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Abstra
t. We validate the usage of augmented 2D shape-size pattern

spe
tra, 
al
ulated on arbitrary 
onne
ted regions. The evaluation is per-

formed on MSER regions and 
ompetitive performan
e with SIFT de-

s
riptors a
hieved in a simple retrieval system, by 
ombining the lo
al

pattern spe
tra with normalized 
entral moments. An additional advan-

tage of the proposed des
riptors is their size: being less than half the size

of SIFT, they 
an handle larger databases in a time-e�
ient manner. We

fo
us in this paper on presenting the 
hallenges fa
ed when transitioning

from global pattern spe
tra to the lo
al ones. An exhaustive study on

the parameters and the properties of the newly 
onstru
ted des
riptor is

the main 
ontribution o�ered. We also 
onsider possible improvements to

the quality and 
omputation e�
ien
y of the proposed lo
al des
riptors.

Keywords: shape-size pattern spe
tra, granulometries, max-tree, re-

gion des
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1 Introdu
tion

Pattern spe
tra are histogram-like stru
tures originating from mathemati
al

morphology, 
ommonly used for image analysis and 
lassi�
ation [12℄, and 
on-

tain the information on the distribution of sizes and shapes of image 
omponents.

They 
an be e�
iently 
omputed using a te
hnique known as granulometry [5℄

on a max-tree and min-tree hierar
hy [9, 19℄.

We study here the appli
ation of 2D pattern spe
tra to Content Based Im-

age Retrieval (CBIR), to retrieve database images des
ribing the same obje
t

or s
ene as the query. Previous su

ess in using the pattern spe
tra as image

des
riptors 
omputed at the global [23, 24℄ or pixel s
ale (known as DMP [3℄ or

DAP [6,18℄) 
onvin
ed us to investigate their behavior as lo
al des
riptors.

Standard CBIR systems based on lo
al des
riptors 
onsist of region dete
tion,


al
ulation of des
riptors and storage in an index. Di�erent indexing s
hemes are

used to perform large s
ale database sear
h [10, 22℄, but all need powerful lo
al

des
riptors to a
hieve good performan
e [21℄. To 
onstru
t su
h a des
riptor,
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we want to extend [24℄ and 
ompute 2D size-shape pattern spe
tra lo
ally while

keeping the good 
hara
teristi
s of the global version (s
ale, translation and ro-

tation invarian
e, and 
omputation e�
ien
y). However, to evaluate the quality

and properties of our proposed lo
al pattern spe
tra (LPS) des
riptors, we need

to reexamine the parameters used with global pattern spe
tra as well as evaluate

the e�e
t of the new parameters introdu
ed by the lo
al des
riptor s
heme.

We evaluate our des
riptors on the MSER regions [13℄ as they 
an also be


omputed on a max-tree [17℄, using the well-established SIFT des
riptors [11℄

to obtain a baseline CBIR performan
e on a database. Future work will in
lude


omparisons with SIFT extensions whi
h improve performan
e [1, 2℄. A 
om-

petitive pre
ision is a
hieved with a rotation invariant version of the des
riptor


ombined with normalized 
entral moments, half the size of SIFT (deeper inter-

pretation of the results and best a
hieved performan
e 
an be found in [4℄).

As the goal of this paper is to give an overview of 
hoi
es and 
hallenges

fa
ed when reworking a global pattern spe
trum into a lo
al one, we adopt a

slightly atypi
al presentation stru
ture: The ba
kground notions are presented

in Se
. 2, with the fo
us on how the max-tree is used in all parts of the CBIR

system. The experimental framework used to tune and evaluate the des
riptors

is explained in Se
. 3. To examine the properties of the proposed LPS des
riptor

through the in�uen
e of parameters used, the main 
ontribution 
an be found in

Se
. 4, where the des
riptor performan
e is also presented. Remarks on possible

improvements to the e�
ien
y of LPS 
omputation are given in Se
. 5. Finally,

the 
on
lusions are drawn and dire
tions for future work o�ered in Se
. 6.

2 Ba
kground

2.1 Max-tree

The 
on
ept of min and max-trees [9, 19℄ is here 
entral for keypoint dete
tion

as well as the 
al
ulation of feature des
riptors. We re
all their de�nition using

the upper and lower level sets of an image, e.g. sets of image pixels p with gray

level values f(p) respe
tively higher and lower than a threshold k.

Given a level k of an image I, ea
h level set is de�ned as Lk = {p ∈ I|f(p) ≥
k} for the max-tree, or Lk = {p ∈ I|f(p) ≤ k} for the min-tree. Their 
onne
ted


omponents (also 
alled the peak 
omponents) Lk,i
and Lk,i (i from some index

set) are nested and form a hierar
hy. The min-tree is usually built as a max-tree

of the inverted image −I.

2.2 MSER dete
tion

Peak 
omponents of the upper and lower level sets {Lk,i} and {Lk,i} 
oin
ide

with the maximal and minimal extremal regions in the 
ontext of Maximally

Stable Extremal Regions (MSER) dete
tor introdu
ed by Matas et al. [13℄. The

dete
ted regions 
orrespond to bright and dark �blobs� in the image and 
an be

extra
ted while building the max-tree and the min-tree [17℄.

Extra
tion of MSER relies on the stability fun
tion q(Lk,i), whi
h measures

the rate of growth of the region w.r.t. the 
hange of the threshold level k. It is




omputed for all the elements of nested sequen
es, and the lo
al minima of this

fun
tion 
orrespond to the maximally stable regions.

We use here a simpli�
ation 
ommonly adopted by many 
omputer vision

libraries (e.g. VLFeat [26℄) :

q(Lk,i) =
|Lk−∆,i\Lk,i|

|Lk,i|
, (1)

where the 
ardinality is denoted by | · | and ∆ is a parameter of the dete
tor.

Additional parameters 
ontrol the allowed region size, limit the appearan
e of

too similar regions and impose a lower limit on the stability s
ore.

2.3 Attributes and �ltering

Region 
hara
teristi
s 
an be 
aptured by assigning them attributes measuring

the interesting aspe
ts of the regions. In
reasing attributes K(·) give in
reasing
values when 
al
ulated on a nested sequen
e of regions, otherwise they are non-

in
reasing. A value of an in
reasing attribute on a tree region, K(Lk,i), will be
greater than the value of that attribute for any of the regions des
endants.

In
reasing attributes are usually a measure of the size of the region. We will

simply use the area (in pixels) of the region, A(Lk,i), as the size attribute. Stri
t
shape attributes are the nonin
reasing attributes dependent only on the region

shape, thus invariant to s
aling, rotation and translation [5℄. To indi
ate the

shape of a region, we use an elongation measure 
alled 
orre
ted non
ompa
tness :

NC (Lk,i) = 2π

(

I(Lk,i)

A(Lk,i)2
+

A(Lk,i)

6

)

. (2)

I(Lk,i) is here the moment of inertia of the region, and the term

I(Lk,i)
A(Lk,i)2 without

the 
orre
tion is equal to the �rst moment invariant of Hu [8℄ I = µ2,0 + µ0,2.

We will also dire
tly use the normalized 
entral moments n1,1, n2,0, n0,2, n0,4

and n4,0 of the 
onsidered regions. These, and many more attributes (su
h as


enter of mass, 
ovarian
es, skewness or kurtosis [27℄) 
an be derived based on

raw region moments.

When the tree is further pro
essed by 
omparing the region attribute values

to a threshold t (or using a more 
omplex 
riterion), and making a de
ision

to preserve or reje
t a region based on the attribute value, we are performing

an attribute �ltering. While �ltering with an in
reasing attribute is relatively

straightforward, advan
ed �ltering strategies have to be used when performing

a �ltering with nonin
reasing (e. g. shape) attributes [5, 19, 24℄.

2.4 Granulometries and global pattern spe
tra

Attribute opening is a spe
i�
 kind of attribute �ltering, in whi
h the attribute

used is in
reasing. Su
h a transformation is anti-extensive, in
reasing and idem-

potent. A size granulometry 
an be 
omputed from a series of su
h openings,

using in
reasing values for the threshold t. This series also satis�es the absorp-

tion property, sin
e applying an opening with t′ < t will have no e�e
t on an



Table 1: Subsets of the UCID database used in experiments.

# 
ategories / 
ategories

examples sele
ted

u
id5 31 / 5 all UCID 
ategories

with ≥ 5 examples

u
id4 44 / 4 all UCID 
ategories ≥ 4
u
id3 77 / 3 all UCID 
ategories ≥ 3
u
id2 137 / 2 all UCID 
ategories ≥ 2
u
id1 262 / 1 all UCID 
ategories

image already �ltered with an opening using the threshold t. In other words,

a size a granulometry 
an be seen as a set of sieves of in
reasing grades, ea
h

letting only details of 
ertain sizes [24℄ pass through.

Instead of fo
using on the details remaining, it is also possible to 
onsider the

amount of detail removed between pairs of 
onse
utive openings. Su
h an analysis

has been introdu
ed by Maragos [12℄ under the name size pattern spe
tra. It 
an

be seen as a 1D histogram 
ontaining, for ea
h size 
lass or �ltering residue, its

Lebesgue measure (i. e. the number of pixels in the binary 
ase or the sum of

gray levels in the grays
ale 
ase). Su
h histograms 
an also be 
omputed over

di�erent shape 
lasses, leading to the 
on
ept of a shape-spe
tra [24℄. Finally,

both shape and size pattern spe
tra 
an be 
ombined to build shape-size pattern

spe
tra [24℄. A shape-size pattern spe
trum is a 2D histogram, where the amount

of image detail for the di�erent size-shape 
lasses are stored in dedi
ated 2D bins.

Previous work [23,24℄ as well as our own experiments suggest that the lower

attribute values 
arry more information. Thus, a logarithmi
 binning is used for

both attributes, produ
ing higher resolution bins for low attribute values. Let

v be the attribute value for one of the attributes, Nb the total desired number

of bins and m the upper bound for that attribute (whi
h 
an be the maximal

attribute value in the hierar
hy, or a smaller value if we de
ide to ignore attribute

values above a 
ertain threshold). If the minimal value for the attribute is 1 (as

with both area and the 
orre
ted non
ompa
tness), the base for the logarithmi


binning b, and the �nal bin c, are determined as:

b = Nb

√

m, (3)

c = ⌊logb v⌋ (4)

Enumerating the bins starting from 1, the i-th bin has the range [bi−1, bi].

Conne
ted pattern spe
tra are e�e
tively 
al
ulated in a single pass over

a max-tree [5, 24℄. For every region, we 
al
ulate both the size attribute v1 =
A(Lk,i) and shape attribute v2 = NC (Lk,i), and add the area of the region

weighted by its 
ontrast with the parent region δh to the spe
trum bin S(c1, c2).
Before using the spe
trum as a des
riptor, we equalize the sums in the bins

as

5

√

S(c1, c2). More information and dis
ussion about the algorithm used to


ompute the des
riptors is given in Se
. 5.



3 Database and experimental setup

To evaluate the retrieval performan
e of the LPS des
riptor without introdu
ing

noise in the results with approximate sear
h approa
hes [10, 22℄, we 
hose a

relatively small UCID database [20℄, on whi
h we 
an perform an exa
t sear
h.

The performan
e of our LPS des
riptors is 
ompared to SIFT [11℄.

The whole UCID database 
ontains 1338 images of size 512× 384 pixels, di-

vided into 262 unbalan
ed 
ategories. After region dete
tion and des
ription, a

single database entry for every 
ategory is 
onstru
ted, 
omprising the des
rip-

tors from all the images of that 
ategory. Therefore, to equalize the database

entry sizes as mu
h as possible, di�erent subsets of the UCID database were

used in the experiments, where the number of examples per 
ategory is 
onstant

for ea
h database subset (the required number of images is taken from larger 
at-

egories in order provided by the ground truth). Tab. 1 summarizes the subsets

of the database used for experiments presented herein.

A KD-Tree index [7℄ is then built based on the 
ategory des
riptors, and

stored for querying using the FLANN library [15℄. We then perform a query

with 1 image for every database 
ategory. The index performs a kNN sear
h

(k = 7) with ea
h des
riptor of a region dete
ted on the query image. The �nal


ategory is given through a voting me
hanism where ea
h nearest neighbor di of

a query des
riptor qj will 
ast a vote for the 
ategory cat(di) it belongs to:

vote(cat(di)) =
100

(L1(di, qj) + 0.1) × |cat(di)|wcat

. (5)

L1(di, qj) refers to the distan
e between these two des
riptors and |cat(di)| is the
number of des
riptors in the 
ategory of the i-th nearest neighbor. Finally, wcat

is a parameter of the experimental setup. The �ve 
ategories with the highest

vote s
ores are examined in order to evaluate the performan
e of the des
riptors.

The measures we used are mean average pre
ision at �ve (MAP�5) and

pre
ision at one (P�1). Performan
e for di�erent values of wcat are shown in

Fig. 1(a) and 2(d), but for all the summarized results, only the performan
e

for the optimal wcat value for ea
h experiment is shown. This 
hoi
e is made in

order to present a fair 
omparison, and sin
e not all the des
riptors rea
h their

peak performan
e for the same value of wcat . This is additionally justi�ed as

this parameter is not present when using an approximate 
lassi�
ation s
heme.

4 Lo
al pattern spe
tra

Lo
al pattern spe
tra (LPS) are 
al
ulated from the sele
ted MSER regions. As

the two trees 
ontain di�erent regions, the des
riptor for a maximal MSER will

only be based on the max-tree, and similarly for the minimal MSERs.

The LPS are 
al
ulated like the global ones, ex
ept the 
al
ulation is done

on the 
orresponding subtree. When 
al
ulating the LPS for the MSER region

Lk,i
in the tree, we only 
onsider the attribute values of the des
endants of the

node. However, transitioning to the lo
al version of the des
riptor will introdu
e

a new parameter in�uen
ing the s
ale invarian
e property of the des
riptors.



Table 2: Parameters and their optimal values for the LPS.

symbol signi�
an
e value SI-LPS value SV-LPS

mA upper bound for area region size

mNC

upper bound

for non
ompa
tness

53 56

NA
b number of area bins 9 10

NNC

b

number of

non
ompa
tness bins

6

M
s
ale parameter for

the size attribute

20000 region size

w(n1,1)
normalized moment weights

20

w(n2,0), w(n0,2),
10

w(n4,0), w(n0,4)

To a
hieve both the desired properties and 
ompetitive performan
e, the pro-

posed des
riptor is explained here through examining the experiments used to

establish the best parameters. The summary of these parameters, explained indi-

vidually hen
eforth, 
an be found in Tab. 2. Additionally, we 
onsider 
ombining

the LPS with normalized 
entral moments and enhan
ing the performan
e by

adding the global pattern spe
tra. The in�uen
e of the database on the results

is also dis
ussed.

4.1 S
ale invarian
e

When 
al
ulating a global pattern spe
trum for an entire image, the whole image

size is used to determine the base of the logarithmi
 binning (espe
ially if the

database images are the same size [23,24℄). If we 
hoose to determine the binning

base for ea
h region separately based on the area of that region for the lo
al

des
riptor s
heme, the resulting LPS des
riptor is not s
ale invariant.

Consider two version of the same region at di�erent s
ales, with the area

values belonging to the range [1, m1] and [1, m2] respe
tively. The s
ale invari-
an
eproperty requires that, for a value v1 ∈ [1, m1], the bin c1 determined in the

original s
ale is the same as the bin c2 for the value v2 = v1
m2

m1
s
aled to the

range [1, m2]. However, this is not the 
ase for m1 6= m2, as:

c1 = log Nb
√

m1
v1 6= c2 = log Nb

√
m2

v2. (6)

Therefore, to ensure the s
ale invarian
e of the des
riptors, the area used to

determine the binning and the logarithmi
 base have to be the same for all the

regions. This area be
omes then a parameter of the size attribute in LPS, 
alled

the s
ale parameter M .

Using a 
ommon s
ale M 
an be seen as res
aling all the regions to a referen
e

s
ale, and has two 
onsequen
es. First, for a region of size m > M , the minimal

area value v of this region that 
an 
ontribute to the spe
trum when using a


ommon binning is su
h that v′ = v M
m

= 1, meaning that all the (sub)regions

with the area smaller then

m
M

will be ignored. However, some parti
ular regions
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Fig. 1: The results for the �nal version of the des
riptors expressed in terms of mean

average pre
ision at 5 (MAP�5) and pre
ision at 1 (P�1) for u
id5 dataset for varying


ategory weights are shown in (a). The results for u
id5�u
id1 are summarized on (b)

(performan
e shown for optimal weight wcat for every dataset).

with a large enough area 
an still disappear when res
aling. This is the 
ase for

long thin obje
ts with the width (along any dimension) small enough to down-

s
ale to under 1 pixel. Su
h regions should be ignored in the pattern spe
trum,

even if their attribute values �t with the binning. Be
ause of this, we also deter-

mine the maximal possible value of the non
ompa
tness attribute for all of the

available area bins.

Se
ond, the minimal area value (1 pixel) of a region of size m < M will be

res
aled to the value v′ = M
m

> 1, and the lower area bins at the 
ommon s
ale

will be empty. The �rst area bin cmin that will 
ontain information is then:

1 = bcmin−1 m

M
→ cmin = logb

M

m
+ 1. (7)

We 
ompare 2 versions of the des
riptor: a) the s
ale variant version (SV-

LPS), where the area of ea
h region is used as the s
ale parameter M , and

b) the s
ale invariant version (SI-LPS) where M is the same for all regions.

The SV-LPS outperforms the SI-LPS on the performed experiments (
f. Fig. 1),

and mat
hes the SIFT performan
e. The best performan
e for the SI-LPS was

obtained for M = 20000 (found experimentally) for UCID images. However,

the UCID database is not very 
hallenging in terms of s
ale 
hange. We expe
t

the SI-LPS performan
e to be less a�e
ted than that of SV-LPS when running

experiments on a database fo
using on s
ale 
hange.

4.2 Binning parameters

With the area attribute, the upper bound used, mA, is simply the size of the

region: we 
an plausibly expe
t regions of all sizes lower than the size of the

region itself to be present in its de
omposition.

Examining the values of the non
ompa
tness attribute for several images, we

determined that very few regions have high values of this attribute. As su
h,



non
ompa
tness values higher than a 
ertain threshold 
an be safely ignored.

Optimal values mNC for both SV-LPS and SI-LPS were determined by exam-

ining the performan
e of the values 
lose to the ones used in [23, 24℄. Similar

experiments were done to determine NNC

b and NA
b . The parameter tuning ex-

periments are shown in Fig. 2.

The best parameters for the SI-LPS are easy to determine; we 
hose NNC

b = 6
and mNC = 53. For the number of area bins, we tested both NA

b = 8 and

NA
b = 10 in the �nal des
riptor 
ombination (to be dis
ussed in the following

subse
tion). Using NA
b = 10 produ
es better �nal results for SI-LPS, whi
h are

shown on Fig. 1. For SV-LPS, the in�uen
e of both parameters for non
om-

pa
tness is mu
h slighter. Surprisingly, we found that the optimal performan
e

of SV-LPS rea
hes an optimum at the lower value of NA
b = 9 (but a higher

mNC = 56 than SI-LPS). The optimal values for both SI-LPS and SV-LPS are

listed in Tab. 2.

We also noted that using the optimal SI-LPS parameters in the s
ale vari-

ant version, we 
losely mat
h the performan
e of our original parameter 
hoi
e

after the 
ombination with image moments. Currently, no set of parameters is

performing 
learly better, but if future experiments 
on�rm this behavior, it is

still preferable to use a smaller NA
b and de
rease des
riptor size.

4.3 Image moments and global pattern spe
tra

Five image moments, n1,1, n2,0, n0,2, n0,4 and n4,0, were appended to a �nal ver-

sion of all LPS des
riptors. The weights resulting in the best performan
e (using

the L1 distan
e) were determined by examining the 
ombination of the LPS and

ea
h of the moments separately. This weight is 20 for n1,1 and 10 for other mo-

ments used. Additionally, an indi
ator value 2 is added to all the LPS des
riptors

originating from the max-tree, and 0 for the min-tree, thus additionally in
reas-

ing the L1 distan
e between any minimal and maximal MSERs.

Global pattern spe
tra on their own a
hieve MAP�5 around 70% on the

u
id5 dataset. They are added to the list of LPS for every image and treated

equally to other lo
al des
riptors. The in�uen
e of 
ombining these values with

SI-LPS and SV-LPS for the optimal parameter 
hoi
e is shown in Fig. 2(d).

4.4 Region size and database in�uen
e

Before 
al
ulating any des
riptors in the evaluation framework of Mikolaj
zyk et

al. [14℄, the region is �rst approximated by an ellipse with the same 
orresponding

se
ond moments, and then the region size is in
reased three times. Only then is

the SIFT des
riptor 
al
ulated using the provided implementation [11℄.

Sin
e we want to be able to use the max-tree and the min-tree for the pattern

spe
tra 
al
ulation, we 
hose to work with an
estor regions of the dete
ted MSER

su
h that the size of the parent is no larger than xA(nk,i). We determined that,

in order to get the same average area in
rease as in [14℄, we should use the value

x = 7.5. The reason is that many regions have a mu
h bigger parent region,

whi
h is then not 
onsidered, and the size in
rease is often smaller than x times.
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Fig. 2: Parameter tuning on u
id5 database. The e�e
t of varying the upper bound for

non
ompa
tness is shown on (a), similar for the amount of non
ompa
tness bins on

(b), and the area bins on (
). The e�e
t of adding the moments and indi
ator value

to the des
riptor, with the best parameter settings is shown in (d). Note that the

global des
riptors for the SI-LPS are 
al
ulated with the s
ale value used for the other

des
riptors, and not using image size.

Fig. 1(b) summarizes the performan
e on all the subsets from Tab. 1, allow-

ing us to examine the behavior of the des
riptors for the in
reasing size of the

database. The performan
e expe
tantly de
reases with the in
rease of database

size and de
rease of the number of examples provided per 
ategory. As the sepa-

rate in�uen
e of these two fa
tors 
an not be determined just from experiments

on these subsets, additional tests were 
arried out and analyzed in [4℄.

Besides the performan
e, it is important to note here that on the largest

database subset used, the query speed for LPS is more than 4× faster than that

for SIFT (when the LPS des
riptor of size 60 is used).

5 Remarks on the algorithm

The system was implemented in C++. The max-tree stru
ture was used for

both MSER dete
tion and keypoint des
ription. The non-re
ursive max-tree

algorithm of [17℄ was used. This allows 
on
urrent 
omputation of the MSER



stability fun
tion (Eq. (1)), the area attribute and the moment of inertia, and

the MSER. The method method is as follows:

� Compute the max-tree and min-tree a

ording to [17℄.

� As the trees are built, 
ompute:

• lo
al minima of the stability fun
tion, forming the sets of MSER regions,

• attribute values for the nodes of the trees,

• global pattern spe
tra [24℄.

� For ea
h sele
ted MSER region, repeat the 
omputation of the pattern spe
-

tra lo
ally in a sub-tree.

� Combine the attribute values, indi
ator value 0 or 2 and the pattern spe
tra

to form a LPS des
riptor for a MSER region.

� Add both global pattern spe
tra [23℄ 
orresponding to the whole image in

the 
olle
tion of des
riptors for the image.

Unlike the 
al
ulation of global pattern spe
tra, the lo
al pattern spe
tra

use the 
onstru
ted hierar
hy but 
an not be 
omputed 
on
urrently be
ause of

di�erent upper limits (for area) and binning s
aling value.

However, in 
ase of a
hieving improved results with the SI-LPS, adopting the

s
ale invariant version to 
on
urrent 
omputation 
an be 
onsidered. While it

would sa
ri�
e true s
ale invarian
e, if the value M is used as a s
ale parameter,

and we are 
al
ulating for a region of size m, we 
an set the largest bin to be

[b⌈logbm⌉−1, b⌈logbm⌉], with the smallest bin having the upper bound b⌈logbm⌉−Nb
.

While it is then not always possible to get the values from the whole range of the

largest bin, the bin values of the 
hildren 
an be used by their parents. When

the upper bound of the largest bin 
hanges, the 
hild values 
an still be used

with dis
arding the values from the smallest bin: the s
ale of those details is too

low to be 
onsidered.

6 Dis
ussion and 
on
lusion

After su

essfully applying global pattern spe
tra in CBIR 
ontext [23, 25℄, we

now attempt to 
onstru
t a lo
al region des
riptor based on the pattern spe
tra.

On the 
hosen subsets of the UCID database [20℄, the results obtained were

better than when only using global pattern spe
tra (almost 20% in MAP�5 on

u
id5 ), and mat
hed the performan
e of the SIFT des
riptor.

The proposed LPS des
riptors have another advantage. In addition to the

des
ription 
al
ulation pro
ess being slightly faster for the pattern spe
tra than

for the SIFT des
riptors, our des
riptors length is only 47% of the length of

SIFT. This makes using these des
riptors mu
h faster � performing 262 queries

on an index of the size 262 (u
id1 dataset) took over 4 times longer using SIFT

des
riptors. This suggests that (espe
ially in large s
ale CBIR systems), we 
an

use more example images in order to enhan
e the pre
ision, while still performing

faster than SIFT.

As the performan
e of the des
riptors depends on a lot of parameters, we need

to explore a way to determine the optimal set of parameters automati
ally. Also,



while the LPS des
riptors are rotation invariant, introdu
ing s
ale invarian
e


auses a de
rease in performan
e. We plan to evaluate both the SI-LPS and

SV-LPS on a database fo
used on s
ale 
hanges to determine the value of true

s
ale invarian
e in su
h 
ases.

Despite the parameters and the des
riptor invarian
e whi
h have to be fur-

ther studied, mat
hing the SIFT performan
e on the three subsets of the u
id

dataset with a des
riptor of less than half the length of SIFT is very promising.

Additional su

essful experiments were performed and analyzed in [4℄. It also

prompts for evaluating the LPS performan
e with large s
ale CBIR system. It

is probable that the results 
ould be even further improved by 
ombining the


urrent LPS with pattern spe
tra based on other shape attributes, like in [23℄.

Lastly, the L1 distan
e, designed to 
ompare ve
tors of s
alar values, is not

the best 
hoi
e for 
omparing histogram-like stru
tures. Using di�erent dis-

tan
es, or even divergen
es (e.g. [16℄) whi
h take into a

ount the nature of

the des
riptor should also improve the performan
e.

Referen
es

1. Arandjelovi¢, R., Zisserman, A.: Three things everyone should know to improve

obje
t retrieval. In: Computer Vision and Pattern Re
ognition (CVPR), 2012 IEEE

Conferen
e on. pp. 2911�2918. IEEE (2012)

2. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF).

Computer vision and image understanding 110(3), 346�359 (2008)

3. Benediktsson, J.A., Pesaresi, M., Arnason, K.: Classi�
ation and Feature Extra
-

tion for Remote Sensing Images from Urban Areas based on Morphologi
al Trans-

formations. IEEE Transa
tions on Geos
ien
e and Remote Sensing 41(9), 1940�

1949 (2003)

4. Bosilj, P., Kijak, E., Wilkinson, M.H.F., Lefèvre, S.: Short lo
al des
riptors from

2D 
onne
ted pattern spe
tra, submitted to ICIP 2015

1

5. Breen, E.J., Jones, R.: Attribute openings, thinnings, and granulometries. Com-

puter Vision and Image Understanding 64(3), 377�389 (1996)

6. Dalla Mura, K., Benediktsson, J.A., Waske, B., Bruzzone, L.: Morphologi
al At-

tribute Pro�les for the Analysis of Very High Resolution Images. IEEE Transa
-

tions on Geos
ien
e and Remote Sensing 48(10), 3747�3762 (2010)

7. Friedman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for �nding best mat
hes

in logarithmi
 expe
ted time. ACM Transa
tions on Mathemati
al Software

(TOMS) 3(3), 209�226 (1977)

8. Hu, M.K.: Visual pattern re
ognition by moment invariants. Information Theory,

IRE Transa
tions on 8(2), 179�187 (1962)

9. Jones, R.: Component trees for image �ltering and segmentation. In: IEEE Work-

shop on Nonlinear Signal and Image Pro
essing, E. Coyle, Ed., Ma
kina
 Island

(1997)

10. Lejsek, H., Jónsson, B.T., Amsaleg, L.: NV-Tree: Nearest Neighbors at the Billion

S
ale. In: Pro
eedings of the 1st ACM International Conferen
e on Multimedia

Retrieval. pp. 54:1�54:8. ICMR '11 (2011)

1

preprint at people.irisa.fr/Ewa.Kijak/preprint/i
ip.pdf



11. Lowe, D.G.: Distin
tive image features from s
ale-invariant keypoints. Interna-

tional journal of 
omputer vision 60(2), 91�110 (2004)

12. Maragos, P.: Pattern spe
trum and multis
ale shape representation. Pattern Anal-

ysis and Ma
hine Intelligen
e, IEEE Transa
tions on 11(7), 701�716 (1989)

13. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from

maximally stable extremal regions. Image and vision 
omputing 22(10), 761�767

(2004)

14. Mikolaj
zyk, K., S
hmid, C.: A performan
e evaluation of lo
al des
riptors. Pattern

Analysis and Ma
hine Intelligen
e, IEEE Transa
tions on 27(10), 1615�1630 (2005)

15. Muja, M., Lowe, D.G.: Fast Approximate Nearest Neighbors with Automati
 Al-

gorithm Con�guration. In: International Conferen
e on Computer Vision Theory

and Appli
ation VISSAPP'09). pp. 331�340. INSTICC Press (2009)

16. Mwebaze, E., S
hneider, P., S
hleif, F.M., Aduwo, J.R., Quinn, J.A., Haase, S.,

Villmann, T., Biehl, M.: Divergen
e-based 
lassi�
ation in learning ve
tor quanti-

zation. Neuro
omputing 74(9), 1429�1435 (2011)

17. Nistér, D., Stewénius, H.: Linear time maximally stable extremal regions. In: Com-

puter Vision�ECCV 2008, pp. 183�196. Springer (2008)

18. Ouzounis, G.K., Pesaresi, M., Soille, P.: Di�erential Area Pro�les: De
omposition

Properties and E�
ient Computation. IEEE Transa
tions on Pattern Analysis and

Ma
hine Intelligen
e 34(8), 1533�1548 (2012)

19. Salembier, P., Oliveras, A., Garrido, L.: Antiextensive 
onne
ted operators for

image and sequen
e pro
essing. Image Pro
essing, IEEE Transa
tions on 7(4),

555�570 (1998)

20. S
haefer, G., Sti
h, M.: UCID: An Un
ompressed Colour Image Database. In: Ele
-

troni
 Imaging 2004. pp. 472�480. International So
iety for Opti
s and Photoni
s

(2003)

21. S
hmid, C., Mohr, R.: Obje
t re
ognition using lo
al 
hara
terization and semi-

lo
al 
onstraints. IEEE Transa
tions on Pattern Analysis and Ma
hine Intelligen
e

19(5), 530�534 (1997)

22. Sivi
, J., Zisserman, A.: Video Google: E�
ient visual sear
h of videos. In: Pon
e,

J., Hebert, M., S
hmid, C., Zisserman, A. (eds.) Toward Category-Level Obje
t

Re
ognition, LNCS, vol. 4170, pp. 127�144. Springer (2006)

23. Tushabe, F., Wilkinson, M.H.F.: Content-based image retrieval using 
ombined 2D

attribute pattern spe
tra. In: Advan
es in Multilingual and Multimodal Informa-

tion Retrieval, pp. 554�561. Springer (2008)

24. Urba
h, E.R., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Conne
ted shape-size pat-

tern spe
tra for rotation and s
ale-invariant 
lassi�
ation of gray-s
ale images.

Pattern Analysis and Ma
hine Intelligen
e, IEEE Transa
tions on 29(2), 272�285

(2007)

25. Urba
h, E.R., Wilkinson, M.H.F.: Shape-only granulometries and grey-s
ale shape

�lters. In: Pro
. Int. Symp. Math. Morphology (ISMM). vol. 2002, pp. 305�314

(2002)

26. Vedaldi, A., Fulkerson, B.: VLFeat: An Open and Portable Library of Computer

Vision Algorithms. http://www.vlfeat.org/ (2008)

27. Wilkinson, M.H.F.: Generalized pattern spe
tra sensitive to spatial information. In:

Pattern Re
ognition, International Conferen
e on. vol. 1, pp. 10021�10021. IEEE

Computer So
iety (2002)


