Pi]
(for 1 <i <15). For instance, they all hold if ¢ is constant [Lu2, §15]. m

Acknowledgements.— 1 wish to thank warmly I. Losev for sending me his first
version of [Lo], and for the e-mails we have exchanged afterwards.

1. Notation

Set-up. We fix a Coxeter system (W,S), whose length function
is denoted by £ : W — N. We also fix a totally ordered abelian
group .o/ and we denote by A the group algebra Z[.<f |. We use an
exponential notation for A:

/ /
A=,y Zv* where viv* =v* " foralla,a’ e d.

If ay € .o/, we write /e,y = {a € & | a<ay} and A, =
D ,c ﬂgaOZv“; we define similary A.,,, Asq,, Asq,- We denote by
~ 1 A — A the involutive automorphism such that ve = v=* for
all a € /. Since .<f is totally ordered, A inherits two maps
deg:A— ./ U{—00} and val: A — .o/ U {+00} respectively called
degree and valuation, and which are defined as usual.

We also fix a weight function ¢ : S — .o/, (that is, ¢(s) =
@(t) for all s, t € S which are conjugate in W) and, if I C S, we
denote by @ : I — .o/, the restriction of ¢.
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1.A. Cells. — Let & =(W,S, ¢) denote the Iwahori-Hecke algebra associated
with the triple (W, S, ¢). This A-algebra is free as an A-module, with a standard
basis denoted by (T,),cw. The multiplication is completely determined by the
following two rules:

T, T, =T,. ifl(ww)=lw)+L(w),
(T,— v¥O)T,+vvE)=0 ifseSs.

The involution — on A can be extended to an A-semilinear involutive automor-
phism ~: ## — # by setting T, = T, . Let

o= wéeBWA<0 Ty
If w € W, there exists [Lu2] a unique C,, € # such that

C,=C,,
C,=T, mod .

It is well-known [Lu2] that (C,,),cw is an A-basis of 7 (called the Kazhdan-Lusztig
basis) and we will denote by h, , . € A the structure constants, defined by

CiCy=> Iy C..

zeW

C,=> pi, T,

xeW
with py  €A. Recall that p; =1land p; €A, if x#y.

We will denote by <;, <z, <z, <1, <g, <rr, ~1, ~g and ~;p the relations de-
fined in [Lu2] and associated with the triple (W, S, ¢): the relation < is the finest
preorder on W such that, forany we W, &, ,,AC, is a left ideal of .#, while ~
is the associated equivalence relation associated (the other relations are defined
similarly, by replacing left ideal by right or two-sided ideal). Also, we will call
left, right and two-sided cells the equivalence classes for the relations ~;, ~; and
~r Tespectively. If C is a left cell, we set

We also write

A= & AC,, AT = & AC, and A'[Cl=r"C/AE.

w<y C w<y,

These are left #’-modules. If w € C, we denote by ¢! the image of C, in the
quotient #°*[C]and <t ¢ and s <:¢ might be also denoted by s#<:* and #~:%
respectively: it is clear that (c¢®),cc is an A-basis of #*[C]. If C is a right (respec-
tively two-sided) cell, we define similarly << ¢, #<:¢ and #*[C] (respectively
A<, ge<iet and AR C]), as well as ¢ (respectively cF).
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1.B. Parabolic subgroups. — We denote by Z(S) the set of subsets of S. If I C S,
we denote by W, the standard parabolic subgroup generated by I and by X; the
set of elements x € W which have minimal length in xW,;. We also define pr! :
W — W, and prj, : W — W, by the following formulas:
VxeX, YVweWw, pri(xw)=w and pri(wx")=w.
If 6 : W; — W, is any map, we denote by 6/ : W — W and 6% : W — W the maps
defined by
S xw)=x6(w) and M wx H=6w)x™!
for all x € X; and w € W; (see [BoGe, §6]). We denote by 0°P : W; — W, the map
defined by
6P(w)=6(w™ "'
for all w € W. Note that 6% =((6°P))°P. If o0 : W — W is any automorphism such
that o(S)=S, then

(1.1) ooprl =prf”oo and ocoprl=prf’oo.

If &is asetand pu: W; — & is any map, we define u; : W — & (respectively
ug: W — &) by
pp=popr,  (respectively up =popry(w).
For instance, pr] = (Idy,), and pr}, = (Idy, )z.
The Hecke algebra (W, I, ¢;) will be denoted by ¢, and will be viewed as a
subalgebra of . in the natural way. It follows from the multiplication rules in the
Hecke algebra that the right .¢;-module /¢ is free (hence flat) with basis (T}),cx,-

This remark has the following consequence (in the next lemma, if E is a subset of
J€, then #E denotes the left ideal generated by E):

Lemma 1.2. — If 3 and ¥’ are left ideals of 7 such that 3 C Y, then:
(a) %j - GBJCEX[ ij
(b) The natural map 7€ ® 5, I — 7T is an isomorphism of left 7-modules.
(c) The natural map € ® ., (3'/3) — AT | T is an isomorphism of left 7€-modules.

Let Z%(S) (respectively Z2,¢S)) denote the set of subsets I of S such that W;
is finite (respectively such that W; is finite and the Coxeter graph of (W}, I) is
connected). If I € Z%(S), we denote by w; the longest element of W; and we set

wr: W — W
w — wwuw.
It is an automorphism of W; which satisfies w,;(I)=I. If W is finite, then wy will
be denoted by w, according to the tradition. Also, wg will be denoted by w,.
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If I € 2(S), we denote by a; : W; — .«/ the Lusztig’s a-function defined by
al(z) = xI:IJ}QXM deg(hx,y,z)

for all z € W;. We also set a;(z) =a;(w;z)—a,(z). If W itself is finite, then ag and
a; will be simply denoted by a and a respectively.

1.C. Descent sets. — If w € W, we set
Lw)={seS|sw<w} and R(w)={seS|ws<w}.

Then £(w) (respectively #(w)) is called the left descent set (respectively right de-
scent set) of w: it is easy to see that they both belong to Z%(S). It is also well-
known [Lu2, Lemma 8.6] that the map £ : W — Z%(S) (respectively #Z : W — Z(S))
is constant on right (respectively left) cells.

1.D. Cells and parabolic subgroups. — We will now recall Geck’s Theorem
about the parabolic induction of cells [Gel]. First, it is clear that (C,,),ecw, is the
Kazhdan-Lusztig basis of .#;. We can then define a preorder <! and its associated
equivalence class ~] on W, in the same way as <, and ~; are defined for W. We
define similarly <}, ~f, <! and ~7 .. If w € W, then there exists a unique a € X;
and a unique x € W; such that w = ax: we then set

G! =T,C,.

It is easily seen that (G!),cw is an A-basis of .# so that we can write, for b € X;
and y e W,
Cb}’ = Z pzf,x,b,yTﬂCx’

aeXy
xeW;

where p; €A

Theorem 1.3 (Geck). — Let E be a subset of W; such that, if x € E and if y € W} is
such that y <] x, then y €E. Let 3=&,,cgA C,,. Then
AHTJ= @& AG .= @ AC,.
weX-E weX-E

In particular, if w, w’ are elements of W are such that w <; w’ (respectively w ~; w’),
then pr}(w) <] pr](w’) (respectively pr} (w)~1 pri(w’)).

Moreover, if a, b € X; and x, y € W,, then:

(a) pé,y,b,y =1.

(b) Ifax# by, then pé’x’b’y €A

(c) Ifax#byandp, ., #0,thena<b,ax<byand x<]y.
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Corollary 1.4 (Geck). — We have:

(a) <] and ~} are just the restriction of <, and ~; to W; (and so we will use only the
notation <; and ~;).
(b) If C is a left cell in Wy, then X; - C is a union of left cells of W.

2. Preliminaries

Hypothesis and notation. In this section, and only in this sec-
tion, we fix an A-module ./ and we assume that:

(I1) A admits an A-basis (m,).cx, where X is a poset. We set
Mg =®exAcgMy.
(I2) A admits a semilinear involution — : M — _# . We set
'//lskew: {m eM | m+m:0}-
(I3) If x € X, then m, = m, mod ( ® Amy)
y<x
(I4) If x € X, then the set {y € X | y < x} is finite.

Proposition 2.1. — The Z-linear map
'//t<0 - skew
m +— m-—-m

is an isomorphism.

Proof. — First, note that the corresponding result for the A-module A itself holds.
In other words,

(2.2) The map Aoy — Agew, @ — a—a is an isomorphism.

Indeed, if a € Ay, write a = Zyer r,v7, with r, € Z. Now, if we set a_ = Zy<0 vl e

Ao, then a = a_—a_. This shows the surjectivity, while the injectivity is trivial.
Now, let A: Mg — Myew, m— m—m. For Z C X, we set M* =&,co-Am, and
ML =@ ey Ay M. Assume that, for all x € 2" and all y € X such that y < x, then
y €Z. By (I3), #* is stabilized by the involution . Since X is the union of such
finite Z (by (I4)), it shows that we may, and we will, assume that X is finite. Let
us write X = {Xxy, xy,..., X,} in such a way that, if x; < x;, then i < j (this is always
possible). For simplifying notation, we set m,, = m;. Note that, by (I3),
(*) miemi+(0<63_<iAmj).

In particular, my = my.
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Now, let m € .#_, be such that m = m and assume that m # 0. Write m =
> _oaim;, with r <n, a;€ A, and a, #0. Then, by (12),

m=a,m, mod( ® Am)

0< j<i
Since m = m, this forces a, = a,, which is impossible (because a, € Ay and a, #0).
So A is injective.

Let us now show that A is surjective. So, let m € #.,, and assume that m #0
(for otherwise there is nothing to prove). Write m = z;o a;m;, withr<n,a;€A
and a, # 0. We shall prove by induction on r that there exists u € .#_, such that
m = u—u. If r =0, then the result follows from (2.2) and the fact that 7, = m,. So
assume that r > 0. Then

m+m=(a,+a,)m, mod.#",

where Z; = {xy, Xy,..., x;}. Since m+m =0, this forces a, € Ay, So, by (2.2), there
exists a € A, such that a—a =a,. Now, let m’=m—am,+am,. Then m’+m’ =0
and m’ € ® < j.,Am;. So, by the induction hypothesis, there exists u’ € .#_, such
that m’ = u'—u’. Now, set u=am, +u’. Then u € .4, and m = u—u = A(u), as
desired. O

Corollary 2.3. — Let m € /. Then there exists a unique M € ./ such that
M=M,
M=m mod .Z.,.

Proof. — Setting M = m + u, the problem is equivalent to find u € .#_, such that
m+u= m+pu. This is equivalent to find u € #_, such that u—u = m—m: since m—
M € Myew, this problem admits a unique solution, thanks to Proposition 2.1. [

The Corollary 2.3 can be applied to the A—module Aitself. However, in this case,
its proof becomes obvious: if a, =%, a,v", thena=3%, _,a,v"+> ,a v is
the unique element of A such that @ =a and a =a, mod A,.

Corollary 2.4. — Let & be a subset of X such that, if x <y and y € Z, then x € X
Let M € M be such that M =M and M € M + Mo. Then M € M7 .

Proof. — Let My € .#* be such that M = M, mod ./ _,. From the existence state-
ment of Corollary 2.3 applied to .## , there exists M’ € .#* such that M’ = M’ and
M’=M, mod .#2 . The fact that M = M’ € .#* now follows from the uniquenes
statement of Corollary 2.3. O
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Corollary 2.5. — Let x € X. Then there exists a unique element M, € ./ such that

M,=M,,
M,=m, mod .Z.,.

Moreover, M, = m, mod &, Aom, and (M,),cx is an A-basis of M .

Proof. — The existence and uniqueness of M, follow from Corollary 2.3. The
statement about the base change follows by applying this existence and unique-
ness to .4/ %, where X, ={y € X | y < x}.

Finally, the fact that (M, ),cx is an A-basis of .# follows from the fact that the
base change from (m,),cx to (M,),cx is unitriangular. O

3. Cellular pairs

We set u, = {1,—1}. The following definition extends slightly [BoGe, Defini-
tion 4.1]:

Definition 3.1. — Let 6 : W — W and u: W — w,, w — u,, be two maps. Then the
pair (0, u) is called left cellular if the following conditions are satisfied for every left cell
Cof W:
(IC1) 6(C)is also is a left cell.
(LC2) The A-linear map (6, u)c : AH[Cl— AHH[6(C)], ¢k — ty caL(w) is an isomorphism
of left °-modules.

It is called strongly left cellular if it is left cellular and if satisfies moreover the following
condition:

(IC3) If we W, then 6(w) ~p w.
If u is constant and o satisfies (LC1) and (LC2) (respectively (LC1), (LC2) and (LC3)), then
we say that 6 is a left cellular map (respectively a strongly left cellular map).

We define similarly the notions of right cellular and strongly right cellular pair or
map, as well as the notion of two-sided cellular pair or map.

The case where u is constant corresponds to [BoGe, Definition 4.1]. We will
see in the next section that there exist left cellular pairs (6, 1) such that u is not
constant.
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3.A. Strongness. — It is unclear if there exist left cellular pairs or maps which
are not strongly left cellular. At least, we are able to show that this probably
cannot happen in finite Coxeter groups:

Proposition 3.2. — Assume that W is finite and that Lusztig’s Conjectures P4 and
P9 hold for (W,S, ). Then any left (respectively right) cellular pair is strongly left
(respectively right) cellular.

Proof. — Assume that W is finite. Let (6, u) be a left cellular pair and let C be a
left cell of W. Let K denote the fraction field of A. Since the algebra K. ¢ = K®,. ¢
is semisimple, there exist two idempotents e and f of K. ¢ such that

KaSiC=K#ed K and KO =Kf e Knw<9©),
If w € C (respectively w € §(C)), we write C,, = ¢’ +d? (respectively C,, = c/ +d)
where ¢’ € K e and d° € K <1C (respectively ¢/ € K f and d/ € K<19()).
Then, by hypothesis, the K-linear map 6* : K.¢e — K f such that 0*(cs) =
,uwcg(w) for all w € C is an isomorphism of K.¢-modules.
Recall that any morphism of left K.7¢-modules K.#e — K. f is of the form

m— mh for some h € eK# f. So there exists h € e K f such that, for all w e C,
coh= ,uwcg(w). In other words,

th—HwC5(w) = d;h_»uwdg(w)

Now, let I denote the two-sided cell containing C. By the semisimplicity of K. ¢
and the fact that #°5[C] ~ #1[§(C)], this forces 6(C) to be contained in I'. By P4
and P9, we then have d¢, dg(w) € K»¢<tr'  and so

th — Uy Cg(w) S K%<LRF.

In particular, 6(w) <y w. Similarly, w <z 6(w) and so 6(w)~p w, as desired. O
Note also the following result:

Proposition 3.3. — Let (6, 1) be a left (respectively right) cellular pair and let w € W.
Then £(0(w))= <% (w) (respectively Z(0(w))= R(w)).

Proof. — Let C denote the left cell of w and let s € S. Then s € Z(w) if and only
if Cyel = (¥ + 798l So the result follows from the fact that the map (6, u)¢
is an isomorphism of left #-modules. O
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3.B. Induction of cellular pairs. — The next result extends slightly [BoGe, The-
orem 6.2]. We present here a somewhat different proof, based on the results of
Section 2.

Theorem 3.4. — Let I be a subset of S and let (6, u) be a left cellular pair for (W, I, ;).
Then (6%, ;) is a left cellular pair for (W, S, ). If moreover (8, u) is strongly left cellular,
then (6%, u;) is strongly left cellular.

Proof. — The proof is divided in several steps:

o First step: construction and properties of an isomorphism of left #-modules. Let C be
a left cell of W;. We denote by & (respectively &7) the set of elements w in W; such
that w <; C (respectively w <; C). By Lemma 1.2 and Theorem 1.3, the families
(Gl)wex,.e and (Cy,)yex,.s are A-basis of S AC Similarly, the families (G/),ex,.¢#
and (C,,)yex,.¢+ are A-basis of #.7,7°.

If we X;-C, we denote by g/ (respectively c! ) the image of G (respectively
Cy) in #,C | #.#,C. Again by Lemma 1.2,

A ® g HHC e HOATE | A AT

Therefore, (8! )yex,.c and (¢! ), ex,.c can be viewed as A-bases of # ® ,, 7" [C].
Since the pair (8, ) is left cellular, the A-linear map #*[C] — #/*[6(C)], cL —

.UngL(w) is an isomorphism of left #;-modules. Therefore, the A-linear map

0: %@WI%L[C] — %@,%%L[5(C)]
g{” M— ‘uL,wg(Ig(w)

is an isomorphism of left 7#-modules.

Now, the left #-modules #.#,>- and #.,° are stable under the invo-
lution —. So # ®,, #}[C] inherits an action of the involution ~. Similarly,
A ®y, #16(C)] inherits an action of the involution ~—. Moreover, these two A-
modules (endowed with ) satisfy the hypotheses (I1), (I2), (I3) and (I4) of Sec-
tion 2 (by Theorem 1.3).

Also, it follows from the definition that the isomorphism 6 commutes with this
involution. Therefore, (c! )= H(C{U ) for all w € X, - C. Moreover, it follows from
Theorem 1.3 that

Iy — 1 1
O(Cw) = ‘uL,wga(w) mod eaxeX,-éS(C) A<ng'

But the element Cf's(w
it satisfies

 Is stable under the involution " and, again by Theorem 1.3,

1 — 1 I
cﬁ(w) :ga(w) mod €BxeX,~6(C)A<ogx-
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Therefore, by Proposition 2.1,

(3.5) Q(C{U) :.UL,wc({;(w)-

e Second step: partition into left cells. Now, assume that w ~; w’. According to
Corollary 1.4(b), there exists a unique cell C in W; such that w, w’ € X;-C. By
the definition of <; and ~;, there exist four sequences xi,..., X, Yi,---, Yn, Wi, .-,
Wy, Wy,..., w; such that:

w,=w,w,,=w’,
wi=w',w, =w,
Vie{l,2,....m—1}, hy, 4w, 70,
Vije{l,2,...,n—-1}, hy, #0.

WS

Therefore, we have w’' = w,, <, <, w, < wy=w=w, <<, w, <, wy=w and
SO W = Wy ~ Wy ~p o~ Wy = W = w] ~p w, ~ -~ w, =w. Again by
Corollary 1.4(b), w;, w]’. € X;-C. So it follows from (3.5) that hy s5i(4,)5c00,,,) =
ML wbh L, wy,, Pox, w0, @nd hxﬁL(w})ﬁL(w}H) = Urwbrw,, hy].,w;,,w}ﬂ for all x € W. There-
fore,

V ie {1,2, e, M — 1}, hxiyaL(Wi)’aL(wiH) ;é 0,

v jE {1,2, o= 1}, hyjyéL(w]{)’ﬁL(wJ{Jrl) 7£ 0.

It then follows that
&M (w)=6"wn) < <8 (wy) < 65wy =64 (w)=6"(w))
<p < 8wy < e w)=8"(w),
and so 6%(w)~; 6%(w’), as expected. So we have proved that
(%) if w~p w', then 5" (w)~, 6" (w").

Now, let 6, : W; — W, be the map defined by 6,(x) = x if x ¢ 6(C) and 6,(6(x))=x
if x€ C. Let u; : W — u, be defined by u, , =1if x ¢ 6(C) and y, 5, =, if x € C.
Since left cellular maps can be defined “locally” (i.e. left cells by left cells), it is
easily checked that (04, u,) is left cellular. So, applying (x) to the pair (6;, u;) with
w and w’ replaced by 6%(w) and 6*(w’), we obtain

(3.6) w ~; w'if and only if §*(w)~, 6"(w’).

o Third step: left cellularity. Now, let C’ be a left cell in W. It follows from (3.6) that
6%(C") is also a left cell and it follows from (3.5) that the A-linear map #*[C’] —
A6(CN), ck—pu L,wa-LL(w) is an isomorphism of left #-modules. In other words,
(6%, uy) is left cellular.
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e Fourth step: strongness. Assume moreover that (9, u) is strongly left cellular. Let

w € W. Let us write w = ax with a € X; and x € W;. Then 6(x) ~; x by (LC3) and

so 64(w)=ad(x)~ ax = w by [Lu2, Proposition 9.11]. O
The next result extends slightly [Ge2, Lemma 3.8].

Corollary 3.7. — Let (6, ) be a left cellular pair for (W;, I, ;) and let a, b € X; and x,
y € W; be such that x ~; y. Then

I _ I
Pa,x,p,y = Mxlhy Py 5(x),,6()"

Proof. — This follows from (3.5). O

4. Action of the longest element

Hypothesis. We fix in this section a subset I € Z2(S) such that
Lusztig’s Conjectures P1, P4, P8 and P9 hold for the triple

(VVI’Ir <P1)

Example 4.1. — Recall from [Lu2, §15] that, if the weight function ¢; is constant,
then Lusztig’s Conjectures P1, P2, P3,..., P15 hold for (W}, 1,¢;). ®

4.A. The following result (which is crucial for our purpose) has been proved by
Mathas [Ma] in the equal parameter case and extended by Lusztig [Lu3, Theo-
rem 2.3] in the unequal parameter case:

Theorem 4.2 (Mathas, Lusztig). — Let I € 2(S) be such that Lusztig’s Conjectures
P1, P4, P8 and P9 hold for the triple (W, I, ¢;). Then there exists a (unique) sign map
n': W, — w, w—n' and two (unique) involutions p; and A, of the set W; such that,
forall we W,

<1
v T, C,=n" C, ) mod s "
1
and v"™C, T, =n' C ., mod ",
Note that A; = p;®, that p; = A; o w; and that

pr(w)~, w and Af(w) ~p w.
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If W itself is finite and if Lusztig’s Conjectures P1, P4, P8 and P9 hold for
(W, S, p), then Ag, ps and n® will simply be denoted by A, p and 1) respectively.

Remark 4.3. — We will explain here why we only need to assume that Lusztig’s
Conjectures P1, P4, P8 and P9 hold for the above Theorem to hold (in [Lu3, The-
orem 2.5], Lusztig assumed that P1, P2,..., P14 and P15 hold). This will be a con-
sequence of a simplification of the proof of [Lu3, Lemma 1.13], based on the ideas
of [Bol]. In particular, we avoid the use of the difficult Lusztig’s Conjecture P15
and the construction/properties of the asymptotic algebra.
So assume that Lusztig’s Conjectures P1, P4, P8 and P9 hold. We may, and we

will, assume that I =S (for simplifying notation). Let us write

T,,C, x;y Ay C,
with A, , € A. Note that

T,'Cy= > Ay Cr.

X<py

By [Bol, Proposition 1.4(a)],
deg(A, ,) < —a(x) with equality only if x ~; y.
By [Bol, Proposition 1.4(b)],
deg(ix,y) < a(y) with equality only if x ~; y.

Assume now that x ~; y. Then a(x)=a(y) by P4 and [Lu2, Corollary 11.7], so

deg(A, ,) <—a(y)<val(, ).
So

if x ~; y, then v“(y)lx,y €Z,

Thanks to P9, this is exactly the statement in [Lu3, Lemma 1.13(a)]. Note also
that [Lu3, Lemma 1.13(b)] is already proved in [Bo1l, Proposition 1.4(c)].

One can then check that, once [Lu3, Lemma 1.13] is proved, the argument de-
veloped in [Lu3, Proof of Theorem 2.3] to obtain Theorem 4.2 does not make use
any more of Lusztig’s Conjectures. B

Remark 4.4. — In the equal parameter case, Mathas proved moreover that the
sign map w — n! is constant on two-sided cells. However, this property does not
hold in general, as it can be seen from direct computations whenever W is of type
B; (and ¢ is given by ¢(#) =2 and ¢(s;) = ¢(s,) =1, where S ={¢, 51, 5,} and s; 5, has
order 3). m
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Example 4.5. — Assume here that W is finite. Since {1} and {w,} are two-sided
cells, we have A(1)= p(1) =1 and A(w,) = p(w,) = w,. Moreover, 1, = (—1)‘“) and
N, =11

4.B. Cellularity. — One of the key results towards a construction of an action of
the cactus group is the following:

Theorem 4.6. — Let I € 2(S) be such that Lusztig’s Conjectures P1, P4, P8 and P9
hold for the triple (W, 1, ;). Then the pair (A;,n") (respectively (p;,n')) is strongly left
(respectively right) cellular.

Proof. — For simplifying notation, we may, and we will, assume that W is finite
and I =S. It is sufficient to prove that A is strongly left cellular. First, (LC3) holds
by Theorem 4.2.

Let x and y be two elements of W such that x ~; y. Let I (respectively C)
denote the two-sided (respectively left) cell containing x and y. Then there ex-
ists x = Xy, X1)eoe) Xp =V = Yor Viye--,» Vo = X in W and elements h,,..., h,,
hi,..., h, of # such that C,, (respectively C, ) appears with a non-zero coeffi-
cient in the expression of h;C,,  (respectively h; C,,_,) in the Kazhdan-Lusztig ba-
sis for 1 <i < m (respectively 1< j < n). Therefore, y = x,, <, S 6, < x5 =x =
Vo <<y y, <, y/=yandso x;, y; € C. Hence, if we write

hC, = Zﬂi,uCu mod <1kt
uer

then 8; , #0 and
v*OnC T, = Z v*"B; ,C,T,, mod <"

uel’

Therefore, by Theorem 4.2,
N, Ni Caxy ) = Z NuBi,uCowy mod <1,

uerl
and so A(x;)<; A(x;_;). This shows that A(y)<;A(x) and we can prove similarly
that A(x)<; A(y). Therefore, A(C) is contained in a unique left cell C’. But, simi-
larly, A(C’) is contained in a unique left cell, and contains C. So A(C)= C’ is a left
cell. This shows (LC1).

Finally the map (A,n)c : #*[C] = #HA(C)], ¢k — nwcAL(w) is obtained through
the right multiplication by v*®T,, . Since this right multiplication commutes with
the left action of 2, this implies (LC2). O
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Corollary 4.7. — Let I € 2(S) be such that Lusztig’s Conjectures P1, P4, P8 and P9
hold for the triple (W;, I, ¢;). Then the pair (Af,n?1) (respectively (p®,n})) is strongly
left (respectively right) cellular.

Proof. — This follows from Theorems 3.4 and 4.6. O

It must be noticed that the maps A} and p® depend on the weight function ¢,
even if it is not clear from the notation. The canonicity of their construction shows
that, if o : W — W is an automorphism such that o(S)=S and g oo = ¢, then

R

on®9-

(4.8) ogod;=Ay00 and  gopi=p
For instance, if W is finite, then w,: W — W satisfies the above properties and so

L_ 4L R_ R
(4.9) wyo Ay = )Lwo(z) ° Wy and Wo° P =Py ° Po-

Corollary 4.10. — Let I € 2(S) be such that Lusztig’s Conjectures P1, P4, P8 and
P9 hold for the triple (W, 1, ¢;) and let w € W. Then

I — <pwrr(w)
MoV, Cp = Cyryy mod 26"

and nt v C, T, = Curq,y mod .56,

Proof. — It is sufficient to prove the second congruence. Let b € X; and y € W, be
such that w=Dby (so that y =prl(w)). By Theorem 1.3,
Cyy = Z p;,xyb,y T,C, mod 7",
(a,x)eX; xW;
such thata < b
and x ~; y
If x ~; y, then a;(x)=a,(y) and a;(w; x)=a;(w; y) by P4, so it follows from Theo-
rem 4.2 that
7’]; vC,, T, = Z n;nip;x,byy T,Cy,x) mod 7.
(a,x)eX;xW;

such thata < b
and x ~p y

But, by Corollary 3.7, pé’x’b’y = T’ﬁ,nipa,ll(x),b,)k[(y), SO
I _ <
T]Lywl)a['[‘(w)cw Tw[ = C)\f(w) mOd %ﬁiﬂl Ly Tw['

It then remains to notice that TL;II C,T,, = Cy,x for all x € W, so that S T, =
T, 7Y = 7,7 and the result follows. O

An important consequence of the previous characterization is the following;:
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Theorem 4.11. — Let I € 2(S) be such that Lusztig’s Conjectures P1, P4, P8 and P9
hold for the triple (Wy, 1, ;) and let (0, ) be a strongly left (respectively right) cellular
pair. Then Gop} = pjod (respectively 6oAy = Ajo6). Moreover, N} 5.1 = KuwlpR(w) Mk
(respectively ] ,, =1} 5., forall we W.

Proof. — Assume that (0, u) is strongly left cellular. Let w € W. By (LC3), we
have 6(w)~; w and so [Gel, Theorem 1]

(%) pr} (6(w)) ~g pry(w).
Now, let us write

nﬁ?,wva['R(W)Tun Cy = Z p.C, mod S,

u~ypw

with 8, € A. Since (6, u) is left cellular, we get
‘uwnf?,wva’vR(W)Tw,Cé(w)E Z ﬂu‘uucﬁ(u) mod %<L6(w)

u~ypw

But, by Corollary 4.10, we have
0l 0T, Cy = Gy mod 5 P10

and pf(w)~; w (because p¥ is strongly right cellular by Corollary 4.7). Therefore,
Borw) = Hwlprw)- Again by Corollary 4.10, we get

I ar(w) — 1 1 <por(pri(w))
Mrw? "™ T, Cotw) = MMk () Colewy Mod 00 A

(by using also (x)). Combining these results, we get

Cottoten ™ Mr,w M swtwkofw Copfn €, & ACz)
where
& ={6(u)| u~, wand u#pl(w),
={ueW|u<;o(w)}
and & ={ueW | prj(u) <z w(pr}(w))}

(we have used the fact that %" # = Bpet(u)<zv AC, for all v € Wy: this result is due
to Geck [Gel], see Theorem 1.3). So, in order to prove that pf(6(w)) = 6(pF(w))
and Ny 5, = Bwlp®w)Mg,,» We only need to show that 6(pf(w)) & & US, U 6.
First, by definition, 6(pf(w)) ¢ &;. Also, since p¥ is strongly right cellular, we
get that pf(w) ~;, w by (LC3) and so 6(pf(w)) ~; 6(w) because 6 is left cellular
(see (LC1)). So 6(pf(w)) & &,. Finally, 6(p f(w)) ~x pf(w) because 6 is strongly left
cellular (see (LC3)). So prf(6(pf(w )) r Pri(pf(w)) by [Gel]. Since pri(pf(w)) =
p1(pri(w)) ~ g Pri(w) ~ g w;(prf(w)) (see [Lu3, Lemma 1.2]) and so 6(p} (w)) & &3
by P4, P8 and P9. O
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5. Action of the cactus group

We recall here the definition of the cactus group Cacty, associated with W. The
group Cacty, is the group with the following presentation:

o Generators: (7)iex, (s);
e Relations: for all I, J € 22, (S), we have:
(C1) 73=1,
(C2) [rp7,]=1 if Wiy, =W, x W,
(C3) 1,7,=7,T0,n IC].
By construction, the map 7; — w; extends to a surjective morphism of groups

Cacty, - W which will not be used in this paper. The main result of this paper is
the following:

Theorem 5.1. — Let I, J € 2, ((S) be such that (H;) and (H;) hold. Then:
(a) [AF, pR]=1dy.
(b) (A7) =(pF) =Idy.
(©) If Wruy = Wy x W, then [A}, AL]=[pF, pF]=1dy.
(d) If I c ], then A7 2% :Afki/m and p7p} :pfpf)]m.

Proof. — (a) follows from Theorem 4.11, while (b) is obvious.

(c) Assume that W, = W, x W;. We only need to prove that [A}, A}]=1dy, the
proof of the other equality being similar. Let w € W and write w = xw’, with
x € Xy and w’ € Wy;. Since Wy, = W; x W, and so there exists w, € W; and
w, € W; such that w’ = w,w, = w,w,. Note also that xw, € X;, xA;(w,) € X;,
xw, € X; and xA;(w,) € X;. Therefore,

A%(Aﬁ(w)) = Af(x w Ay (w,)) = Af(xkl(wz)wl) = x A (wy)A ()
and, similarly,
ATAL (W) = x A (w)A (wy).
So [A}, AT]=1dy, as desired.
(d) Assume here that I C J. It is easily checked that we may assume that W is
finite and J =S. Let w € W. Then
AL (AN (w)) pi(wo(Af(w)) by Theorem 4.2.
= psAbfwdw) by 49),
= 2 (ps(w(w) by (@),
= Aio( y(As(w)) by Theorem 4.2.

This proves the first equality and the second follows from a similar argument. [
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Let Gy, denote the symmetric group on the set W and assume until the end of
this section that Lusztig’s Conjectures P1, P4, P8 and P9 hold for the triple (W}, I, ;)
for all I € Z(S). The statements (b), (c) and (d) of the previous Theorem 5.1 show
that there exists a unique morphism of groups

Cacty, — Gy

L
T — T
¥

such that
Ty o= Ak
for all I € 2,(S). Note that we have here emphasized the fact that the map de-
pends on ¢. The same statements also show that there exists a unique morphism
of groups
Cacty, — Gy

R
—
T T‘P

such that

R _ R
Tl,np_pl

for all I € 22, ((S). Moreover, Theorem 5.1(a) shows that both actions commute or,
in other words, that the map

Cacty, xCacty — Gy

(T1,72) A— TlL,ngw

is a morphism of groups. Let us summarize the properties of this morphism
which are proved in this paper:

(5.2)

Theorem 5.3. — Assume that Lusztig’s Conjectures P1, P4, P§ and P9 hold for the
triple (W;, 1, @) for all 1 € 2(S). Let T € Cacty,. Then there exist two sign maps 1, :
W — p, and ng* : W — p, such that the pairs (v5,n;*) and (v5,n") are respectively
strongly left cellular and strongly right cellular.

Moreover, if T’ € Cactyy, then [Té, T;R] =1Id.

Note that we do not claim that the sign maps in the above theorem are unique.
They are obtained by decomposing 7 as a product of the generators and then com-
pose the cellular pairs according to this decomposition: the resulting sign map
might depend on the chosen decomposition. It must be added that the maps 7~

¢
and 7:5 depend heavily on ¢ (see for instance the case where |S|=2 in Section 6).

Corollary 5.4. — If W is a finite Weyl group and ¢ is constant, then the above action
of Cacty, x Cactyy, coincides with the one constructed by Losev [Lo, Theorem 1.1].

Proof. — This follows from [Lo, Theorem 1.1 and Lemma 4.7]. O
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6. The example of dihedral groups

Hypothesis. In this section, and only in this section, we assume
that |S| = 2 and we write S = {s,t}. We denote by m the order of
st and we assume that 3< m < oco. We denoteby o, : W — W
the unique involutive automorphism of W which exchanges s and
ba

Recall [Ge3, Proposition 5.1] that Lusztig’s Conjectures P1, P2,..., P15 hold in
this case, so that the maps A and p are well-defined. We aim to compute explicitly
the maps A and p. As we will see, the maps A and p depend on the weight
function ¢. We will also compute the sign map n and get the following result:

Proposition 6.1. — If |S|=2 and W is finite, then the sign map n is constant on two-
sided cells.

We will need the following notation:
r=w\{l,wy}, TI,={wel|ws<s} and I,={wel|wt<t}.

Note that I'=T; UT,, where U means disjoint union.

Remark 6.2. — Let
9={weW |a(w) =—Val(p1*"w)}.
From P13, there exists a unique map

d:-W—9

such that w ~; d,, for all w € W. Its fibers are the left cells. Finally, it follows
from [Lu3, §2.6] that

(6.3) p(d)=wyd, 4 and Md)=d,,qwp.
foralldeZ.m

We define inductively two sequences (s;); > ¢ and (¢;); > ¢ as follows:

So = to == 1,
Siq=t;s and t,=s;t, ifi=>0.
Note that s, =s, t;, =t and s,, = t,, = w,. Then

(6.4) FSZ{SI,SZ,...,SM_I} and rt:{tl,tz,..., tm—l}'
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6.A. The equal parameter case. — We assume here, and only here, that p(s) =
¢(t)and we may also assume that .« =Z and ¢(s) = ¢(t) =1 (see for instance [Bo2,
Proposition 2.2]). Then [Lu2, §8.7] the two-sided cells of W are
{1}, T and {wy}
while the left cells are
{l}r rsr rt and {wo}
Note that w,I' =Tw, =T.

Proposition 6.5. — Assume that ¢ is constant. Then
Mw)=p(w)=w, if we{l, wy}
Mw)=0, (wlw, if w {1, wp}.
p(w)= w0, (w) if wé{1, w}

Moreover,
D" fw=1,
Nw=191 lf w = Wy,
-1 lf w ¢ {]-r wO}/
Remark 6.6. — More concretely, the (non-trivial parts of) the maps A and p are

given as follows. If 1 <i < m—1, then:

(@ p(si))= s and p(t;)=t,,_;.

(b) If m is even, then A =p.

(b’) If m is odd, then A(s;) = t,,_; and A(t;) = $,,_;-
In particular, if m is even, then A stabilizes all the left cells (but nevertheless
induces a non-trivial left cellular map) while, if m is odd, then A exchanges the
left cells T; and T, (and stabilizes all the others). m

Proof. — By Theorem 4.2, we only need to compute p. It follows from Exam-
ple 4.5 that A(1) = p(1) =1, that A(wp) = p(wy) = wy and that ), =(-1)" and n,,, = 1.
Let us also recall the following result from [Lu2, §7]:

C ifi=1,
(*) C,Co=1 N
! C,, +C,, if2<i<m-—L

We will use () to show by induction on i that p(s;) = s,,—;, that p(t;) = t,,_; and
that n, =7, =—1 (for 1<i<m—1). Let us first prove it for i = 1. Note that
2NT; ={s} and 2NT, = {t} (see [Lu2, §8.7]). So it follows from (6.3) that p(s) =
wod,, ;. But wys €T, so d, s =t =0, ,(s). Therefore, p(s;)=p(s)= w0 ,(5)=5,_1,
as desired. Applying the automorphism o, we get p(t;) = t,,_;. Note also that
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a(w) = a(wyw) for all w €T (because w,I' =T). Moreover, n; =1, =—1 by [Lu3,
Theorem 2.5].
Now, by using (%), we get C,, = C,; = C,C; and
1,,C,=T,CC, = —C, C, mod#~*"
= —C, , mod <",

m—2

So p(s;) = $,,—» and n, =n, =—1. Applying the automorphism o, ,, we get p(t,)=
fm—and n, =—1.

Now, assume that 2 <i < m—2 and that p(s;) = s,,_;, that p(¢t;) = ¢,,_; and that
ns, =1, =—1. Then, by using (x), we get

T.,Cs. =T,(C.Ci—C, ) = —C, Ci+C; mod 2 <tx"

i+1 = 0 m+1—i
= —C

. mod <,
m—1—i

So p($i41) = Sp1—; and 1, =1, =—1. Applying the automorphism o ,, we get
p(ti)= ty-; and 1, =—1. This completes the computation of p. O

Remark 6.7. — Note that the left cellular map A obtained here is exactly the left
cellular map w — w defined by Lusztig [Lul, §10]. If m = 3, this is the x-operation
defined by Kazhdan and Lusztig [KaLu]. See also [BoGe, Remark 4.3 and Exam-
ple 6.3]. m

6.B. The unequal parameter case. — Assume here, and only here, that ¢(s) <
@(t). Note that this forces m to be even (and m >4). We write a = ¢(s) and
b =p(t). We set

=T\ {s}, I =L \{wpys} and T~=I UT;.
Then [Lu2, §8.8] the two-sided cells of W are
{1}, {s}, T, {wys} and {w,}.
The left cells are
{13, {s}, I, I, {wes} and {wp}.

Note that

F:Z{Sz,Sp),...,Sm_l} and r::{tl, tz,...,tm_z}.
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Proposition 6.8. — Assume that ¢(s) < ¢(t). Let m’=m/2. Then

(A(w)zp(w)zw, if well,s, wys, wy},
A(82:) = Pp($2i) = S fl<i<m'—1,

{ AM$2i41) = P(S2101) = Spp1—2i f1<i<m'—1,
M) =pLyi) =L ifl<i<m’—1,
Mbi)=p(tyi)=ty1o; fl1<i<m'—1

Moreover,
1 if we{l, wy},
Nw=14 D™ if wels, wys},
-1 if wé{l,s, wys, wy}.

Proof. — First, note that A = p because wj is central in W. The facts that A(w) = w
if we{l,s, wys, wy}, thatn, =n, =1andthatn,=n,, = (—=1)™" are obvious. Also,
let 65,: W — W be the map defined by

5< (w)= w ifwe{l,s, wys, wy},
SET | ws i wéE{L,s, wys, wy)
Then 67, is strongly left cellular [BoGe, Example 6.5] so, by Theorem 4.11, it
commutes with p. In other words,

(%) YV weTs, p(ws)=p(w)s.

Recall from [Lu2, Proposition 7.6 and §8.8] that NI = {s;} and 2NI* ={r}. Note
also that a(w)=a(w,w) for all w €T< (because I'* = w,I'*). It follows from (6.3) that
p(t)=wys; = t,,_3, and it follows from [Lu3, Theorem 2.5] that ), =—1. Similarly,
p(s3)=wyt =s,_, and n, =—1. Using (x), we get that p(5,) = p(s35) =$,,_15 =1, »
and p(s,)=p(t,8) = t,,_35 = S;_», as desired. So we have proved that

P(2)=Sn2 P&B)=Sn1, plt)=t,3 and p(t)=1,
and that
Ns, =MNs =Ny, =Ny, =1
Now, let { = v*? + v~ Tt follows from [Lu2, Lemma 7.5 and Proposition 7.6]
that

c o —]Cu.t+iC, if i €{1,2},
e, e +C,, if3<i<m—1.

Using this multiplication rule and the same induction argument as in Proposi-
tion 6.5, we get the desired result. O
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Remark 6.9. — Assume here, and only here, that ¢(s)> ¢(t). Using the automor-
phism o, which exchanges s and ¢, we deduce from Proposition 6.8 that:

Mw)=pw)=w, if we{l,t,wyt, w,},
A(82i) = P(82i) = Sin—2i ifl<i<m'—1,
{ M) =p(S2i1) = Spo1p; f1<i<m'—1,
Aty) = p(t2i) = b if1<i<m'—1,
{A(fziﬂ):l)(fziﬂ): b2 f1<i<m'—1.
1 if we{l, w,},
Moreover, Nw=1 (1" if welt, wyt},
-1 if wé{l,t,wyt, wy}.

This completes the proof of Proposition 6.1. B
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