Hyperspectral and multispectral image fusion based on a sparse representation - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Geoscience and Remote Sensing Année : 2015

Hyperspectral and multispectral image fusion based on a sparse representation

Résumé

This paper presents a variational-based approach for fusing hyperspectral and multispectral images. The fusion problem is formulated as an inverse problem whose solution is the target image assumed to live in a lower dimensional subspace. A sparse regularization term is carefully designed, relying on a decomposition of the scene on a set of dictionaries. The dictionary atoms and the supports of the corresponding active coding coefficients are learned from the observed images. Then, conditionally on these dictionaries and supports, the fusion problem is solved via alternating optimization with respect to the target image (using the alternating direction method of multipliers) and the coding coefficients. Simulation results demonstrate the efficiency of the proposed algorithm when compared with state-of-the-art fusion methods.
Fichier principal
Vignette du fichier
wei_13684.pdf (1.29 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01168121 , version 1 (25-06-2015)

Identifiants

Citer

Qi Wei, José M. Bioucas-Dias, Nicolas Dobigeon, Jean-Yves Tourneret. Hyperspectral and multispectral image fusion based on a sparse representation. IEEE Transactions on Geoscience and Remote Sensing, 2015, vol. 53 (n° 7), pp. 3658-3668. ⟨10.1109/TGRS.2014.2381272⟩. ⟨hal-01168121⟩
193 Consultations
400 Téléchargements

Altmetric

Partager

More