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Abstrat. We validate the usage of augmented 2D shape-size pattern

spetra, alulated on arbitrary onneted regions. The evaluation is per-

formed on MSER regions and ompetitive performane with SIFT de-

sriptors ahieved in a simple retrieval system, by ombining the loal

pattern spetra with normalized entral moments. An additional advan-

tage of the proposed desriptors is their size: being less than half the size

of SIFT, they an handle larger databases in a time-e�ient manner. We

fous in this paper on presenting the hallenges faed when transitioning

from global pattern spetra to the loal ones. An exhaustive study on

the parameters and the properties of the newly onstruted desriptor is

the main ontribution o�ered. We also onsider possible improvements to

the quality and omputation e�ieny of the proposed loal desriptors.

Keywords: shape-size pattern spetra, granulometries, max-tree, re-

gion desriptors, CBIR

1 Introdution

Pattern spetra are histogram-like strutures originating from mathematial

morphology, ommonly used for image analysis and lassi�ation [12℄, and on-

tain the information on the distribution of sizes and shapes of image omponents.

They an be e�iently omputed using a tehnique known as granulometry [5℄

on a max-tree and min-tree hierarhy [9, 19℄.

We study here the appliation of 2D pattern spetra to Content Based Im-

age Retrieval (CBIR), to retrieve database images desribing the same objet

or sene as the query. Previous suess in using the pattern spetra as image

desriptors omputed at the global [23, 24℄ or pixel sale (known as DMP [3℄ or

DAP [6,18℄) onvined us to investigate their behavior as loal desriptors.

Standard CBIR systems based on loal desriptors onsist of region detetion,

alulation of desriptors and storage in an index. Di�erent indexing shemes are

used to perform large sale database searh [10, 22℄, but all need powerful loal

desriptors to ahieve good performane [21℄. To onstrut suh a desriptor,
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we want to extend [24℄ and ompute 2D size-shape pattern spetra loally while

keeping the good harateristis of the global version (sale, translation and ro-

tation invariane, and omputation e�ieny). However, to evaluate the quality

and properties of our proposed loal pattern spetra (LPS) desriptors, we need

to reexamine the parameters used with global pattern spetra as well as evaluate

the e�et of the new parameters introdued by the loal desriptor sheme.

We evaluate our desriptors on the MSER regions [13℄ as they an also be

omputed on a max-tree [17℄, using the well-established SIFT desriptors [11℄

to obtain a baseline CBIR performane on a database. Future work will inlude

omparisons with SIFT extensions whih improve performane [1, 2℄. A om-

petitive preision is ahieved with a rotation invariant version of the desriptor

ombined with normalized entral moments, half the size of SIFT (deeper inter-

pretation of the results and best ahieved performane an be found in [4℄).

As the goal of this paper is to give an overview of hoies and hallenges

faed when reworking a global pattern spetrum into a loal one, we adopt a

slightly atypial presentation struture: The bakground notions are presented

in Se. 2, with the fous on how the max-tree is used in all parts of the CBIR

system. The experimental framework used to tune and evaluate the desriptors

is explained in Se. 3. To examine the properties of the proposed LPS desriptor

through the in�uene of parameters used, the main ontribution an be found in

Se. 4, where the desriptor performane is also presented. Remarks on possible

improvements to the e�ieny of LPS omputation are given in Se. 5. Finally,

the onlusions are drawn and diretions for future work o�ered in Se. 6.

2 Bakground

2.1 Max-tree

The onept of min and max-trees [9, 19℄ is here entral for keypoint detetion

as well as the alulation of feature desriptors. We reall their de�nition using

the upper and lower level sets of an image, e.g. sets of image pixels p with gray

level values f(p) respetively higher and lower than a threshold k.

Given a level k of an image I, eah level set is de�ned as Lk = {p ∈ I|f(p) ≥
k} for the max-tree, or Lk = {p ∈ I|f(p) ≤ k} for the min-tree. Their onneted

omponents (also alled the peak omponents) Lk,i
and Lk,i (i from some index

set) are nested and form a hierarhy. The min-tree is usually built as a max-tree

of the inverted image −I.

2.2 MSER detetion

Peak omponents of the upper and lower level sets {Lk,i} and {Lk,i} oinide

with the maximal and minimal extremal regions in the ontext of Maximally

Stable Extremal Regions (MSER) detetor introdued by Matas et al. [13℄. The

deteted regions orrespond to bright and dark �blobs� in the image and an be

extrated while building the max-tree and the min-tree [17℄.

Extration of MSER relies on the stability funtion q(Lk,i), whih measures

the rate of growth of the region w.r.t. the hange of the threshold level k. It is



omputed for all the elements of nested sequenes, and the loal minima of this

funtion orrespond to the maximally stable regions.

We use here a simpli�ation ommonly adopted by many omputer vision

libraries (e.g. VLFeat [26℄) :

q(Lk,i) =
|Lk−∆,i\Lk,i|

|Lk,i|
, (1)

where the ardinality is denoted by | · | and ∆ is a parameter of the detetor.

Additional parameters ontrol the allowed region size, limit the appearane of

too similar regions and impose a lower limit on the stability sore.

2.3 Attributes and �ltering

Region harateristis an be aptured by assigning them attributes measuring

the interesting aspets of the regions. Inreasing attributes K(·) give inreasing
values when alulated on a nested sequene of regions, otherwise they are non-

inreasing. A value of an inreasing attribute on a tree region, K(Lk,i), will be
greater than the value of that attribute for any of the regions desendants.

Inreasing attributes are usually a measure of the size of the region. We will

simply use the area (in pixels) of the region, A(Lk,i), as the size attribute. Strit
shape attributes are the noninreasing attributes dependent only on the region

shape, thus invariant to saling, rotation and translation [5℄. To indiate the

shape of a region, we use an elongation measure alled orreted nonompatness :

NC (Lk,i) = 2π

(

I(Lk,i)

A(Lk,i)2
+

A(Lk,i)

6

)

. (2)

I(Lk,i) is here the moment of inertia of the region, and the term

I(Lk,i)
A(Lk,i)2 without

the orretion is equal to the �rst moment invariant of Hu [8℄ I = µ2,0 + µ0,2.

We will also diretly use the normalized entral moments n1,1, n2,0, n0,2, n0,4

and n4,0 of the onsidered regions. These, and many more attributes (suh as

enter of mass, ovarianes, skewness or kurtosis [27℄) an be derived based on

raw region moments.

When the tree is further proessed by omparing the region attribute values

to a threshold t (or using a more omplex riterion), and making a deision

to preserve or rejet a region based on the attribute value, we are performing

an attribute �ltering. While �ltering with an inreasing attribute is relatively

straightforward, advaned �ltering strategies have to be used when performing

a �ltering with noninreasing (e. g. shape) attributes [5, 19, 24℄.

2.4 Granulometries and global pattern spetra

Attribute opening is a spei� kind of attribute �ltering, in whih the attribute

used is inreasing. Suh a transformation is anti-extensive, inreasing and idem-

potent. A size granulometry an be omputed from a series of suh openings,

using inreasing values for the threshold t. This series also satis�es the absorp-

tion property, sine applying an opening with t′ < t will have no e�et on an



Table 1: Subsets of the UCID database used in experiments.

# ategories / ategories

examples seleted

uid5 31 / 5 all UCID ategories

with ≥ 5 examples

uid4 44 / 4 all UCID ategories ≥ 4
uid3 77 / 3 all UCID ategories ≥ 3
uid2 137 / 2 all UCID ategories ≥ 2
uid1 262 / 1 all UCID ategories

image already �ltered with an opening using the threshold t. In other words,

a size a granulometry an be seen as a set of sieves of inreasing grades, eah

letting only details of ertain sizes [24℄ pass through.

Instead of fousing on the details remaining, it is also possible to onsider the

amount of detail removed between pairs of onseutive openings. Suh an analysis

has been introdued by Maragos [12℄ under the name size pattern spetra. It an

be seen as a 1D histogram ontaining, for eah size lass or �ltering residue, its

Lebesgue measure (i. e. the number of pixels in the binary ase or the sum of

gray levels in the graysale ase). Suh histograms an also be omputed over

di�erent shape lasses, leading to the onept of a shape-spetra [24℄. Finally,

both shape and size pattern spetra an be ombined to build shape-size pattern

spetra [24℄. A shape-size pattern spetrum is a 2D histogram, where the amount

of image detail for the di�erent size-shape lasses are stored in dediated 2D bins.

Previous work [23,24℄ as well as our own experiments suggest that the lower

attribute values arry more information. Thus, a logarithmi binning is used for

both attributes, produing higher resolution bins for low attribute values. Let

v be the attribute value for one of the attributes, Nb the total desired number

of bins and m the upper bound for that attribute (whih an be the maximal

attribute value in the hierarhy, or a smaller value if we deide to ignore attribute

values above a ertain threshold). If the minimal value for the attribute is 1 (as

with both area and the orreted nonompatness), the base for the logarithmi

binning b, and the �nal bin c, are determined as:

b = Nb

√

m, (3)

c = ⌊logb v⌋ (4)

Enumerating the bins starting from 1, the i-th bin has the range [bi−1, bi].

Conneted pattern spetra are e�etively alulated in a single pass over

a max-tree [5, 24℄. For every region, we alulate both the size attribute v1 =
A(Lk,i) and shape attribute v2 = NC (Lk,i), and add the area of the region

weighted by its ontrast with the parent region δh to the spetrum bin S(c1, c2).
Before using the spetrum as a desriptor, we equalize the sums in the bins

as

5

√

S(c1, c2). More information and disussion about the algorithm used to

ompute the desriptors is given in Se. 5.



3 Database and experimental setup

To evaluate the retrieval performane of the LPS desriptor without introduing

noise in the results with approximate searh approahes [10, 22℄, we hose a

relatively small UCID database [20℄, on whih we an perform an exat searh.

The performane of our LPS desriptors is ompared to SIFT [11℄.

The whole UCID database ontains 1338 images of size 512× 384 pixels, di-

vided into 262 unbalaned ategories. After region detetion and desription, a

single database entry for every ategory is onstruted, omprising the desrip-

tors from all the images of that ategory. Therefore, to equalize the database

entry sizes as muh as possible, di�erent subsets of the UCID database were

used in the experiments, where the number of examples per ategory is onstant

for eah database subset (the required number of images is taken from larger at-

egories in order provided by the ground truth). Tab. 1 summarizes the subsets

of the database used for experiments presented herein.

A KD-Tree index [7℄ is then built based on the ategory desriptors, and

stored for querying using the FLANN library [15℄. We then perform a query

with 1 image for every database ategory. The index performs a kNN searh

(k = 7) with eah desriptor of a region deteted on the query image. The �nal

ategory is given through a voting mehanism where eah nearest neighbor di of

a query desriptor qj will ast a vote for the ategory cat(di) it belongs to:

vote(cat(di)) =
100

(L1(di, qj) + 0.1) × |cat(di)|wcat

. (5)

L1(di, qj) refers to the distane between these two desriptors and |cat(di)| is the
number of desriptors in the ategory of the i-th nearest neighbor. Finally, wcat

is a parameter of the experimental setup. The �ve ategories with the highest

vote sores are examined in order to evaluate the performane of the desriptors.

The measures we used are mean average preision at �ve (MAP�5) and

preision at one (P�1). Performane for di�erent values of wcat are shown in

Fig. 1(a) and 2(d), but for all the summarized results, only the performane

for the optimal wcat value for eah experiment is shown. This hoie is made in

order to present a fair omparison, and sine not all the desriptors reah their

peak performane for the same value of wcat . This is additionally justi�ed as

this parameter is not present when using an approximate lassi�ation sheme.

4 Loal pattern spetra

Loal pattern spetra (LPS) are alulated from the seleted MSER regions. As

the two trees ontain di�erent regions, the desriptor for a maximal MSER will

only be based on the max-tree, and similarly for the minimal MSERs.

The LPS are alulated like the global ones, exept the alulation is done

on the orresponding subtree. When alulating the LPS for the MSER region

Lk,i
in the tree, we only onsider the attribute values of the desendants of the

node. However, transitioning to the loal version of the desriptor will introdue

a new parameter in�uening the sale invariane property of the desriptors.



Table 2: Parameters and their optimal values for the LPS.

symbol signi�ane value SI-LPS value SV-LPS

mA upper bound for area region size

mNC

upper bound

for nonompatness

53 56

NA
b number of area bins 9 10

NNC

b

number of

nonompatness bins

6

M
sale parameter for

the size attribute

20000 region size

w(n1,1)
normalized moment weights

20

w(n2,0), w(n0,2),
10

w(n4,0), w(n0,4)

To ahieve both the desired properties and ompetitive performane, the pro-

posed desriptor is explained here through examining the experiments used to

establish the best parameters. The summary of these parameters, explained indi-

vidually heneforth, an be found in Tab. 2. Additionally, we onsider ombining

the LPS with normalized entral moments and enhaning the performane by

adding the global pattern spetra. The in�uene of the database on the results

is also disussed.

4.1 Sale invariane

When alulating a global pattern spetrum for an entire image, the whole image

size is used to determine the base of the logarithmi binning (espeially if the

database images are the same size [23,24℄). If we hoose to determine the binning

base for eah region separately based on the area of that region for the loal

desriptor sheme, the resulting LPS desriptor is not sale invariant.

Consider two version of the same region at di�erent sales, with the area

values belonging to the range [1, m1] and [1, m2] respetively. The sale invari-
aneproperty requires that, for a value v1 ∈ [1, m1], the bin c1 determined in the

original sale is the same as the bin c2 for the value v2 = v1
m2

m1
saled to the

range [1, m2]. However, this is not the ase for m1 6= m2, as:

c1 = log Nb
√

m1
v1 6= c2 = log Nb

√
m2

v2. (6)

Therefore, to ensure the sale invariane of the desriptors, the area used to

determine the binning and the logarithmi base have to be the same for all the

regions. This area beomes then a parameter of the size attribute in LPS, alled

the sale parameter M .

Using a ommon sale M an be seen as resaling all the regions to a referene

sale, and has two onsequenes. First, for a region of size m > M , the minimal

area value v of this region that an ontribute to the spetrum when using a

ommon binning is suh that v′ = v M
m

= 1, meaning that all the (sub)regions

with the area smaller then

m
M

will be ignored. However, some partiular regions
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Fig. 1: The results for the �nal version of the desriptors expressed in terms of mean

average preision at 5 (MAP�5) and preision at 1 (P�1) for uid5 dataset for varying

ategory weights are shown in (a). The results for uid5�uid1 are summarized on (b)

(performane shown for optimal weight wcat for every dataset).

with a large enough area an still disappear when resaling. This is the ase for

long thin objets with the width (along any dimension) small enough to down-

sale to under 1 pixel. Suh regions should be ignored in the pattern spetrum,

even if their attribute values �t with the binning. Beause of this, we also deter-

mine the maximal possible value of the nonompatness attribute for all of the

available area bins.

Seond, the minimal area value (1 pixel) of a region of size m < M will be

resaled to the value v′ = M
m

> 1, and the lower area bins at the ommon sale

will be empty. The �rst area bin cmin that will ontain information is then:

1 = bcmin−1 m

M
→ cmin = logb

M

m
+ 1. (7)

We ompare 2 versions of the desriptor: a) the sale variant version (SV-

LPS), where the area of eah region is used as the sale parameter M , and

b) the sale invariant version (SI-LPS) where M is the same for all regions.

The SV-LPS outperforms the SI-LPS on the performed experiments (f. Fig. 1),

and mathes the SIFT performane. The best performane for the SI-LPS was

obtained for M = 20000 (found experimentally) for UCID images. However,

the UCID database is not very hallenging in terms of sale hange. We expet

the SI-LPS performane to be less a�eted than that of SV-LPS when running

experiments on a database fousing on sale hange.

4.2 Binning parameters

With the area attribute, the upper bound used, mA, is simply the size of the

region: we an plausibly expet regions of all sizes lower than the size of the

region itself to be present in its deomposition.

Examining the values of the nonompatness attribute for several images, we

determined that very few regions have high values of this attribute. As suh,



nonompatness values higher than a ertain threshold an be safely ignored.

Optimal values mNC for both SV-LPS and SI-LPS were determined by exam-

ining the performane of the values lose to the ones used in [23, 24℄. Similar

experiments were done to determine NNC

b and NA
b . The parameter tuning ex-

periments are shown in Fig. 2.

The best parameters for the SI-LPS are easy to determine; we hose NNC

b = 6
and mNC = 53. For the number of area bins, we tested both NA

b = 8 and

NA
b = 10 in the �nal desriptor ombination (to be disussed in the following

subsetion). Using NA
b = 10 produes better �nal results for SI-LPS, whih are

shown on Fig. 1. For SV-LPS, the in�uene of both parameters for nonom-

patness is muh slighter. Surprisingly, we found that the optimal performane

of SV-LPS reahes an optimum at the lower value of NA
b = 9 (but a higher

mNC = 56 than SI-LPS). The optimal values for both SI-LPS and SV-LPS are

listed in Tab. 2.

We also noted that using the optimal SI-LPS parameters in the sale vari-

ant version, we losely math the performane of our original parameter hoie

after the ombination with image moments. Currently, no set of parameters is

performing learly better, but if future experiments on�rm this behavior, it is

still preferable to use a smaller NA
b and derease desriptor size.

4.3 Image moments and global pattern spetra

Five image moments, n1,1, n2,0, n0,2, n0,4 and n4,0, were appended to a �nal ver-

sion of all LPS desriptors. The weights resulting in the best performane (using

the L1 distane) were determined by examining the ombination of the LPS and

eah of the moments separately. This weight is 20 for n1,1 and 10 for other mo-

ments used. Additionally, an indiator value 2 is added to all the LPS desriptors

originating from the max-tree, and 0 for the min-tree, thus additionally inreas-

ing the L1 distane between any minimal and maximal MSERs.

Global pattern spetra on their own ahieve MAP�5 around 70% on the

uid5 dataset. They are added to the list of LPS for every image and treated

equally to other loal desriptors. The in�uene of ombining these values with

SI-LPS and SV-LPS for the optimal parameter hoie is shown in Fig. 2(d).

4.4 Region size and database in�uene

Before alulating any desriptors in the evaluation framework of Mikolajzyk et

al. [14℄, the region is �rst approximated by an ellipse with the same orresponding

seond moments, and then the region size is inreased three times. Only then is

the SIFT desriptor alulated using the provided implementation [11℄.

Sine we want to be able to use the max-tree and the min-tree for the pattern

spetra alulation, we hose to work with anestor regions of the deteted MSER

suh that the size of the parent is no larger than xA(nk,i). We determined that,

in order to get the same average area inrease as in [14℄, we should use the value

x = 7.5. The reason is that many regions have a muh bigger parent region,

whih is then not onsidered, and the size inrease is often smaller than x times.
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Fig. 2: Parameter tuning on uid5 database. The e�et of varying the upper bound for

nonompatness is shown on (a), similar for the amount of nonompatness bins on

(b), and the area bins on (). The e�et of adding the moments and indiator value

to the desriptor, with the best parameter settings is shown in (d). Note that the

global desriptors for the SI-LPS are alulated with the sale value used for the other

desriptors, and not using image size.

Fig. 1(b) summarizes the performane on all the subsets from Tab. 1, allow-

ing us to examine the behavior of the desriptors for the inreasing size of the

database. The performane expetantly dereases with the inrease of database

size and derease of the number of examples provided per ategory. As the sepa-

rate in�uene of these two fators an not be determined just from experiments

on these subsets, additional tests were arried out and analyzed in [4℄.

Besides the performane, it is important to note here that on the largest

database subset used, the query speed for LPS is more than 4× faster than that

for SIFT (when the LPS desriptor of size 60 is used).

5 Remarks on the algorithm

The system was implemented in C++. The max-tree struture was used for

both MSER detetion and keypoint desription. The non-reursive max-tree

algorithm of [17℄ was used. This allows onurrent omputation of the MSER



stability funtion (Eq. (1)), the area attribute and the moment of inertia, and

the MSER. The method method is as follows:

� Compute the max-tree and min-tree aording to [17℄.

� As the trees are built, ompute:

• loal minima of the stability funtion, forming the sets of MSER regions,

• attribute values for the nodes of the trees,

• global pattern spetra [24℄.

� For eah seleted MSER region, repeat the omputation of the pattern spe-

tra loally in a sub-tree.

� Combine the attribute values, indiator value 0 or 2 and the pattern spetra

to form a LPS desriptor for a MSER region.

� Add both global pattern spetra [23℄ orresponding to the whole image in

the olletion of desriptors for the image.

Unlike the alulation of global pattern spetra, the loal pattern spetra

use the onstruted hierarhy but an not be omputed onurrently beause of

di�erent upper limits (for area) and binning saling value.

However, in ase of ahieving improved results with the SI-LPS, adopting the

sale invariant version to onurrent omputation an be onsidered. While it

would sari�e true sale invariane, if the value M is used as a sale parameter,

and we are alulating for a region of size m, we an set the largest bin to be

[b⌈logbm⌉−1, b⌈logbm⌉], with the smallest bin having the upper bound b⌈logbm⌉−Nb
.

While it is then not always possible to get the values from the whole range of the

largest bin, the bin values of the hildren an be used by their parents. When

the upper bound of the largest bin hanges, the hild values an still be used

with disarding the values from the smallest bin: the sale of those details is too

low to be onsidered.

6 Disussion and onlusion

After suessfully applying global pattern spetra in CBIR ontext [23, 25℄, we

now attempt to onstrut a loal region desriptor based on the pattern spetra.

On the hosen subsets of the UCID database [20℄, the results obtained were

better than when only using global pattern spetra (almost 20% in MAP�5 on

uid5 ), and mathed the performane of the SIFT desriptor.

The proposed LPS desriptors have another advantage. In addition to the

desription alulation proess being slightly faster for the pattern spetra than

for the SIFT desriptors, our desriptors length is only 47% of the length of

SIFT. This makes using these desriptors muh faster � performing 262 queries

on an index of the size 262 (uid1 dataset) took over 4 times longer using SIFT

desriptors. This suggests that (espeially in large sale CBIR systems), we an

use more example images in order to enhane the preision, while still performing

faster than SIFT.

As the performane of the desriptors depends on a lot of parameters, we need

to explore a way to determine the optimal set of parameters automatially. Also,



while the LPS desriptors are rotation invariant, introduing sale invariane

auses a derease in performane. We plan to evaluate both the SI-LPS and

SV-LPS on a database foused on sale hanges to determine the value of true

sale invariane in suh ases.

Despite the parameters and the desriptor invariane whih have to be fur-

ther studied, mathing the SIFT performane on the three subsets of the uid

dataset with a desriptor of less than half the length of SIFT is very promising.

Additional suessful experiments were performed and analyzed in [4℄. It also

prompts for evaluating the LPS performane with large sale CBIR system. It

is probable that the results ould be even further improved by ombining the

urrent LPS with pattern spetra based on other shape attributes, like in [23℄.

Lastly, the L1 distane, designed to ompare vetors of salar values, is not

the best hoie for omparing histogram-like strutures. Using di�erent dis-

tanes, or even divergenes (e.g. [16℄) whih take into aount the nature of

the desriptor should also improve the performane.
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