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Abstract. We validate the usage of augmented 2D shape-size pattern
spectra, calculated on arbitrary connected regions. The evaluation is per-
formed on MSER regions and competitive performance with SIFT de-
scriptors achieved in a simple retrieval system, by combining the local
pattern spectra with normalized central moments. An additional advan-
tage of the proposed descriptors is their size: being less than half the size
of SIFT, they can handle larger databases in a time-efficient manner. We
focus in this paper on presenting the challenges faced when transitioning
from global pattern spectra to the local ones. An exhaustive study on
the parameters and the properties of the newly constructed descriptor is
the main contribution offered. We also consider possible improvements to
the quality and computation efficiency of the proposed local descriptors.

Keywords: shape-size pattern spectra, granulometries, max-tree, re-
gion descriptors, CBIR

1 Introduction

Pattern spectra are histogram-like structures originating from mathematical
morphology, commonly used for image analysis and classification [12], and con-
tain the information on the distribution of sizes and shapes of image components.
They can be efficiently computed using a technique known as granulometry [5]
on a max-tree and min-tree hierarchy [9,19].

We study here the application of 2D pattern spectra to Content Based Im-
age Retrieval (CBIR), to retrieve database images describing the same object
or scene as the query. Previous success in using the pattern spectra as image
descriptors computed at the global [23,24] or pixel scale (known as DMP [3] or
DAP [6,18]) convinced us to investigate their behavior as local descriptors.

Standard CBIR systems based on local descriptors consist of region detection,
calculation of descriptors and storage in an index. Different indexing schemes are
used to perform large scale database search [10,22], but all need powerful local
descriptors to achieve good performance [21]. To construct such a descriptor,
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we want to extend [24] and compute 2D size-shape pattern spectra locally while
keeping the good characteristics of the global version (scale, translation and ro-
tation invariance, and computation efficiency). However, to evaluate the quality
and properties of our proposed local pattern spectra (LPS) descriptors, we need
to reexamine the parameters used with global pattern spectra as well as evaluate
the effect of the new parameters introduced by the local descriptor scheme.

We evaluate our descriptors on the MSER regions [13] as they can also be
computed on a max-tree [17], using the well-established SIFT descriptors [11]
to obtain a baseline CBIR performance on a database. Future work will include
comparisons with SIFT extensions which improve performance [1,2]. A com-
petitive precision is achieved with a rotation invariant version of the descriptor
combined with normalized central moments, half the size of SIFT (deeper inter-
pretation of the results and best achieved performance can be found in [4]).

As the goal of this paper is to give an overview of choices and challenges
faced when reworking a global pattern spectrum into a local one, we adopt a
slightly atypical presentation structure: The background notions are presented
in Sec. 2, with the focus on how the max-tree is used in all parts of the CBIR
system. The experimental framework used to tune and evaluate the descriptors
is explained in Sec. 3. To examine the properties of the proposed LPS descriptor
through the influence of parameters used, the main contribution can be found in
Sec. 4, where the descriptor performance is also presented. Remarks on possible
improvements to the efficiency of LPS computation are given in Sec. 5. Finally,
the conclusions are drawn and directions for future work offered in Sec. 6.

2 Background
2.1 Max-tree

The concept of min and max-trees [9,19] is here central for keypoint detection
as well as the calculation of feature descriptors. We recall their definition using
the upper and lower level sets of an image, e.g. sets of image pixels p with gray
level values f(p) respectively higher and lower than a threshold k.

Given a level k of an image I, each level set is defined as £F = {p € I|f(p) >
k} for the max-tree, or L = {p € I|f(p) < k} for the min-tree. Their connected
components (also called the peak components) L% and Ly ; (i from some index
set) are nested and form a hierarchy. The min-tree is usually built as a max-tree
of the inverted image —1I.

2.2 MSER detection

Peak components of the upper and lower level sets {£¥?} and {Lx;} coincide
with the maximal and minimal extremal regions in the context of Mazimally
Stable Extremal Regions (MSER) detector introduced by Matas et al. [13]. The
detected regions correspond to bright and dark “blobs” in the image and can be
extracted while building the max-tree and the min-tree [17].

Extraction of MSER relies on the stability function ¢(£*¥?), which measures
the rate of growth of the region w.r.t. the change of the threshold level k. It is



computed for all the elements of nested sequences, and the local minima of this
function correspond to the maximally stable regions.

We use here a simplification commonly adopted by many computer vision
libraries (e.g. VLFeat [26]) :

) Eka,i\ﬁk,q
ﬁk,z _ | \ 1
) = T 1)
where the cardinality is denoted by |- | and A is a parameter of the detector.

Additional parameters control the allowed region size, limit the appearance of
too similar regions and impose a lower limit on the stability score.

2.3 Attributes and filtering

Region characteristics can be captured by assigning them attributes measuring
the interesting aspects of the regions. Increasing attributes K (-) give increasing
values when calculated on a nested sequence of regions, otherwise they are non-
increasing. A value of an increasing attribute on a tree region, K (L), will be
greater than the value of that attribute for any of the regions descendants.
Increasing attributes are usually a measure of the size of the region. We will
simply use the area (in pixels) of the region, A(LF?), as the size attribute. Strict
shape attributes are the nonincreasing attributes dependent only on the region
shape, thus invariant to scaling, rotation and translation [5]. To indicate the
shape of a region, we use an elongation measure called corrected noncompactness:

I(C)  A(LH)
ALz 6 )

NC (LM =21 ( (2)

I(£%?) is here the moment of inertia of the region, and the term 14[((57:1))2 without
the correction is equal to the first moment invariant of Hu [8] I = p2,0 + 10,2

We will also directly use the normalized central moments n1 1,120, 10,2, 20,4
and ng4 of the considered regions. These, and many more attributes (such as
center of mass, covariances, skewness or kurtosis [27]) can be derived based on
raw region moments.

When the tree is further processed by comparing the region attribute values
to a threshold ¢ (or using a more complex criterion), and making a decision
to preserve or reject a region based on the attribute value, we are performing
an attribute filtering. While filtering with an increasing attribute is relatively
straightforward, advanced filtering strategies have to be used when performing
a filtering with nonincreasing (e. g. shape) attributes [5,19,24].

2.4 Granulometries and global pattern spectra

Attribute opening is a specific kind of attribute filtering, in which the attribute
used is increasing. Such a transformation is anti-extensive, increasing and idem-
potent. A size granulometry can be computed from a series of such openings,
using increasing values for the threshold ¢. This series also satisfies the absorp-
tion property, since applying an opening with ¢ < ¢ will have no effect on an



Table 1: Subsets of the UCID database used in experiments.

# categories / categories
examples selected

ucidd 31/5 all UCID categories
with > 5 examples

ucid/ 4 /4 all UCID categories > 4

ucidd 77/ 3 all UCID categories > 3

uctd2 137 / 2 all UCID categories > 2

ucidl 262 /1 all UCID categories

image already filtered with an opening using the threshold ¢. In other words,
a size a granulometry can be seen as a set of sieves of increasing grades, each
letting only details of certain sizes [24] pass through.

Instead of focusing on the details remaining, it is also possible to consider the
amount of detail removed between pairs of consecutive openings. Such an analysis
has been introduced by Maragos [12] under the name size pattern spectra. It can
be seen as a 1D histogram containing, for each size class or filtering residue, its
Lebesgue measure (i. e. the number of pixels in the binary case or the sum of
gray levels in the grayscale case). Such histograms can also be computed over
different shape classes, leading to the concept of a shape-spectra [24]. Finally,
both shape and size pattern spectra can be combined to build shape-size pattern
spectra [24]. A shape-size pattern spectrum is a 2D histogram, where the amount
of image detail for the different size-shape classes are stored in dedicated 2D bins.

Previous work [23,24] as well as our own experiments suggest that the lower
attribute values carry more information. Thus, a logarithmic binning is used for
both attributes, producing higher resolution bins for low attribute values. Let
v be the attribute value for one of the attributes, N, the total desired number
of bins and m the upper bound for that attribute (which can be the maximal
attribute value in the hierarchy, or a smaller value if we decide to ignore attribute
values above a certain threshold). If the minimal value for the attribute is 1 (as
with both area and the corrected noncompactness), the base for the logarithmic
binning b, and the final bin ¢, are determined as:

b="/m. (3)

¢ = |log, v] (4)

Enumerating the bins starting from 1, the i-th bin has the range [b~!, b?].

Connected pattern spectra are effectively calculated in a single pass over
a max-tree [5,24]. For every region, we calculate both the size attribute v; =
A(LF?) and shape attribute v, = NC(LF?), and add the area of the region
weighted by its contrast with the parent region d;, to the spectrum bin S(e¢q, ¢2).
Before using the spectrum as a descriptor, we equalize the sums in the bins
as ¢/S(c1,¢2). More information and discussion about the algorithm used to
compute the descriptors is given in Sec. 5.



3 Database and experimental setup

To evaluate the retrieval performance of the LPS descriptor without introducing
noise in the results with approximate search approaches [10,22], we chose a
relatively small UCID database [20], on which we can perform an exact search.
The performance of our LPS descriptors is compared to SIFT [11].

The whole UCID database contains 1338 images of size 512 x 384 pixels, di-
vided into 262 unbalanced categories. After region detection and description, a
single database entry for every category is constructed, comprising the descrip-
tors from all the images of that category. Therefore, to equalize the database
entry sizes as much as possible, different subsets of the UCID database were
used in the experiments, where the number of examples per category is constant
for each database subset (the required number of images is taken from larger cat-
egories in order provided by the ground truth). Tab. 1 summarizes the subsets
of the database used for experiments presented herein.

A KD-Tree index [7] is then built based on the category descriptors, and
stored for querying using the FLANN library [15]. We then perform a query
with 1 image for every database category. The index performs a kNN search
(k = 7) with each descriptor of a region detected on the query image. The final
category is given through a voting mechanism where each nearest neighbor d; of
a query descriptor g; will cast a vote for the category cat(d;) it belongs to:

100
(L1(ds, gj) + 0.1) x |cat(d;)[weat

vote(cat(d;)) = (5)
L1 (d;, g5) refers to the distance between these two descriptors and |cat(d;)| is the
number of descriptors in the category of the i-th nearest neighbor. Finally, w4
is a parameter of the experimental setup. The five categories with the highest
vote scores are examined in order to evaluate the performance of the descriptors.

The measures we used are mean average precision at five (MAP@5) and
precision at one (P@1). Performance for different values of w4 are shown in
Fig. 1(a) and 2(d), but for all the summarized results, only the performance
for the optimal w.,; value for each experiment is shown. This choice is made in
order to present a fair comparison, and since not all the descriptors reach their
peak performance for the same value of w.q:. This is additionally justified as
this parameter is not present when using an approximate classification scheme.

4 Local pattern spectra

Local pattern spectra (LPS) are calculated from the selected MSER, regions. As
the two trees contain different regions, the descriptor for a maximal MSER will
only be based on the max-tree, and similarly for the minimal MSERs.

The LPS are calculated like the global ones, except the calculation is done
on the corresponding subtree. When calculating the LPS for the MSER region
L£*% in the tree, we only consider the attribute values of the descendants of the
node. However, transitioning to the local version of the descriptor will introduce
a new parameter influencing the scale invariance property of the descriptors.



Table 2: Parameters and their optimal values for the LPS.

symbol significance value SI-LPS value SV-LPS
ma upper bound for area region size
upper bound
mne for noncompactness 23 26
N number of area bins 9 10
N évc number of . 6
noncompactness bins
M scale Paramet.er for 20000 region size
the size attribute
w(nlyl) 20

w(na2,0), w(no,2), normalized moment weights 10
w(na,0), w(no,)

To achieve both the desired properties and competitive performance, the pro-
posed descriptor is explained here through examining the experiments used to
establish the best parameters. The summary of these parameters, explained indi-
vidually henceforth, can be found in Tab. 2. Additionally, we consider combining
the LPS with normalized central moments and enhancing the performance by
adding the global pattern spectra. The influence of the database on the results
is also discussed.

4.1 Scale invariance

When calculating a global pattern spectrum for an entire image, the whole image
size is used to determine the base of the logarithmic binning (especially if the
database images are the same size [23,24]). If we choose to determine the binning
base for each region separately based on the area of that region for the local
descriptor scheme, the resulting LPS descriptor is not scale invariant.

Consider two version of the same region at different scales, with the area
values belonging to the range [1,m4] and [1,m2] respectively. The scale invari-
anceproperty requires that, for a value v; € [1,m4], the bin ¢; determined in the
original scale is the same as the bin ¢ for the value vy, = vlﬁ—f scaled to the
range [1, ms]. However, this is not the case for m; # mao, as:

c1 = 10g NW U1 7é Co = 10g NW V2. (6)

Therefore, to ensure the scale invariance of the descriptors, the area used to
determine the binning and the logarithmic base have to be the same for all the
regions. This area becomes then a parameter of the size attribute in LPS, called
the scale parameter M.

Using a common scale M can be seen as rescaling all the regions to a reference
scale, and has two consequences. First, for a region of size m > M, the minimal
area value v of this region that can contribute to the spectrum when using a
common binning is such that v’ = v = 1, meaning that all the (sub)regions

with the area smaller then 7; will be ignored. However, some particular regions
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Fig. 1: The results for the final version of the descriptors expressed in terms of mean
average precision at 5 (MAP@5) and precision at 1 (PQ1) for ucid5 dataset for varying
category weights are shown in (a). The results for ucid5—ucid! are summarized on (b)
(performance shown for optimal weight w.q for every dataset).

with a large enough area can still disappear when rescaling. This is the case for
long thin objects with the width (along any dimension) small enough to down-
scale to under 1 pixel. Such regions should be ignored in the pattern spectrum,
even if their attribute values fit with the binning. Because of this, we also deter-
mine the maximal possible value of the noncompactness attribute for all of the
available area bins.

Second, the minimal area value (1 pixel) of a region of size m < M will be
rescaled to the value v/ = % > 1, and the lower area bins at the common scale
will be empty. The first area bin ¢y, that will contain information is then:

m M
1=bn"1— — ¢y = log, — + 1. 7
c 0gy, m + (7)

We compare 2 versions of the descriptor: a) the scale variant version (SV-
LPS), where the area of each region is used as the scale parameter M, and
b) the scale invariant version (SI-LPS) where M is the same for all regions.
The SV-LPS outperforms the SI-LPS on the performed experiments (cf. Fig. 1),
and matches the SIFT performance. The best performance for the SI-LPS was
obtained for M = 20000 (found experimentally) for UCID images. However,
the UCID database is not very challenging in terms of scale change. We expect
the SI-LPS performance to be less affected than that of SV-LPS when running
experiments on a database focusing on scale change.

4.2 Binning parameters

With the area attribute, the upper bound used, m4, is simply the size of the
region: we can plausibly expect regions of all sizes lower than the size of the
region itself to be present in its decomposition.

Examining the values of the noncompactness attribute for several images, we
determined that very few regions have high values of this attribute. As such,



noncompactness values higher than a certain threshold can be safely ignored.
Optimal values my¢c for both SV-LPS and SI-LPS were determined by exam-
ining the performance of the values close to the ones used in [23,24]. Similar
experiments were done to determine N'¢ and N;!. The parameter tuning ex-
periments are shown in Fig. 2.

The best parameters for the SI-LPS are easy to determine; we chose NbNC =6
and myc = 53. For the number of area bins, we tested both le‘ = 8 and
N# = 10 in the final descriptor combination (to be discussed in the following
subsection). Using N;* = 10 produces better final results for SI-LPS, which are
shown on Fig. 1. For SV-LPS, the influence of both parameters for noncom-
pactness is much slighter. Surprisingly, we found that the optimal performance
of SV-LPS reaches an optimum at the lower value of Ny = 9 (but a higher
myc = 56 than SI-LPS). The optimal values for both SI-LPS and SV-LPS are
listed in Tab. 2.

We also noted that using the optimal SI-LPS parameters in the scale vari-
ant version, we closely match the performance of our original parameter choice
after the combination with image moments. Currently, no set of parameters is
performing clearly better, but if future experiments confirm this behavior, it is
still preferable to use a smaller NgA and decrease descriptor size.

4.3 Image moments and global pattern spectra

Five image moments, 11,1, 12,0, 10,2, M0,4 and ny o, were appended to a final ver-
sion of all LPS descriptors. The weights resulting in the best performance (using
the L; distance) were determined by examining the combination of the LPS and
each of the moments separately. This weight is 20 for n,,; and 10 for other mo-
ments used. Additionally, an indicator value 2 is added to all the LPS descriptors
originating from the max-tree, and 0 for the min-tree, thus additionally increas-
ing the Ly distance between any minimal and maximal MSERs.

Global pattern spectra on their own achieve MAP@5 around 70% on the
ucidd dataset. They are added to the list of LPS for every image and treated
equally to other local descriptors. The influence of combining these values with
SI-LPS and SV-LPS for the optimal parameter choice is shown in Fig. 2(d).

4.4 Region size and database influence

Before calculating any descriptors in the evaluation framework of Mikolajczyk et
al. [14], the region is first approximated by an ellipse with the same corresponding
second moments, and then the region size is increased three times. Only then is
the SIFT descriptor calculated using the provided implementation [11].

Since we want to be able to use the max-tree and the min-tree for the pattern
spectra calculation, we chose to work with ancestor regions of the detected MSER
such that the size of the parent is no larger than zA(ny ;). We determined that,
in order to get the same average area increase as in [14], we should use the value
x = 7.5. The reason is that many regions have a much bigger parent region,
which is then not considered, and the size increase is often smaller than x times.



noncompactness upper limit noncompactness bins

— - Y ——a—
- e — o L -
809 |8 o — - | 80 % P _— y
X X. X X X % X 5% m S
e % x c 0% f
S = u S L)
2 70% | = 2 65%
9 L ; 8 500 | ¥ PS-SVMAP@5 —m—
T o b T PS-SV P@1 -
65% r PS-SV MAP@5 —&— 1 550 | PS-S| MAP@5 — =
PS-SV P@1 - PS-SIP@1
60% | X PS-SI MAP@5 — & | 50 % r
N PS-SI P@1 x
X . . . . . @ . . 45% £ . . . X 4
50 51 52 53 54 55 56 57 5 6 7 8
NC upper bound # bins
(a) (b)
area bins effect of adding moments

and indicator value

859 [ . . . -
PS-SV MAP@5 —a— 90 % [ T = wm . 1
PS-SV P@1 —a PR i\./l—l
80 % PS-SI MAP@5 X 1 85% | X
PS-SIP@1 - s % Xy
5 < 80% | U .
S 5% » s )
° @ —a—a—a
o - — S 75% X
a 70% = ] T X o %
X 0% PS-SV-ALL MAP@5 —&—
65% | E | PS-SV MAP@5 -
? * < < 65% PS-SI-ALL MAP@5 — =
) PS-SV MAP@5
6 7 8 9 10 11 12 0.4 0.5 0.6 07 0.8
# bins category weight
(c) (d)

Fig. 2: Parameter tuning on ucid5 database. The effect of varying the upper bound for
noncompactness is shown on (a), similar for the amount of noncompactness bins on
(b), and the area bins on (c). The effect of adding the moments and indicator value
to the descriptor, with the best parameter settings is shown in (d). Note that the
global descriptors for the SI-LPS are calculated with the scale value used for the other
descriptors, and not using image size.

Fig. 1(b) summarizes the performance on all the subsets from Tab. 1, allow-
ing us to examine the behavior of the descriptors for the increasing size of the
database. The performance expectantly decreases with the increase of database
size and decrease of the number of examples provided per category. As the sepa-
rate influence of these two factors can not be determined just from experiments
on these subsets, additional tests were carried out and analyzed in [4].

Besides the performance, it is important to note here that on the largest
database subset used, the query speed for LPS is more than 4x faster than that
for SIFT (when the LPS descriptor of size 60 is used).

5 Remarks on the algorithm

The system was implemented in C++. The max-tree structure was used for
both MSER detection and keypoint description. The non-recursive max-tree
algorithm of [17] was used. This allows concurrent computation of the MSER



stability function (Eq. (1)), the area attribute and the moment of inertia, and
the MSER. The method method is as follows:

Compute the max-tree and min-tree according to [17].
— As the trees are built, compute:
e local minima of the stability function, forming the sets of MSER regions,
e attribute values for the nodes of the trees,
e global pattern spectra [24].
— For each selected MSER region, repeat the computation of the pattern spec-
tra locally in a sub-tree.
— Combine the attribute values, indicator value 0 or 2 and the pattern spectra
to form a LPS descriptor for a MSER region.
Add both global pattern spectra [23] corresponding to the whole image in
the collection of descriptors for the image.

Unlike the calculation of global pattern spectra, the local pattern spectra
use the constructed hierarchy but can not be computed concurrently because of
different upper limits (for area) and binning scaling value.

However, in case of achieving improved results with the SI-LPS, adopting the
scale invariant version to concurrent computation can be considered. While it
would sacrifice true scale invariance, if the value M is used as a scale parameter,
and we are calculating for a region of size m, we can set the largest bin to be
[pltegsm]1=1 pllogeml] "with the smallest bin having the upper bound bltgem1=No,
While it is then not always possible to get the values from the whole range of the
largest bin, the bin values of the children can be used by their parents. When
the upper bound of the largest bin changes, the child values can still be used
with discarding the values from the smallest bin: the scale of those details is too
low to be considered.

6 Discussion and conclusion

After successfully applying global pattern spectra in CBIR context [23,25], we
now attempt to construct a local region descriptor based on the pattern spectra.
On the chosen subsets of the UCID database [20], the results obtained were
better than when only using global pattern spectra (almost 20% in MAP@5 on
ucidy), and matched the performance of the SIFT descriptor.

The proposed LPS descriptors have another advantage. In addition to the
description calculation process being slightly faster for the pattern spectra than
for the SIFT descriptors, our descriptors length is only 47% of the length of
SIFT. This makes using these descriptors much faster — performing 262 queries
on an index of the size 262 (ucid! dataset) took over 4 times longer using SIFT
descriptors. This suggests that (especially in large scale CBIR systems), we can
use more example images in order to enhance the precision, while still performing
faster than SIFT.

As the performance of the descriptors depends on a lot of parameters, we need
to explore a way to determine the optimal set of parameters automatically. Also,



while the LPS descriptors are rotation invariant, introducing scale invariance
causes a decrease in performance. We plan to evaluate both the SI-LPS and
SV-LPS on a database focused on scale changes to determine the value of true
scale invariance in such cases.

Despite the parameters and the descriptor invariance which have to be fur-
ther studied, matching the SIFT performance on the three subsets of the ucid
dataset with a descriptor of less than half the length of SIFT is very promising.
Additional successful experiments were performed and analyzed in [4]. It also
prompts for evaluating the LPS performance with large scale CBIR system. It
is probable that the results could be even further improved by combining the
current LPS with pattern spectra based on other shape attributes, like in [23].

Lastly, the Ly distance, designed to compare vectors of scalar values, is not
the best choice for comparing histogram-like structures. Using different dis-
tances, or even divergences (e.g. [16]) which take into account the nature of
the descriptor should also improve the performance.
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