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CELLS AND CACTI

by

CÉDRIC BONNAFÉ

Abstract. — Let (W ,S ) be a Coxeter system, let ϕ be a weight function on S and let
CactW denote the associated cactus group. Following an idea of I. Losev, we construct
an action of CactW ×CactW on W which has nice properties with respect to the par-
tition of W into left, right or two-sided cells (under some hypothesis, which hold
for instance if ϕ is constant or if W is finite of rank ¶ 4). It must be noticed that the
action depends heavily on ϕ.

Let (W ,S ) be a Coxeter system with S finite and let ϕ be a positive weight func-

tion on S as defined by Lusztig [Lu1]. We denote by CactW the Cactus group asso-
ciated with W , as defined for instance in [Lo]. In [Lo], I. Losev has constructed,
whenever W is a finite Weyl group and ϕ is constant, an action of CactW ×CactW

on W which satisfies some good properties with respect to the partition of W into
cells. His construction is realized as the combinatorial shadow of wall-crossing
functors on the category O .

In [Lo, §5.1], I. Losev suggested that the construction of this action could be
extended to other types of Coxeter groups and general weight function ϕ, using
some recent results of Lusztig [Lu2]. This is the aim of this paper to show that
Losev’s idea works, by using extensively the results of [BoGe] and assuming
that some of Lusztig’s Conjectures in [Lu1, §14.2] hold, as in [Lu2], as well as
an hypothesis on a sign function (this will be made more precise in §3.B). Note
that, if ϕ is constant, then these Conjectures hold (as well as the hypothesis on
the sign function), so this provides at least an action in the equal parameter case:
if moreover W is a Weyl group, this action coincides with the one constructed by
Losev [Lo].

Let us state our main result (in this Theorem, if I ⊂ S , we denote by WI the
subgroup generated by I and by ϕI the restriction of ϕ to I ).

The first author is partly supported by the ANR (Project No ANR-12-JS01-0003-01 ACORT).



2 C. BONNAFÉ

Theorem.— Assume that the hypotheses of §3.B hold. There exists an action of

CactW ×CactW on the set W such that, if we denote by τL
ϕ

(respectively τR
ϕ

) the permu-

tation of W obtained through the action of (τ, 1) ∈ CactW ×CactW (respectively (1,τ) ∈

CactW ×CactW ), then:

(a) If C is a left cell, then τL
ϕ
(C ) is a left cell and τL

ϕ
induces an isomorphism of left

H -modulesH L [C ]
∼
−→H L [τL

ϕ
(C )].

(a′) If C is a right cell, then τR
ϕ
(C ) is a right cell and τR

ϕ
induces an isomorphism of right

H -modulesH R [C ]
∼
−→H L [τR

ϕ
(C )].

(b) If w ∈W , then τL
ϕ
(w )∼R w and τR

ϕ
(w )∼L w .

In this Theorem, if C is a left (respectively right) cell, thenH L [C ] (respectively
H R [C ]) denotes the associated left (respectively right)H -module (see §1.A).

Acknowledgements.— I wish to thank warmly I. Losev for sending me his first
version of [Lo], and for the e-mails we have exchanged afterwards.

1. Notation

Set-up. We fix a Coxeter system (W ,S ), whose length function is
denoted by ℓ : W →N. We also fix a totally ordered abelianA and
we denote by A the group algebra Z[A ]. We use an exponential
notation for A:

A =⊕a∈AZv a where v a v a ′ = v a+a ′ for all a , a ′ ∈A .

If a0 ∈ A , we write A¶a0
= {a ∈ A | a ¶ a0} and A¶a0

=

⊕a∈A¶a0
Zv a ; we define similary A<a0

, A¾a0
, A>a0

,. . . We denote by

: A → A the involutive automorphism such that v a = v −a for
all a ∈ A . Since A is totally ordered, A inherits two maps
deg : A→A ∪{−∞} and val : A→A ∪{+∞} respectively called
degree and valuation, and which are defined as usual.

We also fix a weight function ϕ : S →A>0 (that is, ϕ(s ) =
ϕ(t ) or all s , t ∈ S which are conjugate in W ) and, if I ⊂ S , we
denote by ϕI : I →A>0 the restriction of ϕ.

Commentary.— In [Lu1, §14.2], Lusztig states several Conjectures relating the so-
called Lusztig’s a-function and the partition of W into cells. Throughout this paper,
if 1 ¶ i ¶ 15, the expression Lusztig’s Conjecture Pi will refer to [Lu1, §14.2, Conjec-
ture Pi].
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Most of the results of this paper only hold if Lusztig’s Conjectures P1, P4, P8
and P9 hold for all finite standard parabolic subgroups of W . In particular, they
hold if ϕ is constant [Lu1, §15]. �

1.A. Cells. — LetH =H (W ,S ,ϕ) denote the Iwahori-Hecke algebra associated
with the triple (W ,S ,ϕ). This A-algebra is free as an A-module, with a standard
basis denoted by (Tw )w∈W . The multiplication is completely determined by the
following two rules:

�

Tw Tw ′ = Tw w ′ if ℓ(w w ′) = ℓ(w )+ ℓ(w ′),
(Ts − vϕ(s ))(Ts + v −ϕ(s )) = 0 if s ∈ S .

The involution on A can be extended to an A-semilinear involutive automor-
phism :H →H by setting T w = T −1

w −1. Let

H<0 = ⊕
w∈W

A<0Tw .

If w ∈W , there exists [Lu1] a unique Cw ∈H such that
�

C w =Cw ,

Cw ≡ Tw modH<0.

It is well-known [Lu1] that (Cw )w∈W is an A-basis ofH (called the Kazhdan-Lusztig

basis) and we will denote by hx ,y ,z the structure constants, defined by

Cx Cy =
∑

z∈W

hx ,y ,z Cz .

We also set
Cy =
∑

x∈W

p ∗
x ,y

Tx ,

and recall that p ∗
y ,y
= 1 and p ∗

x ,y
∈ A<0 if x 6= y .

We will denote by ¶L , ¶R , ¶LR , <L , <R , <LR , ∼L , ∼R and ∼LR the relations defined
in [Lu1] and associated with the triple (W ,S ,ϕ). Also, we will call left, right and
two-sided cells the equivalence classes for the relations ∼L , ∼R and ∼LR respec-
tively. If C is a left cell, we set

H ¶L C = ⊕
w ¶L C

A Cw , H <L C = ⊕
w<L C

A Cw and H L [C ] =H ¶L C /H <L C .

These are left H -modules. If w ∈ C , we denote by c L
w

the image of Cw in the
quotientH L [C ] andH ¶L C andH <L C might be also denoted byH ¶L w andH <L w

respectively: it is clear that (c L
w
)w∈C is an A-basis ofH L [C ]. If C is a right (respec-

tively two-sided) cell, we define similarlyH ¶R C ,H <R C andH R [C ] (respectively
H ¶LR C ,H <LR C andH LR [C ]), as well as c R

w
(respectively c LR

w
).
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1.B. Parabolic subgroups. — We denote by P (S ) the set of subsets of S . If I ⊂ S ,
we denote by WI the standard parabolic subgroup generated by I and by X I the
set of elements x ∈W which have minimal length in x WI . We also define prL

I
:

W →WI and prR
I

: W →WI by the following formulas:

∀ x ∈ X I , ∀ w ∈WI , prL
I
(x w ) =w and prR

I
(w x−1) =w .

If δ : WI →WI is any map, we denote by δL : W →W and δR : W →W the maps
defined by

δL (x w ) = xδ(w ) and δR (w x−1) =δ(w )x−1

for all x ∈ X I and w ∈WI (see [BoGe, §6]). Note that

(1.1) prL
I
◦δL = δ ◦prL

I
and prR

I
◦δR =δ ◦prR

I
.

We also denote by δop : WI →WI the map defined by

δop(w ) =δ(w −1)−1

for all w ∈W . Note that δR = ((δop)L )op. If σ : W →W is any automorphism such
that σ(S ) = S , then

(1.2) σ ◦prL
I
= prL

σ(I )
◦σ and σ ◦prR

I
= prR

σ(I )
◦σ.

The Hecke algebra H (WI , I ,ϕI ) will be denoted by HI and will be viewed as
a subalgebra of H in the natural way. Since H is free as a left or as a right
HI -module, we will identify, for H a left (respectively right) ideal of HI , the left
(respectively right) idealH H (respectively HH ) withH ⊗HI

H (respectively H⊗HI

H ).
Let Pf(S ) (respectively Pir,f(S )) denote the set of subsets I of S such that WI

is finite (respectively such that WI is finite and the Coxeter graph of (WI , I ) is
connected). If I ∈Pf(S ), we denote by wI the longest element of WI and we set

ωI : WI −→ WI

w 7−→ wI w wI .

It is an automorphism of WI and it satisfies ωI (I ) = I . If W is finite, then wS will
be denoted by w0, according to the tradition. Also, ωS will be denoted by ω0.

If I ∈Pf(S ), we denote by aI : W →A the Lusztig’s a-function defined by

aI (z ) = max
x ,y∈WI

deg(hx ,y ,z )

for all z ∈WI . If W itself is finite, then aS will be simply denoted by a.



CELLS AND CACTI 5

1.C. Cactus group. — We define the cactus group associated with W , and we
denote by CactW , the group with the following presentation:

• Generators: (τI )I ∈Pir,f(S )
;

• Relations: for all I , J ∈Pir,f(S ), we have:






(C1) τ2
I
= 1,

(C2) [τI ,τ J ] = 1 if I ∪ J is disconnected,
(C3) τIτ J =τ Jτω J (I )

if I ⊂ J .

By construction, the map τI 7→wI extends to a surjective morphism

CactW −→W

which will not be used in this paper.

2. Action of the longest element

In [Lu2, Theorem 2.3], Lusztig proves the following result (which generalizes
to the unequal parameter case a result of Mathas [Ma]):

Theorem 2.1 (Mathas, Lusztig). — Assume that W is finite and that Lusztig’s Con-

jectures P1, P4, P8 and P9 hold for (W ,S ,ϕ). Then there exists a unique involution ρ

of the set W such that, for all w ∈W ,

v a(w0 w )−a(w )Tw0
Cw ≡η

R
w

Cρ(w ) modH <LR w

for some ηR
w
∈ {1,−1}. Similarly, there exists a unique involution λ of the set W such

that, for all w ∈W ,

v a(w0 w )−a(w )Cw Tw0
≡ηL

w
Cλ(w ) modH <LR w .

Note that λ=ρop and ρ =λ ◦ω0, and that ηL
w
=ηR

w −1.

In the equal parameter case, Mathas proved moreover that the map w 7→ ηR
w

is
constant on two-sided cells.

Remark 2.2. — We will explain here why we only need to assume that Lusztig’s
Conjectures P1, P4, P8 and P9 hold for the above Theorem to hold (in [Lu2, The-
orem 2.5], Lusztig assumed that P1, P2,. . . , P14 and P15 hold). This will be a con-
sequence of a simplification of the proof of [Lu2, Lemma 1.13], based on the ideas
of [Bo]. In particular, we avoid the use of the difficult Lusztig’s Conjecture P15
and the construction/properties of the asymptotic algebra.
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So assume that Lusztig’s Conjectures P1, P4, P8 and P9 hold. Let us write

Tw0
Cy =
∑

x ¶L y

λx ,y Cx ,

with λx ,y ∈ A. Note that

T −1
w0

Cy =
∑

x ¶L y

λx ,y Cx .

By [Bo, Proposition 1.4(a)],

deg(λx ,y ) ¶ a(x )−a(w0 x ) with equality only if x ∼L y .

By [Bo, Proposition 1.4(b)],

deg(λx ,y ) ¶ a(w0 y )−a(y )with equality only if x ∼L y .

Assume now that x ∼L y . Then a(x ) = a(y ) and a(w0 x ) = a(w0 y ) by P4 and [Lu1,
Corollary 11.7], so

deg(λx ,y ) ¶ a(y )−a(w0 y ) ¶ val(λx ,y ).

So

if x ∼L y , then v a(w0 y )−a(y )λx ,y ∈Z,

Thanks to P9, this is exactly the statement in [Lu2, Lemma 1.13(a)]. Note also
that [Lu2, Lemma 1.13(b)] is already proved in [Bo, Proposition 1.4(c)].

One can then check that, once [Lu2, Lemma 1.13] is proved, the argument de-
veloped in [Lu2, Proof of Theorem 2.3] to obtain Theorem 2.1 does not make use
any more of Lusztig’s Conjectures. �

Notation.— If h , h ′ ∈H and H is an A-submodule ofH , we will write

h ≅ h ′ mod H

if there exists a ∈ A× such that

h ≡ a h ′ mod H.

For instance, Theorem 2.1 can be rewritten

Tw0
Cw ≅ Cρ(w ) modH <LR w

and this property determines the map ρ. �
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3. Action of the cactus group

3.A. Cellular maps. — We recall [BoGe, Definition 4.1]:

Definition 3.1. — A map δ : W →W is called left cellular if the following conditions

are satisfied for every left cell C of W :

(LC1) δ(C ) is also is a left cell.

(LC2) The A-linear map H L [C ] → H L [δ(C )], c L
w
7→ c L

δ(w )
is an isomorphism of left

H -modules.

It is called strongly left cellular if it is left cellular and if moreover

(LC3) δ(w )∼R w for all w ∈W .

We define similarly the notions of right cellular and strongly right cellular maps.

Of course, δ : W →W is left cellular (respectively strongly left cellular) if and
only if δop is right cellular (respectively strongly right cellular).

3.B. Longest element of finite parabolic subgroups. — We will denote by (H)
the following property:

(H) The sign map w 7→ηR
w

defined in Theorem 2.1 is constant on right cells.

We will now work under the following hypothesis:

Hypothesis. From now on, and until the end of this paper, we as-
sume that Lusztig’s Conjectures P1, P4, P8 and P9 and Hypothesis
(H) hold for all triples (WI , I ,ϕI ), where I ∈Pf(S ).

Remark.— If ϕ is constant, then Lusztig’s Conjectures P1, P2,. . . , P15 hold [Lu1,
§15], as well as Hypothesis (H): in fact, the map w 7→ ηR

w
is constant on two-sided

cells in this case [Ma]. �

Let I ∈Pir,f(S ). We denote by λI (respectively ρI ) the map WI →WI denoted by
λ (respectively ρ) in Theorem 2.1 in the case where I = S .

Proposition 3.2. — The map λI : WI →WI (respectively ρI : WI →WI ) is strongly left

(respectively right) cellular.
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Proof. — We may, and we will, assume that W is finite and I = S , and we set
ρ = ρI and λ = λI . It is sufficient to prove that λ is strongly left cellular. By
Theorem 2.1,

ηL
w

v a(w0 w )−a(w )Cw Tw0
≡Cλ(w ) modH <LR w ,

so λ(w )¶R w . Similarly, w = λ(λ(w ))¶R λ(w ), so (LC3) holds.

Let x and y be two elements of W such that x ∼L y . Let Γ (respectively C )
denote the two-sided (respectively left) cell containing x and y . For simplifying
the notation, we set αΓ = a(Γ )−a(w0Γ ). Then there exists x = x0, x1,. . . , xm = y = y0,
y1,. . . , yn = x in W and elements h1,. . . , hm , h ′

1
,. . . , h ′

n
of H such that Cxi

(respec-
tively Cyj

) appears with a non-zero coefficient in the expression of hi Cxi−1
(respec-

tively h ′
j
Cyj−1

) in the Kazhdan-Lusztig basis for 1 ¶ i ¶m (respectively 1 ¶ j ¶ n).
By Luszitg’s Conjectures P4 and P9, xi , y j ∈C . So, if we write

hi Cxi−1
≡
∑

u∈Γ

αi ,u Cu modH <LR Γ ,

then αi ,xi
6= 0 and

hi Cxi−1
Tw0
≡
∑

u∈Γ

αi ,u Cu Tw0
modH <LR Γ ,

Therefore, by Theorem 2.1 and Hypothesis (H),

hi v αΓCλ(xi−1)
≡
∑

u∈Γ

αi ,u v αΓCλ(u ) modH <LR Γ ,

and so λ(xi )¶L λ(xi−1). This shows that λ(y )¶L λ(x ) and we can prove similarly
that λ(x )¶L λ(y ). Therefore, λ(C ) is contained in a unique left cell C ′. But, simi-
larly, λ(C ′) is contained in a unique left cell, and contains C . So λ(C ) = C ′ is a left
cell. This shows (LC1).

Finally the map λ is obtained through the right multiplication by ηv αΓTw0
. Since

this right multiplication commutes with the left action of H , this implies (LC2).

Corollary 3.3. — The map λL
I

: W → W (respectively ρR
I

: W → W ) is strongly left

(respectively right) cellular.

Proof. — This follows from Proposition 3.2 and [BoGe, Theorem 6.2].

It must be noticed that the maps λL
I

and ρR
I

depend on the weight function ϕ,
even if it is not clear from the notation. The canonicity of their construction shows
that, if σ : W →W is an automorphism such that σ(S ) = S and ϕ ◦σ=ϕ, then

(3.4) σ ◦λL
I
=λL

σ(I )
◦σ and σ ◦ρR

I
=ρR

σ(I )
◦σ.
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For instance, if W is finite, then ω0 : W →W satisfies the above properties and so

(3.5) ω0 ◦λ
L
I
=λL

ω0(I )
◦ω0 and ω0 ◦ρ

R
I
=ρR

ω0(I )
◦ω0.

Corollary 3.6. — Let w ∈W . Then

v aI (wI prR
I (w ))−aI (prR

I (w ))TwI
Cw ≡η

R
I ,w

CρR
I (w )

modH
<R prR

I (w )

I H

where ηR
I ,w

is the sign associated with the two-sided cell of prR
I
(w ) in WI through the

Theorem 2.1 for WI . Similarly,

v aI (wI prR
I (w ))−aI (prR

I (w ))Cw TwI
≡ηL

I ,w
CλL

I (w )
modHH

<L prL
I (w )

I ,

where ηW
I ,w
=ηR

I ,w −1.

Proof. — It is sufficient to prove the first congruence. Write w =w ′x , with w ′ ∈WI

and x ∈ X −1
I

. By [Ge1], there exists a family (p I
w ′,x ,u ,a

)w ′,x∈WI ,u ,a∈X −1
I

such that

Cw =Cw ′Tx +
∑

(u ,a )∈WI×X −1
I

such that a < x
and u ∼R w ′

p I
w ′,x ,u ,a

Cu Ta .

Therefore,

Cw ≡ Cw ′Tx +
∑

(u ,a )∈WI×X −1
I

such that a < x
and u ∼R w ′

p I
w ′,x ,u ,a

Cu Ta modH
<R w ′

I H .

If u ∼R w ′, then aI (u ) = aI (w
′) and aI (wI u ) = aI (wI w ′) by P4, so it follows from

Theorem 2.1 and Hypothesis (H) for WI that

ηR
I ,w

v aI (wI prR
I (w ))−aI (prR

I (w ))TwI
Cw ≡CρI (w ′)

Ta +
∑

(u ,a )∈WI×X −1
I

such that a < x
and u ∼R w ′

p I
w ′,x ,u ,a

CρI (u )
Ta modH

<R w ′

I H .

But, by [Ge2, Lemma 3.8], p I
w ′,x ,u ,a

= p I
ρI (w ′),x ,ρI (u ),a

, so

ηR
I ,w

v aI (wI prR
I (w ))−aI (prR

I (w ))TwI
Cw ≡CρI (w ′)x

modH
<R w ′

I H ,

as desired.
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3.C. Cactus group. — The main result of this section is the following:

Theorem 3.7. — Let I , J ∈Pir,f(S ). Then:

(a) [λL
I

,ρR
J
] = IdW .

(b) (λL
I
)2 = (ρR

I
)2 = IdW .

(c) If I ∪ J is disconnected, then [λL
I

,λL
J
] = [ρR

I
,ρR

J
] = IdW .

(d) If I ⊂ J , then λL
I
λL

J
=λL

J
λL
ω J (I )

and ρR
I
ρR

J
=ρR

J
ρR
ω J (I )

.

Proof. — (a) It follows from Corollary 3.6 that

Tw J
Cw TwI

≅ ηR
J ,w

CρR
J (w )

TwI
modH

<L prR
J (w )

J H

and so

Tw J
Cw TwI

≅ηL

I ,ρR
J (w )
ηR

J ,w
CλL

I (ρ
R
J (w ))

mod
�

H
<R prR

J (w )

J H +HH
<L prL

I (ρ
R
J (w ))

I

�

.

It then follows from Corollary 3.3 that ρR
J
(w ) ∼L w , and so prL

I
(ρR

J
(w )) ∼L prL

I
(w )

by [Ge1]. Therefore, ηL

I ,ρR
J (w )
= ηL

I ,w
and

Tw J
Cw TwI

≅ηL
I ,w
ηR

J ,w
CλL

I (ρ
R
J (w ))

mod
�

H
<R prR

J (w )

J H +HH
<L prL

I (w )

I

�

.

Symmetrically,

Tw J
Cw TwI

≅ηL
I ,w
ηR

J ,w
CρR

J (λ
L
I (w ))

mod
�

H
<R prR

J (w )

J H +HH
<L prL

I (w )

I

�

.

Let E be the set

E = {u ∈W | prL
I
(u )<L prL

I
(w )}∪ {u ∈W | prR

J
(u )<R prR

J
(w )}.

By [Ge1], the previous congruences imply

CλL
I (ρ

R
J (w ))
≅ CρR

J (λ
L
I (w ))

mod ⊕
u∈E

A Cu .

So it is sufficient to prove that λL
I
(ρR

J
(w )) 6∈ E .

• Let us first assume that prL
I
(λL

I
(ρR

J
(w ))) <L prL

I
(w ). Since, by (1.1), prL

I
◦λL

I
=

λI ◦prL
I
, we have λI (prL

I
(ρR

J
(w )) <L prL

I
(w ). But again, ρR

J
(w ) ∼L w by Corol-

lary 3.3 and, by [Ge1], prL
I
(ρR

J
(w )) ∼L prL

I
(w ). This shows that λI (prL

I
(w )) <L

prL
I
(w ), which contradicts (thanks to P9) the fact that λI (u ) ∼LR u for all

u ∈WI .
• Let us now assume that prR

J
(λL

I
(ρR

J
(w ))) <R prR

J
(w ). Still by Corollary 3.3,

we have λL
I
(ρR

J
(w )) ∼R ρ

R
J

and so, by [Ge1], prR
J
(ρR

J
(w )) <R prR

J
(w ). Using

now (1.1), we get prR
J
(ρR

J
(w )) = ρJ (prR

J
(w )), which contradicts (thanks to P9)

the fact that ρJ (u )∼LR u for all u ∈WJ .
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The proof of (a) is now complete.

(b) is obvious.

(c) Assume that I ∪ J is disconnected. We only need to prove that [λL
I

,λL
J
] = IdW ,

the proof of the other equality is similar. Let w ∈ W and write w = x w ′, with
x ∈ X I ∪J and w ′ ∈WI ∪J . Since I ∪ J is disconnected, we have WI ∪J =WI ×WJ and
so there exists w1 ∈WI and w2 ∈WJ such that w ′ = w1w2 = w2w1. Note also that
x w1 ∈ X J , xλI (w1) ∈ X J , x w2 ∈ X I and xλJ (w2) ∈ X I . Therefore,

λL
I
(λL

J
(w )) =λL

I
(x w1λJ (w2)) =λ

L
I
(xλJ (w2)w1) = xλJ (w2)λI (w1)

and, similarly,

λL
J
(λL

I
(w )) = xλI (w1)λJ (w2).

So [λL
I

,λL
J
] = IdW , as desired.

(d) Assume here that I ⊂ J . It is easily checked that we may assume that W is
finite and J = S . let w ∈W . Then

λL
S
(λL

I
(w )) = ρL

S
(ω0(λ

L
I
(w ))) by Theorem 2.1.

= ρSλ
L
ω0(I )
(ω0(w )) by (3.5),

= λL
ω0(I )
(ρS (ω0(w )) by (a),

= λL
ω0(I )
(λS (w )) by Theorem 2.1.

This proves the first equality and the second follows from a similar argument.

Let SW denote the symmetric group on the set W . The statements (b), (c) and
(d) of the previous Theorem 3.7 show that there exists a unique morphism of
groups

CactW −→ SW

τ 7−→ τL
ϕ

such that

τL
I ,ϕ
= λL

I

for all I ∈ Pir,f(S ). Note that we have here emphasized the fact that the map de-
pends on ϕ. The same statements also show that there exists a unique morphism
of groups

CactW −→ SW

τ 7−→ τR
ϕ

such that

τR
I ,ϕ
=ρR

I
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for all I ∈Pir,f(S ). Moreover, Theorem 3.7(a) shows that both actions commute or,
in other words, that the map

(3.8)
CactW ×CactW −→ SW

(τ1,τ2) 7−→ τL
1,ϕ
τR

2,ϕ

is a morphism of groups. Let us summarize the properties of this morphism
which are proved in this paper:

Theorem 3.9. — Assume that the hypotheses of §3.B hold. Let τ ∈CactW . Then:

(a) If C is a left cell, then τL
ϕ
(C ) is a left cell and the A-linear mapH L [C ]→H L [τL

ϕ
(C )],

c L
w
7→ c L

τL
ϕ (w )

is an isomorphism of leftH -modules.

(a′) If C is a right cell, then τR
ϕ
(C ) is a right cell and the A-linear map H R [C ] →

H R [τR
ϕ
(C )], c R

w
7→ c R

τR
ϕ (w )

is an isomorphism of rightH -modules.

(b) If w ∈W , then τL
ϕ
(w )∼R w and τR

ϕ
(w )∼L w .

(c) If τ′ ∈CactW , then [τL
ϕ

,τ′R
ϕ
] = IdW .
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