
HAL Id: hal-01168137
https://hal.science/hal-01168137v1

Submitted on 25 Jun 2015 (v1), last revised 24 Sep 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fluidify: Decentralized Overlay Deployment in a
Multi-Cloud World

François Taïani

To cite this version:
François Taïani. Fluidify: Decentralized Overlay Deployment in a Multi-Cloud World. DAIS, Jun
2015, INRIA Grenoble, France. pp.14. �hal-01168137v1�

https://hal.science/hal-01168137v1
https://hal.archives-ouvertes.fr

Fluidify: Decentralized Overlay Deployment in a
Multi-Cloud World

A. C. Resmi1 and François Taiani1,2

1 Université de Rennes 1 - IRISA, 2 ESIR, Rennes, France
{rariyatt, francois.taiani}@irisa.fr

Abstract. As overlays get deployed in large, heterogeneous systems-of-
systems with stringent performance constraints, their logical topology
must exploit the locality present in the underlying physical network. In
this paper, we propose a novel decentralized mechanism—Fluidify—for
deploying an overlay network on top of a physical infrastructure while
maximizing network locality. Fluidify uses a dual strategy that exploits
both the logical links of an overlay and the physical topology of its under-
lying network. Simulation results show that in a network of 25,600 nodes,
Fluidify is able to produce an overlay with links that are on average 94%
shorter than that produced by a standard decentralized approach based
on slicing, while demonstrating a sub-linear time complexity.

1 Introduction

Overlays are increasingly used as a fundamental building block of modern dis-
tributed systems, with numerous applications [5, 8, 11, 13, 15, 22, 25]. Unfortu-
nately, many popular overlay construction protocols [1, 10, 27] do not usually
take into account the underlying network infrastructure on which an overlay is
deployed, and those that do tend to be limited to a narrow family of applica-
tions or overlays [29,30]. This is particularly true of systems running in multiple
clouds, in which latency may vary greatly, and ignoring this heterogeneity can
have stark implications in terms of performance and latency.

In the past, several works have sought to take into account the topology of
the underlying infrastructure to realise network-aware overlays [21,28–30]. How-
ever, most of the proposed solutions are service-specific and they do not translate
easily to other overlays. To address this lack, we propose a novel decentralized
mechanism—called Fluidify—that seeks to maximize network locality when de-
ploying an overlay network. Fluidify uses a dual strategy that exploits both the
logical links of an overlay and the physical topology of its underlying infrastruc-
ture to progressively align one with the other. Our approach is fully decentralized
and does not assume any global knowledge or central form of co-ordination.

The resulting protocol is generic, efficient, scalable. Simulation results show
that in a network of 25,600 nodes, Fluidify is able to produce an overlay with links
that are on average 94% shorter than that produced by a standard decentralized
approach based on slicing, while converging to a stable configuration in a time
that is sub-linear (≈ O(n0.6)) in the size of the system.

2 A. C. Resmi and François Taiani

3"

2"

1"

6"

4"

5"

3"

5"

1"

6"

4"

2"

(a) Randomly connected overlay (b) Locality aware overlay

Geographical Area Physical Machine Logical Data

Fig. 1. Illustration of a randomly connected overlay and a network-aware overlay

The remainder of the paper is organized as follows. We first present the
problem we address and our intuition (Sec. 2). We then present our algorithm
(Sec. 3), and its evaluation (Sec. 4). We finally discuss related work (Sec. 5), and
conclude (Sec. 6).

2 Background, Problem, and Intuition

Overlay networks organize peers in logical topologies on top of an existing net-
work to extend its capabilities, with application to storage [22,25], routing [8,11],
recommendation [1,27], and streaming [5,15]. Although overlays were originally
proposed in the context of peer-to-peer (P2P) systems, their application today
encompasses wireless sensor networks [7] and cloud computing [3, 13].

2.1 The problem: building network-aware overlays

One of the challenges when using overlays, in particular structured ones, is to
maintain desirable properties within the topology, in spite of failures, churn, and
request for horizontal scaling. This challenge can be addressed through decentral-
ized topology construction protocols [10,14,17,27], which are scalable and highly
flexible. Unfortunately, such topology construction solutions are not usually de-
signed to take into account the infrastructure on which an overlay is deployed.
This brings clear advantages in terms of fault-tolerance, but is problematic from
a performance perspective, as overlay links may in fact connect hosts that are
far away in the physical topology. This is particularly likely to happen in hetero-
geneous systems, such as multi-cloud deployment, in which latency values might
vary greatly depending on the location of individual nodes.

For instance, Fig. 1(a) depicts a randomly connected overlay deployed over
two cloud providers (rounded rectangles). All overlay links cross the two providers,
which is highly inefficient. By contrast, in Fig. 1(b), the same logical overlay only
uses two distant links, and thus minimizes latency and network costs.

This problem has been explored in the past [20, 21, 28–30], but most of the
proposed solutions are either tied to a particular service or topology, or limited

Fluidify: Decentralized Overlay Deployment in a Multi-Cloud World 3

(a) Initial overlay (b) After round 1 (c) After round 2

3

1

2

4

0

5

(0)

(1) (2)

(3)

(4) (5)
n

q

p 3

2

1

4

0

5

(0)

(1) (2)

(3)

(4) (5)
n

q

p 3

2

1

4

5

0

(0)

(1) (2)

(3)

(4) (5)

Fig. 2. Example of basic Fluidify approach on a system with n=6 and d=2

to unstructured overlays, and therefore cannot translate to the type of systems
we have just mentioned, which is exactly where the work we present comes in.

2.2 Our intuition: a dual approach

Our proposal, Fluidify, uses a dual strategy that exploits both an overlay’s logical
links and its physical topology to incrementally optimize its deployment.

We model a deployed overlay as follows: each node possesses a physical index,
representing the physical machine on which it runs, and a logical index, repre-
senting its logical position in the overlay. Each node also has a physical and
logical neighbourhood: the physical neighbors of a node are its d closest neigh-
bors in the physical infrastructure, according to some distance function dnet()
that captures the cost of communication between nodes. The logical neighbors
of a node are the node’s neighbors in the overlay being deployed. For simplicity’s
sake, we model the physical topology as an explicit undirected graph between
nodes, with a fixed degree. We take d to be the fixed degree of the graph, and
the distance function to be the number of hops in this topology.

Fig. 2(a) shows an initial configuration in which the overlay has been de-
ployed without taking into account the underlying physical infrastructure. In
this example, both the overlay (solid line) and the physical infrastructure (rep-
resented by the nodes’ positions) are assumed to be rings. The two logical indices
0 and 1 are neighbors in the overlay, but are diametrically placed in the underly-
ing infrastructure. By contrast Fig. 2(c) shows an optimal deployment in which
the logical and physical links overlap.

Our intuition, in Fluidify, consists of exploiting both the logical and physical
neighbors of individual nodes, in a manner inspired from epidemic protocols, to
move from the configuration of Fig. 2(a) to that of Fig. 2(c). Our basic algo-
rithm is organized in asynchronous rounds and implements a greedy approach as
follows: in each round, each node n randomly selects one of its logical neighbors
(noted p) and considers the physical neighbor of p (noted q) that is closest to
itself. n evaluates the overall benefit of exchanging its logical index with that of
q. If positive, the exchange occurs (Fig. 2(b) and then Fig. 2(c)).

Being a greedy algorithm, this basic strategy carries the risk of ending in a
local minimum (Fig.3). To mitigate such situations, we use simulated annealing
(taking inspiration from recent works on epidemic slicing [19]), resulting in a
decentralized protocol for the deployment of overlay networks that is generic,
efficient and scalable.

4 A. C. Resmi and François Taiani

(0)

(1)

(9)

(3) (2)

(7) (8)

(4)

(5)

(6)

2 3

4

7

8

1

0

9 6

5

Fig. 3. Example of local minimum of a system with n=10 and d=2

3 The Fluidify algorithm

3.1 System model

We consider a set of nodes N = {n1, n2, .., nN} in a message passing system.
Each node n possesses a physical (n.net) and a logical index (n.data). n.net
represents the machine on which a node is deployed. n.data represents the role
n plays in the overlay, e.g. a starting key in a Chord ring [17,25].

Table 1 summarizes the notations we use. We model the physical infrastruc-
ture as an undirected graph Gnet = (N,Enet), and capture the proximity of nodes
in this physical infrastructure through the distance function dnet(). In a first ap-
proximation, we use the hop distance between two nodes in Gnet for dnet(), but
any other distance would work. Similarly, we model the overlay being deployed
as an undirected graph Gdata = (N,Edata) over the nodes N .

Our algorithms use the k-NN neighborhood of a node n in a graph Gx, i.e. the
k nodes closest to n in hop distance in Gx, which we note as Γ k

x (n) . We assume
that these k-NN neighborhoods are maintained with the help of a topology
construction protocol [1,10,27]. In the rest of the paper, we discuss and evaluate
our approach independently of the topology construction used, to clearly isolate
its workings and benefits. Under the above model, finding a good deployment of
Gdata onto Gnet can be seen as a graph mapping problem, in which one seeks to
optimize the cost function

∑
(n,m)∈Edata

dnet(n,m).

3.2 Fluidify

The basic version of Fluidiy (termed Fluidify (basic)) directly implements the
ideas discussed in Sec. 2.2 (Fig. 4): each node n first chooses a random logical
neighbor (noted p, line 2), and then searches for the physical neighbor of p (noted
q) that offers the best reduction in cost (argmin operator at line 3)1. The code
shown slightly generalises the principles presented in Sec. 2, in that the nodes p
and q are chosen beyond the 1-hop neighborhood of n and p (lines 2 and 3), and
consider nodes that are kdata and knet hops away, respectively.

1 argminx∈S
(
f(x)

)
returns one of the x in S that minimizes f(x).

Fluidify: Decentralized Overlay Deployment in a Multi-Cloud World 5

Table 1. Notations and Entities

n.net physical index of node n
n.data logical index of node n
dnet distance function to calculate the distance between two nodes in physical space
Gnet the physical graph (N,Enet)
Gdata the logical graph (N,Edata)

Γ knet(n) k closest nodes to n in Gnet, in hop distance

Γ kdata(n)k closest nodes to n in Gdata, in hop distance

Table 2. Parameters of Fluidify

knet size of the physical neighborhood explored by Fluidify
kdata size of the logical neighborhood explored by Fluidify
K0 initial threshold value for simulated annealing
rmax fade-off period for simulated annealing (# rounds)

1: In round(r) do
2: p ← random node from Γ

kdata
data (n)

3: q ← argmin
u∈Γknet

net (p)
∆(n, u)

4: conditional swap(n, q, 0)

5: Procedure ∆(n, u)
6: δn ←

∑
(n,r)∈Edata

dnet(u, r)−
∑

(n,r)∈Edata
dnet(n, r)

7: δu ←
∑

(u,r)∈Edata
dnet(n, r)−

∑
(u,r)∈Edata

dnet(u, r)

8: return δn + δu

9: Procedure conditional swap(n, q, δlim)
10: if ∆(n, q) < δlim then
11: swap n.data and q.data
12: swap Γ

kdata
data (n) and Γ

kdata
data (q)

13: end if

Fig. 4. Fluidify (basic)

The potential cost reduction is computed by the procedure ∆(n, u) (lines 5-
8), which returns the cost variation if n and u were to exchange their roles in
the overlay. The decision whether to swap is made in conditional swap(n, q, δlim)
(with δlim = 0 in Fluidify Basic).

To mitigate the risk of local minimums, we extend it with simulated anneal-
ing [19], which allows two nodes to be swapped even if there is an increase in the
cost function. We call the resulting protocol Fluidify (SA), shown in Figure 5.
In this version, we swap nodes if the change in the cost function is less than a
limit, ∆limit(r), that gradually decreases to zero as the rounds progress (line 4).
∆limit(r) is controlled by two parameters, K0 which is the initial threshold value,
and rmax which is the number of rounds in which it is decreased to 0. In the
remainder of this paper, we use Fluidify to mean Fluidify (SA).

6 A. C. Resmi and François Taiani

1: In round(r) do
2: p ← random node from Γ

kdata
data (n)

3: q ← argmin
u∈Γknet

net (p)
∆(n, u)

4: conditional swap(n, q,∆limit(r))

5: Procedure ∆limit(r)
6: return max

(
0,K0 × (1− r/rmax)

)
Fig. 5. Fluidify (SA)

4 Evaluation

4.1 Experimental Setting and Metrics

Unless otherwise indicated, we use rings for both infrastructure graph Gnet and
overlay graph Gdata. We assume that the system has converged when the system
remains stable for 10 rounds.

The default simulation scenario is one in which the system consists of 3200
nodes, and use 16-NN logical and physical neighborhoods (knet = kdata = 16)
when selecting p and q. The initial threshold value for simulated annealing (K0)
is taken as |N |. rmax is taken as |N |0.6 where 0.6 was chosen based on the analysis
of the number of rounds Fluidify (basic) takes to converge.

We assess the protocols using two metrics:

– Proximity - captures the quality of the overlay constructed by the topology
construction algorithm. Lower value denotes a better quality.

– Convergence time - measures the number of rounds taken by the system to
converge.

Proximity is defined as the average network distance of logical links normal-
ized by the diameter of the network graph Gnet:

proximity =

E
(n,m)∈Edata

dnet(n,m)

diameter(Gnet)
(1)

where E represents the expectation operator, i.e. the mean of a value over a
given domain, and diameter() returns the longest shortest path between pairs
of vertices in a graph, i.e. its diameter. In a ring, it is equal to N/2.

4.2 Baselines

The performance of our approach is compared against three other approaches.
One is Randomized (SA) (Fig. 6) where each node considers a set of random
nodes from N for a possible swap. The other is inspired from epidemic slicing
[9,19], and only considers the physical neighbors of a node n for a possible swap
(Slicing (SA), in Figure. 8). The third approach is similar to PROP-G [20], and it
only considers logical neighbours of a node n for a possible swap (PROP-G (SA),

Fluidify: Decentralized Overlay Deployment in a Multi-Cloud World 7

1: In round(r) do
2: S ← knet random nodes from N
3: q ← argminu∈S ∆(n, u)
4: conditional swap

(
n, q,∆limit(r)

)
Fig. 6. Randomized (SA)

1: In round(r) do
2: S ← Γ

kdata
data (n)

3: q ← argminu∈S ∆(n, u)
4: conditional swap(n, q, 0)

Fig. 7. PROP-G

1: In round(r) do
2: q ← argmin

u∈Γknet
net (n)

∆(n, u)

3: conditional swap
(
n, q,∆limit(r)

)
Fig. 8. Slicing (SA)

1: In round(r) do
2: p← random node from Γ

kdata
data (n)

3: S ← Γ
knet

2
net (p) ∪ Γ

knet
2

net (n)
4: q ← argminu∈S ∆(n, u)
5: conditional swap(n, q, 0)

Fig. 9. Data-Net & Net

1: In round(r) do
2: p ← random node from Γ

kdata
data (n)

3: S ← Γ
knet

2
net (p) ∪

{
knet
2

rand. nodes ∈ N \ Γ
knet

2
net (p)

}
4: q ← argminu∈S ∆(n, u)
5: conditional swap(n, q, 0)

Fig. 10. Data-Net & R

in Figure. 7). In all these approaches simulated annealing is used as indicated
by (SA). The only difference between the above four approaches is the way in
which the swap candidates are taken.

To provide further comparison points, we also experimented with some com-
binations of the above approaches. Fig. 9 (termed Data-Net & Net) is a com-
bination of Fluidify (basic) with Slicing (SA). Fig. 10 (termed Data-Net & R)
is a combination of Fluidify (basic) with Randomized (SA). We also tried a
final variant, combination-R, in which once the system has converged using Flu-
idify (basic) (no more changes are detected for a pre-determined number of
rounds), nodes look for random swap candidates like we did in Fig. 6.

4.3 Results

All the results (Figs. 11-18 and Tables 3-5) are computed with Peersim [18]
and are averaged over 30 experiments. The source code is made available in
http://armi.in/resmi/fluidify.zip. When shown, intervals of confidence are com-
puted at 95% confidence level using a student t-distribution.

Evaluation of Fluidify (SA) The results obtained by Fluidify (SA) and the
three baselines on a ring/ring topology are given in Table 3 and charted in

8 A. C. Resmi and François Taiani

round 5 round 25 round 52

(a) Fluidify (SA)

round 5 round 25 round 49

(b) Slicing (SA)

Fig. 11. Illustrating the convergence of Fluidify (SA) & Slicing (SA) on a ring/ring
topology. The converged state is on the right. (N = K0 = 400, knet = kdata = 16)

Table 3. Performance of Fluidify against various baselines

Nodes
Proximity(%) Convergence (rounds)

Fluid(SA) Slicing(SA) Rand(SA) PROP-G(SA) Fluid(SA) Slicing(SA) Rand(SA) PROP-G(SA)

100 4.06 10.46 7.70 13.88 18.10 17.16 23.80 17.03
200 2.70 10.12 6.27 12.99 28.50 26.33 43.43 25.13
400 1.71 9.76 5.35 12.65 42.50 39.20 85.36 38.06
800 1.26 9.34 4.83 12.14 64.13 58.93 136.76 57.16

1,600 0.86 8.80 4.41 11.57 96.80 90.56 198.03 85.13
3,200 0.69 8.47 3.82 11.31 144.40 138.20 274.80 128.14
6,400 0.51 8.13 3.07 11.27 216.10 203.40 382.10 198.24

12,800 0.46 7.66 2.28 11.01 324.00 292.10 533.67 263.32
25,600 0.43 6.99 1.79 10.02 485.00 418.60 762.13 392.81

Figs. 12 and 13. In addition, Fig. 11 illustrate some of the rounds that Fluid-
ify (SA) and Slicing (SA) perform. Fig. 12 shows that Fluidify clearly outper-
forms the other three approaches in terms of proximity over a wide range of
network sizes.

Fig 13 charts the convergence time against network size in loglog scale for
Fluidify and its competitors. Interestingly all approaches show a polynomial con-
vergence time. This shows the scalability of Fluidify even for very large networks.
If we turn to Tab. 3, it is evident that as the network size increases, the time
taken for the system to converge also increases. Both Fluidify and Slicing (SA)
converges around the same time with Slicing (SA) converging a bit faster than
Fluidify. Randomized (SA) takes much longer (almost twice as many rounds).
PROP-G (SA) converges faster in comparison to all other approaches. The bet-
ter convergence of PROP-G (SA) and Slicing (SA) can be explained by the fact
that both approaches run out of interesting swap candidates more rapidly than
Fluidify. It is important to note that all approaches are calibrated to consider
the same number of candidates per round. This suggests that PROP-G (SA)
and Slicing (SA) runs out of potential swap candidates because they consider
candidates of lesser quality, rather than considering more candidates faster.

Fig. 14 shows how the proximity varies with round for our default system
settings. Initial avg. link distance was around N/4 where N is the network size
and this is expected as the input graphs are randomly generated. So the initial
proximity was approximately equal to 50%. Fluidify was able to bring down
the proximity from 50% to 0.7%. A steep decrease in proximity was observed
in initial rounds and later it decreases at a lower pace and finally settles to a

Fluidify: Decentralized Overlay Deployment in a Multi-Cloud World 9

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

100 200 400 800 1600 3200 6400 12800 25600

P
ro

xi
m

ity
 (

 in
 %

)

Network size

Fluidify (SA)
Slicing (SA)

Randomized (SA)
PROP-G (SA)

Fig. 12. Proximity. Lower is better. Flu-
idify (SA) clearly outperforms the base-
lines in terms of deployment quality.

 10

 100

 1000

 100 1000 10000 100000

C
on

ve
rg

en
ce

 ti
m

e
(#

R
ou

nd
s)

Network size

Fluidify (SA)
Slicing (SA)

Randomized (SA)
PROP-G (SA)

Fig. 13. Convergence time. All three ap-
proaches have a sublinear convergence (≈
1.237× |N |0.589 for Fluidify).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 50 100 150 200 250 300

P
ro

xi
m

ity
 (

 in
 %

)

Round

Fluidify (SA)
Slicing (SA)

Randomized (SA)
PROP-G (SA)

Fig. 14. Proximity over time (N =
K0 = 3200, knet = kdata = 16). Fluid-
ify (SA)’s optimization is more aggres-
sive than those of the other baselines.

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400

C
um

ul
at

iv
e

fr
eq

ue
nc

y
of

 n
od

es
(%

)

Avg_link_ distance

Fluidify (SA)
Slicing (SA)

Randomized (SA)
PROP-G (SA)

Fig. 15. Average link distances in con-
verged state (N = K0 = 3200, knet =
kdata = 16). Fluidify (SA)’s links are
both shorter and more homogeneous.

proximity value of 0.7% as shown in Fig 14. Randomized (SA) and PROP-G (SA)
were able to perform well in the initial stages but later on the gain in proximity
decreases. Slicing (SA) is unable to get much gain in proximity from the start
itself and converges to a proximity value of 8.4%. Cumulative distribution of
nodes based on the avg. link distance in a converged system for all the three
approaches is depicted in Fig. 15. It is interesting to see that nearly 83% of the
nodes are having an average link distance less than 10 and 37% were having an
average link distance of 1 in the case of Fluidify. But for Slicing (SA) even after
convergence, a lot of nodes are having an average link distance greater than 200.
Slicing (SA) clearly fails in improving the system beyond a limit.

The maximum, minimum and the mean gain obtained per swap in a default
system setting using Fluidify is shown in Fig. 16(a). As the simulation progresses
the maximum, minimum and the mean value of the cost function per swap in
each round starts getting closer and closer and finally becomes equal on conver-
gence. Maximum gain per swap (negative cost) is obtained in the initial rounds
of the simulation. Maximum value obtained by the cost function is expected to

10 A. C. Resmi and François Taiani

-6000

-4000

-2000

 0

 2000

 4000

 0 20 40 60 80 100 120 140 160

C
os

t v
ar

ia
tio

n
pe

r
sw

ap

Round

Minimum
Mean

Maximum

(a) Fluidify (SA)

-6000

-4000

-2000

 0

 2000

 4000

 0 50 100 150 200 250

C
os

t v
ar

ia
tio

n
pe

r
sw

ap

Round

Minimum
Mean

Maximum

(b) Randomized (SA)

-40

-30

-20

-10

 0

 10

 20

 30

 40

 0 20 40 60 80 100 120 140

C
os

t v
ar

ia
tio

n
pe

r
sw

ap

Round

Minimum
Mean

Maximum

(c) Slicing (SA)

Fig. 16. Variation of the cost function per swap over time. Lower is better. (N =
K0 = 3200, knet = kdata = 16, note the different scales) Fluidify (SA) shows the
highest amplitude of variations, and fully exploits simulated annealing, which is less
the case for Randomized (SA), and not at all for slicing.

gradually decrease from a value less than or equal to 3200, which is the initial
threshold value for simulated annealing, to 0. Variation of cost function for Ran-
domized (SA) (Fig. 16(b)) and PROP-G (SA) also shows a similar behaviour
where the system progresses with a very small gain for a long period of time.
The most interesting behaviour is that of Slicing (SA) (Fig.16(c)) which does
not benefit much with the use of simulated annealing. The maximum gain that
can be obtained per swap is 32 and the maximum negative gain is 2. This is
because only the physically closer nodes of a given node are considered for a
swap and the swap is done with the best possible candidate.

The message cost per round per node will be equal to the amount of data
that a node exchanges with another node. In our approach the nodes exchange
their logical index and the logical neighbourhood. We assume that each index
value amounts to 1 unit of data. So the message cost will be 1+kdata which will
be 17 in default case. The communication overhead in the network per cycle will
be equal to the average number of swaps occurring per round times the amount
of data exchanged per swap. A single message costs 17 units. So a swap will cost
34 units. In default setting, an average of 2819 swaps happen per round and this
amounts to around 95846 units of data per round.

All the four approaches that we presented here are generic and can be used for
any topologies. Table. 4 shows how the four approaches fares for various topolo-
gies in a default setting. Fluidify clearly out performs the other approaches.

Effects of variants Figure. 17 shows that compared to its variants like Fluid-
ify (basic), combination-R, Data-Net & Net (Fig. 9), Data-Net & R (Fig. 10),
Fluidify (SA) is far ahead in quality of convergence. Here also we consider a
ring/ring topology with default setting. The convergence time taken by Fluidify
is slightly higher compared to its variants as shown in Fig. 18.

Table 5 shows how varying the initial threshold value for Fluidify affects
its performance. From the table it is clear that as the initial threshold value
increases the proximity that we obtain also become better and better. With a
higher threshold value, more swaps will occur and therefore there is a higher

Fluidify: Decentralized Overlay Deployment in a Multi-Cloud World 11

Table 4. Performance on various topologies

Approach Physical topology Logical topology Proximity(%) Convergence(#Rounds)

Fluidify(SA) torus torus 2.4(±0.05) 162(±2.34)
Fluidify(SA) torus ring 2.6(±0.03) 171(±3.6)
Fluidify(SA) ring torus 1.8(±0.06) 156(±2.36)
Slicing(SA) torus torus 4.5(±0.05) 130(±2.16)
Slicing(SA) torus ring 5.2(±0.02) 128(±3.26)
Slicing(SA) ring torus 9.5(±0.08) 143(±4.1)

Randomized(SA) torus torus 3.82(±0.08) 423(±2.41)
Randomized(SA) torus ring 4.05(±0.04) 464(±3.28)
Randomized(SA) ring torus 2.7(±0.05) 442(±3.82)

PROP-G(SA) torus torus 4.6(±0.05) 132(±2.34)
PROP-G(SA) torus ring 5.6(±0.03) 130(±3.6)
PROP-G(SA) ring torus 10.1(±0.06) 128(±2.36)

 0

 2

 4

 6

 8

 10

 12

100 200 400 800 1600 3200 6400 12800 25600

P
ro

xi
m

ity
 (

 in
 %

)

Network Size

Fluidify (SA)
Fluidify (basic)

Data-Net & Net
Data-Net & R

Combination-R

Fig. 17. Comparison of different vari-
ants of Fluidify - Proximity

 0

 100

 200

 300

 400

 500

 600

100 200 400 800 1600 3200 6400 12800 25600

C
on

ve
rg

en
ce

 ti
m

e
(#

R
ou

nd
s)

Network Size

Fluidify (SA)
Fluidify (basic)

Data-Net & Net
Data-Net & R

Combination-R

Fig. 18. Comparison of different vari-
ants of Fluidify - Convergence

Table 5. Impact of K0 on Fluidify (SA)

K0 Proximity (%) Convergence (rounds)

320 2.4 156
640 1.6 145
1600 1.1 146
3200 0.7 144

chance of getting closer to the global minimum. The threshold value that gives
the best performance is used for all our simulations.

5 Related Work

Fully decentralized systems are being extensively studied by many researchers.
Many well known and widely used P2P systems are unstructured. However,
there are several overlay networks in which the node locality is taken into ac-
count. Structured P2P overlays, such as CAN [22], Chord [25], Pastry [24], and
Tapestry [31], are designed to enhance the searching performance by giving some

12 A. C. Resmi and François Taiani

importance to node placement. But, as pointed out in [23], structured designs
are likely to be less resilient, because it is hard to maintain the structure required
for routing to function efficiently when hosts are joining and leaving at a high
rate. Chord in its original design, does not consider network proximity at all.
Some modification to CAN, Pastry, and Tapestry are made to provide locality
to some extent. However, these results come at the expense of a significantly
more expensive overlay maintenance protocol.

One of the general approaches used to bridge the gap between physical and
overlay node proximity is landmark clustering. Ratnasamy et al. [21] use land-
mark clustering in an approach to build a topology-aware CAN [22] overlay
network. Although the efficiency can be improved, this solution needs extra de-
ployment of landmarks and produces some hotspots in the underlying network
when the overlay is heterogeneous and large. Some [30] [29] have proposed meth-
ods to fine tune the landmark clustering for overlay creation. The main disad-
vantage with landmark system is that there needs to be a reliable infrastructure
to offer these landmarks at high availability. Application layer multicast algo-
rithms construct a special overlay network that exploits network proximity. The
protocol they use are often based on a tree or mesh structure. Although they
are highly efficient for small overlays, they are not scalable and creates hotspots
in the network as a node failure can make the system unstable and difficult to
recover. Later proximity neighbour selection [2] was tried to organise and main-
tain the overlay network which improved the routing speed and load balancing.
Waldvogel and Rinaldi [12] [28] propose an overlay network(Mithos) that focuses
on reducing routing table sizes. It is a bit expensive and only very small overlay
networks are used for simulations and the impact of network digression is not
considered.

Network aware overlays are used to increase the efficiency of network services
like routing, resource allocation and data dissemination. Works like [16] and [4]
combines the robustness of epidemics with the efficiency of structured approaches
in order to improve the data dissemination capabilities of the system. Gossip
protocols which are scalable and inherent to network dynamics can do efficient
data dissemination. Frey et al. [5] uses gossip protocols to create a system where
nodes dynamically adapt their contribution to the gossip dissemination according
to the network characteristics like bandwidth and delay. Kermarrec et al. [6] use
gossip protocols for renaming and sorting. Here nodes are given id values and
numerical input values. Nodes exchange these input values so that in the end
the input of rank k is located at the node with id k. Slicing method [19] [9]
was made use of in resource allocation. Specific attributes of network(memory,
bandwidth, computation power) are taken into account to partition the network
into slices. Network aware overlays can be used in cloud infrastructure [26] to
provide efficient data dissemination.

Most of the works on topology aware overlays are aimed at improving a par-
ticular service such as routing, resource allocation or data dissemination. What
we are proposing is a generalized approach for overlay creation giving importance
to data placement in the system. It has higher scalability and robustness and less

Fluidify: Decentralized Overlay Deployment in a Multi-Cloud World 13

maintenance cost compared to other approaches. The simulated annealing and
slicing approach is motivated mainly by the works [19], [6], [9]. But these works
concentrated mainly on improving a single network service while we concentrate
on a generalized solution that can significantly improve all the network services.

6 Conclusion and Future Work

In this paper, we present–Fluidify–a novel decentralized mechanism for overlay
deployment. Fluidify works by exploiting both the logical links of an overlay
and the physical topology of its underlying network to progressively align one
with the other and thereby maximizing the network locality. The proposed ap-
proach can be used in combination with any topology construction algorithm.
The resulting protocol is generic, efficient, scalable and can substantially improve
network overheads and latency in overlay based-systems. Simulation results show
that in a ring/ring network of 25,600 nodes, Fluidify is able to produce an over-
lay with links that are on average 94% shorter than that produced by a standard
decentralized approach based on slicing.

One aspect we would like to explore in future is to deploy Fluidify in a real
system and see how it fares. A thorough analytical study of the behaviour of our
approach is also intended.

Acknowledgments

This work was partially funded by the DeSceNt project granted by the Labex
CominLabs excellence laboratory of the French Agence Nationale de la Recherche
(ANR- 10-LABX-07-01).

References

1. Bertier, M., Frey, D., Guerraoui, R., Kermarrec, A.M., Leroy, V.: The gossple
anonymous social network. In: Middleware’10

2. Castro, M., Druschel, P., Hu, Y.C., Rowstron, A.: Topology-aware routing in struc-
tured peer-to-peer overlay networks. In: Future Directions in Distributed Comput-
ing. pp. 103–107. Springer-Verlag (2003)

3. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly avail-
able key-value store. In: SOSP’07

4. Doerr, B., Elsässer, R., Fraigniaud, P.: Epidemic algorithms and processes: From
theory to applications. Dagstuhl Reports 3(1), 94–110 (2013)

5. Frey, D., Guerraoui, R., Kermarrec, A.M., Koldehofe, B., Mogensen, M., Monod,
M., Quéma, V.: Heterogeneous gossip. In: Middleware. pp. 42–61 (2009)

6. Giakkoupis, G., Kermarrec, A.M., Woelfel, P.: Gossip protocols for renaming and
sorting. In: DISC. pp. 194–208 (Oct 14–18 2013)

7. Grace, P., Hughes, D., Porter, B., Blair, G.S., Coulson, G., Taiani, F.: Experi-
ences with open overlays: A middleware approach to network heterogeneity. In:
Eurosys’08

14 A. C. Resmi and François Taiani

8. Gupta, A., Sahin, O.D., Agrawal, D., Abbadi, A.E.: Meghdoot: content-based pub-
lish/subscribe over p2p networks. In: Middleware’04

9. Jelasity, M., Kermarrec, A.M.: Ordered slicing of very large-scale overlay networks.
In: P2P 2006

10. Jelasity, M., Montresor, A., Babaoglu, O.: T-man: Gossip-based fast overlay topol-
ogy construction. Comput. Netw. 53(13), 2321–2339 (Aug 2009)

11. Kermarrec, A.M., Triantafillou, P.: Xl peer-to-peer pub/sub systems. ACM Com-
puting Surveys (CSUR) 46(2) (2013)

12. Krishnamurthy, B., Wang, J.: On network-aware clustering of web clients. In: SIG-
COMM ’00. pp. 97–110. ACM (2000)

13. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
SIGOPS Oper. Syst. Rev. 44(2) (2010)

14. Leitao, J., Pereira, J., Rodrigues, L.: Epidemic broadcast trees. In: SRDS’07
15. Li, B., Xie, S., Qu, Y., Keung, G.Y., Lin, C., Liu, J., Zhang, X.: Inside the new

coolstreaming: Principles, measurements and performance implications. In: IEEE
INFOCOM 2008

16. Matos, M., Schiavoni, V., Felber, P., Oliveira, R., Rivière, E.: Lightweight, efficient,
robust epidemic dissemination. J. Parallel Distrib. Comput. 73(7), 987–999 (2013)

17. Montresor, A., Jelasity, M., Babaoglu, O.: Chord on demand. In: P2P 2005
18. Montresor, A., Jelasity, M.: Peersim: A scalable p2p simulator. In: P2P 2009
19. Pasquet, M., Maia, F., Rivière, E., Schiavoni, V.: Autonomous multi-dimensional

slicing for large-scale distributed systems. In: DAIS. pp. 141–155 (2014)
20. Qiu, T., Chen, G., Ye, M., Chan, E., Zhao, B.Y.: Towards location-aware topology

in both unstructured and structured p2p systems. In: ICPP. p. 30. IEEE Computer
Society (2007)

21. Ratnasamy, S., Handley, M., Karp, R., Shenker, S.: Topologically-aware overlay
construction and server selection. In: INFOCOM’02. vol. 3, pp. 1190– 1199

22. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. SIGCOMM Comput. Commun. Rev. 31(4), 161–172 (2001)

23. Ratnasamy, S., Shenker, S.: Can heterogeneity make gnutella scalable? In:
IPTPS’02 (2002)

24. Rowstron, A.I.T., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Middleware. pp. 329–350 (2001)

25. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: SIGCOMM ’01

26. Tudoran, R., Costan, A., Wang, R., Bougé, L., Antoniu, G.: Bridging Data in
the Clouds: An Environment-Aware System for Geographically Distributed Data
Transfers. In: IEEE/ACM CCGrid. Chicago (May 2014)

27. Voulgaris, S., Steen, M.v.: Epidemic-style management of semantic overlays for
content-based searching. In: Euro-Par’05

28. Waldvogel, M., Rinaldi, R.: Efficient topology-aware overlay network. In: SIG-
COMM/CCR’03

29. Xu, Z., Tang, C., Zhang, Z.: Building topology-aware overlays using global soft-
state. In: ICDSC’03 (May 2003)

30. Zhang, X.Y., Zhang, Q., Zhang, Z., Song, G., Zhu, W.: A construction of locality-
aware overlay network: moverlay and its performance. IEEE J.Sel. A. Commun.
22(1), 18–28 (Sep 2006)

31. Zhao, B., Kubiatowicz, J., Joseph, A.: Tapestry: An infrastructure for fault-tolerant
wide-area location and routing. Computer 74 (2001)

