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Abstract

This article is an extended version of a paper presented in the WSOM’2012 conference [1]. We
display a combination of factorial projections, SOM algorithm and graph techniques applied to
a text mining problem. The corpus contains 8 medieval manuscripts which were used to teach
arithmetic techniques to merchants.

Among the techniques for Data Analysis, those used for Lexicometry (such as Factorial Analy-
sis) highlight the discrepancies between manuscripts. The reason for this is that they focus on the
deviation from the independence between words and manuscripts. Still, we also want to discover
and characterize the common vocabulary among the whole corpus.

Using the properties of stochastic Kohonen maps, which define neighborhood between inputs in
a non-deterministic way, we highlight the words which seem to play a special role in the vocabulary.
We call them fickle and use them to improve both Kohonen map robustness and significance of
FCA visualization. Finally we use graph algorithmic to exploit this fickleness for classification of
words.

Introduction

Historical Context

One approach to understand the evolution of science is the study of the evolution of the lan-
guage used in a given field. That is why we would like to pay attention to the vernacular texts
dealing with practical arithmetic and written for the instruction of merchants. Such texts are
known since the XIIIth century, and from that century onwards, the vernacular language appears
more and more as the medium of practical mathematics.

Treaties on arithmetical education were therefore mostly thought and written in local languages,
(they were written not only in French but also in Italian, Spanish, English and German). In this
process, the XVth century appears as a time of exceptional importance because we can study the
inheritance of two hundred years of practice. For the authors of these texts, the purpose was not
only to teach merchants, but also to develop knowledge in vernacular language. Their books were
circulated far beyond the shopkeepers’ world, to the humanists’ circles for example.

An objective of historical research: the study of specialized languages

The work previously done by historians [2] consisted in the elaboration of a dictionary of the
lexical forms found in all the treaties, in order to identify the different features of the mathematical
vernacular language at that time. This being done, we have worked on the contexts of some
especially important words in order to understand the lexicon in all its complexity. In other words,
we would like to determine the common language that forms the specialized language beyond the
specificity of each text.

Preprint submitted to Neurocomputing June 25, 2015



Manuscripts and Title Date Author Number of

occurrences

Number

of words

Hapax

Bib. nat. Fr. 1339 ca.1460 anonyme 32077 2335 1229

Bib. nat. Fr. 2050 ca.1460 anonyme 39204 1391 544

Cesena Bib. Mal. S-XXVI-
6, Traicté de la praticque

1471? Mathieu
Préhoude?

70023 1540 635

Bibl. nat. Fr. 1346,
Commercial appendix of
Triparty en la science des

nombres

1484 Nicolas
Chuquet

60814 2256 948

Méd. Nantes 456 ca.1480-90 anonyme 50649 2252 998

Bib. nat. Arsenal 2904,
Kadran aux marchans

1485 Jean
Certain

33238 1680 714

Bib. St. Genv. 3143 1471 Jean
Adam

16986 1686 895

Bib. nat. Fr. Nv. Acq.
10259

ca.1500 anonyme 25407 1597 730

Table 1: Corpus of texts and main lexicometric features. The number of occurences is the total number of words
including repetitions, the number of words is the number of distinct words, Hapax are words appearing once in a
text.

Outline of this work

Among the techniques for Data Analysis, those used for Lexicometry (such as Factorial Analy-
sis) highlight the discrepancies between manuscripts. The reason for this is that they focus on the
deviation from the independence between words and manuscripts. Still, we also want to discover
and characterize the common vocabulary among the whole corpus. That is why we introduce a
new tool, which combine the properties of Factorial Correspondence Analysis and Stochastic Self-
Organizing Maps. That leads to the definition of fickle pairs and fickle words. Fickle words can be
seen as this common vocabulary we are looking for, and prove themselves to be a good basis for a
new visualization with the help of graph theory.

In part 1, we first focus on the definition of the corpus: the texts, the pre-processing, and the
protocol which is traditionally used in Humanities and Social Sciences to handle such data. Then,
(part 2), we design the tools : ’fickle pairs’ and ’fickle words’, robust Kohonen Maps, improved
FCA, graphs of relations between words based on fickleness. We explain the algorithms involved
and display the results on the corpus. Finally (part 3), we give a brief analysis and comments on
these results.

1. Text, Corpus and protocol

In order to delimit a coherent corpus among the whole European production of practical cal-
culation education books, we have chosen to pay attention to those treaties which are sometimes
qualified as commercial (marchand in French) which have been written in French between 1415
and about 1500. Note that this corpus has already been studied by [3], [4] and [5]. In this way, our
corpus follows the rules of the discourse analysis: homogeneity, contrastiveness and diachronism.
For further explanation about texts, methodology and purpose of the analysis see [2], for further
explanation about the corpus [6], for wider explication about analysis see [7], [8].

It contains eight treaties on the same topic, written in the same language and by different XVth

century authors. The following Table 1 describes some elements of the lexicometric characteristics
of the corpus and shows how non balanced it is.

1.1. Humanities and Social Sciences traditional protocol

Traditionally on this kind of textual data, researchers in Humanities and Social Sciences work
on statistical specificity and contextual concordances, since they allow an easy discovery of the
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major lexical splits within the texts of the corpus, while remaining close to the meanings of the
different forms.

Then, the factorial and clustering methods, combined with co-occurrences analysis (see [9]) help
us to cluster the texts without breaking the links with semantic analysis.

However, such a method of data processing requires a preliminary treatment of the corpus, the
lemmatization [10]. It consists in gathering the different inflected forms of a given word as a single
item. It allows us to work at many different levels of meaning, depending upon the granularity
adopted: forms, lemma, syntax.

We can justify this methodological choice here by its effect on the dispersion of the various
forms which can be linked to the same lemma, a high degree of dispersion making the comparison
between texts more difficult. It must also be remembered that in the case of medieval texts, this
dispersion is increased by the lack of orthographic norms. In our case, this process has an important
quantitative consequence on the number of forms in the corpus, which declines from 13516 forms
to 9463, a reduction of some 30%.

This process has been achieved with a particular attention to the meaning of each word in order
to suppress ambiguities: a good example is the French word pouvoir which can be a verb translated
by "can" or "may", and which is also a substantive translated by "power".

Finally, to realize a clustering of the manuscripts, we have only kept the 219 words with highest
frequencies. The set of words selected that way for text classification relates to mathematical
aspects, such as operations, numbers and their manipulations, as well as to didactic aspects. Their
higher frequencies reflect the fact that they are the language of the mathematics as they appear
to be practiced in these particular texts.

Thus, in what follows, the data are displayed in a contingency table T with I = 219 rows (the
words) and J = 8 columns (the manuscripts) so that the entry ti,j is the number of occurrences of
word i in manuscript j.

1.2. Use of Factorial Correspondence Analysis (FCA)

Factorial Correspondence Analysis is one of the factorial methods which consist in applying an
orthogonal transformation to the data, to supply the user with simplified representation of high-
dimensional data, as defined in [11]. The most popular of these factorial methods is the Principal
Component Analysis, which deals with real-valued variables and supplies for example the best
two-dimensional representation of high-dimensional dataset, by retaining the first two eigenvectors
of the covariance matrix.

Factorial Correspondence Analysis (see [12] or [13]) is a variant of Principal Component Anal-
ysis, designed to deal with categorical variables. Let us consider two categorical variables with
respectively I and J items and the associated contingency table T where entry ti,j is the number
of co-occurrences of item i for the row variable and item j for column variable. The rows and the
columns are scaled to sum to 1 and normalized in order to be treated simultaneously, by defining

tnormi,j =
ti,j

√

∑

i ti,j
∑

j ti,j
. (1)

To achieve the FCA, two Principal Component Analysis are made over the normalized table
T norm (providing a representation of the rows) and its transposed table (providing a representation
of the columns). The main property of FCA is that both representations can be superposed, since
their principal axes are strongly correlated. The proximity between items is significant, regardless
they stand for row items or column items, except in the center of the map.

In our case, the rows are the words (I = 219) and the columns are the manuscripts (J = 8).
Figures 2 and 3 show the projection of the data on the first four factorial axes.

The first two factors (43.94% of the total variance) show the diversity of the cultural heritages
which have built the language of these treaties. The first factor (25.03%) discriminates between
the university legacy on the right, and the tradition of mathematical problems on the left.
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Figure 2: Projection on the first two factors of the FCA. The eight texts appear in frames, a few words are displayed
while the remaining are simply figured by dots, for the sake of readability.

On the left, we can observe a group whose strong homogeneity comes from its orientation
towards mathematical problems (trouver that is to say "to find", demander which we can translate
as "to ask") and their iteration (item, idem). That vocabulary can be found most often in both the
appendix of Triparty en la science des nombres (Nicolas Chuquet) and Le Traicte de la praticque.
Furthermore, there are more verbal forms on this side of the axis than on the other. And we can
find verbs like requerir which means "to require", convenir "to agree", faire "to do". Some of them
are prescriptive, as devoir "to have to" or vouloir "to want" for example, while others introduce
examples, as montrer "to show". All these texts contain a lot of mathematical problems and in a
way are practical. On the right, the texts of BnF. fr. 1339 and Med. Nantes 456 are clearly more
representative of the university culture, containing latin words sequences.

The second axis (17.91% of the variance) is mostly characterized by the manuscript of BNF. fr.
2050 and also by Kadran aux marchans. It displays words of Italo-Provencal origin, like nombrateur
which refers to the division’s numerator. Designations of the fraction and operation of division
take a significant part of the information while the most contributory words (for ex. figurer "to
draw") allow us to examine another dimension of these works: the graphical representation as a
continuation of writing.

The following factors 3, 4 and further show the Lexicon that seems to be more related to the
singularity of some manuscripts. The importance of Nicolas Chuquet inertia of factors 3 and 4
singles out this book on the plane (see Figure 3) in relation to the rest of the corpus.
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Figure 3: Projection on third and fourth factors of the FCA.

With the manuscript of Nantes 456, at left, factor 3 highlights a vocabulary of some technical
accuracy, in any case rare in the rest of the corpus, like quotiens "quotient", anteriorer "to put
before". At right, there is a very diversified vocabulary, associated to manuscrit 10259, which is
a well organized compilation of a copy of Kadrans aus marchans and of a lot of problems whose
origin has not been fully identified.

Correspondence Analysis displays the particularities of each text, but leaves untouched some
more complex elements of the data. For instance, we have to see the third factor to understand
that the Triparty en la science des nombres (Nicolas Chuquet) and the Traicte de la praticque
use different university mathematical cultures. These two treaties are not only copying university
algorithms as they were taught at university at that time, they have their own originality.

Moreover, we cannot assert that the words which appear in the center of the graph represent a
’common vocabulary’: as a matter of fact, we should analyze all the successive factors in order to
build the list of words constituting the ’common vocabulary’. It is a very cumbersome task.

1.3. Kohonen Maps

SOM-based algorithms were very often used for text mining purpose. Oja and Kaski’s seminal
book [14] provides a lot of examples on this field. A major tool for that purpose is WEBSOM
method and software1, as defined for instance in [15, 16, 17]. Other important papers (among

1See http://websom.hut.fi/websom/
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Figure 4: Building of the extended, symmetrized table in the KORRESP algorithm

hundreds) are [18, 19, 20].
Most of them look for classification and clustering using keywords, put in evidence the main

features, associate documents with their most characteristic words, to define proximity in order to
define clusters and hierarchies between documents. Techniques such as WEBSOM are especially
designed to deal with massive documents collections.

Our purpose is very different, since we have very few documents and since we look for a subset of
words which are not "specific" of some manuscript, but contrarily belong to a common vocabulary.

Factorial Correspondence Analysis (FCA) suffers from some limitations as explained in section1.2.
To overcome this, we use a variant of the SOM algorithm which deals with the same kind of data,
i. e. a contingency table. This variant of SOM was defined in [21] or [22] and we refer to it as
KORRESP algorithm. Let us recall this definition.

Tha data are displayed as explained in fourth paragraph of section 1.2 in a contingency I = 219
by J = 8 table. The data are normalized applying equation (1), exactly in the same way as for
Factorial Correspondence Analysis. The normalized contingency table is denoted by T norm where:

tnormi,j =
ti,j

√

∑

i ti,j
∑

j ti,j
.

We consider a Kohonen map, and associate to each unit u a code-vector Cu with (J + I)
components. The first J components evolve in the space of the rows (the words), while the last I
components belong to the space of the columns (the manuscripts).

Let us denote
Cu = (CJ , CI)u = (CJ,u, CI,u), (2)

to put in evidence the structure of the code-vector Cu.

We use the SOM algorithm as a double learning process, by alternatively drawing a T norm row
(a word) and a T norm column (a manuscript).

When we draw a row i, we associate the column j(i) that maximizes the coefficient tnormi,j , so:

j(i) = argmax
j

tnormi,j = argmax
j

ti,j
√

∑

i ti,j
∑

j ti,j
(3)

that maximizes the conditional probability of j given i. We then create an extended (J + I) -
dimensional row vector X = (i, j(i)) = (XJ , XI). See Figure 1.3.
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Subsequently, we look for the closest of all the code vectors, in terms of the Euclidean distance
restricted to the first J components. Note u0 the winning unit. Next we move the code-vector
of the unit u0 and its neighbors towards the extended vector X = (i, j(i)), as per the customary
Kohonen law. Let us write down the formal definition:

u0 = argmin
u

‖XJ − CJ,u‖ (4)

Cnew
u = Cold

u + ǫσ(u, u0)(X − Cold
u ) (5)

where ǫ is the adaptation parameter (positive, decreasing with time), and σ is the neighborhood
function, such that σ(u, u0) = 1 if u and u0 are neighbour in the Kohonen network, and σ(u, u0) = 0
if not.

The reason to associate a row and a column in such a way is to keep the row-column associations
which are realized in classical FCA by the fact that the principal axes of both Principal Component
Analysis are strongly correlated.

The procedure is the same when we draw a column j with dimension I (a column of T norm).
We associate the row i(j) that maximizes the coefficient tnormi,j , so:

i(j) = argmax
i

tnormi,j = argmax
i

ti,j
√

∑

i ti,j
∑

j ti,j
(6)

that maximizes the conditional probability of i given j. We then create an extended (J + I)-
dimensional column vector Y = (i(j), j) = (YJ , YI).

We then seek the code-vector that is the closest, in terms of the Euclidean distance restricted
to the last I components. Let v0 be the winning unit. Next we move the code-vector of the unit v0
and its neighbors towards the extended vector Y = (i(j), j), as per the customary Kohonen law.
Let us write down the formal definition:

v0 = argmin
v

‖YI − CI,u‖ (7)

Cnew
v = Cold

v + ǫσ(v, v0)(Y − Cold
v ) (8)

where ǫ and σ are defined as before.
This two-steps computation carries out a Kohonen classification of the rows (the words),

together with a classification of the columns, maintaining all the while the associations of both
rows and columns.

We can sum up the definition of the KORRESP algorithm

• normalization of the rows and of the columns in the way as in FCA computation,

• definition of an extended data table by associating to each row the most probable column
and to each column the most probable row,

• simultaneous classification of the rows and of the columns onto a Kohonen map, by using the
rows of the extended data table as input for the SOM algorithm.

After convergence of the training step, the items of the rows and of the columns are simulta-
neously classified. In our example, one can see proximity between words, between texts, between
words and texts. It is the same goal as in Factorial Correspondence Analysis. The advantage is
that it is not necessary to examine several projection planes: the whole information can be read
on the Kohonen Map.

We display below (Figure 5) the SOM map which simultaneously represents the words and the
texts. For this map as for all the remaining of this paper we use the online algorithm, a 10×10 grid
and the following simple neighborhood function: 1 for the eight (fewer if we are along one edge of
the map) nodes adjacent to the selected one and 0 for the others.
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One can observe that the interpretation (see Figure 6) is very similar to the interpretation that
could be done from the Factorial Correspondence Analysis projections. But, as an example of the
robustness problem, we can compare two different Kohonen maps (in Figures 5 and 7) and the
respective positions of the words raison "reason" and dire "to say", very far from each other in
the first map while neighboring in the second one.
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Figure 5: Example of Kohonen Map. Manuscripts are in bold. Notice that raison (9,7) and dire (3,7) are far apart
from each other.

The Kohonen algorithm is stochastic, and it can happen that several runs get different results,
and that these differences can be troublesome. Hence the idea to introduce repetitions of the runs
to separate stable and robust results from purely stochastic behavior. In the following, we study
the variability of the maps which provides new information.
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Figure 6: Interpretation of the Kohonen map (Figure 5), the diagonal opposes university and practical vocabularies

2. Getting extra information through the extraction of fickle words

In its classical presentation [23, 21], the SOM algorithm is an iterative algorithm, which takes
as input a dataset xi, i ∈ {1, . . . , N} and computes code-vectors mu, u ∈ {1, . . . , U} which define
the map.

We know that self-organization is reached at the end of the algorithm, which implies that close
data in the input space have to belong to the same class or to neighboring classes, that is to say
that they are projected on the same prototypes or on neighboring prototypes on the map. In what
follows, we call neighbors data that belong either to the same unit or to two adjacent units. But
the reciprocal is not exact: for a given run of the algorithm, two given data can be neighbors on the
map, while they are not in the input space. That drawback comes from the fact that there is no
perfect fit between a two-dimensional map and the data space (except when the intrinsic dimension
is exactly 2). As we just notice, since the SOM algorithm is a stochastic one, the resulting maps
can be different from one run to another. How to overcome this difficulty?

In fact, we can use this drawback to improve the interpretation and the analysis of relations
between the studied words. Our hypothesis is that the repetitive use of this method can help us
to identify words that are strongly attracted/repulsed and also fickle pairs.
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Figure 7: Another example of Kohonen Map. This time, raison (4,5) and dire (3,5) are neighbors.

2.1. Neighborhood and robustness of information on Kohonen maps

We address the issue of computing a reliability level for the neighboring (or no-neighboring)
relations in a SOM map. More precisely, if we consider several runs of the SOM algorithm, for a
given size of the map and for a given data set, we observe that most of pairs are almost always
neighbors or always not neighbors. But there are also pairs whose associations look random. These
pairs are called fickle pairs. This question was addressed by [24] in a bootstrap frame.

According to their paper, we can define: NEIGH l
i,j = 0 if xi and xj are not neighbors in the

l-th run of the algorithm, and NEIGH l
i,j = 1 if xi and xj are neighbors in the l-th run of the

algorithm, where (xi, xj) is a given pair of data, l is the number of the observed runs of the SOM
algorithm.

Then Yi,j =
∑L

l=1
NEIGH l

i,j is the number of times when the data xi and xj are neighbor for
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L different, independent runs. The stability index Mi,j is defined as the average of NEIGHi,j

over all the runs (l = 1, . . . , L), i. e.

Mi,j =

∑L

l=1
NEIGH l

i,j

L
=

Yi,j

L
. (9)

The next step is to compare it to the value it would have if the data xi and xj were neighbors
by chance in a completely random way.

So we can use a classical statistical test to check the significance of the stability index Mi,j .
Let U be the number of units on the map. If edge effects are not taken into account, the number of
units involved in a neighborhood region (as defined here) is 9 in a two-dimensional map. So for a
fixed pair of data xi and xj , the probability of being neighbors in a random way is equal to 9/U (it
is the probability for xj to be a neighbor of xi by chance once the class xi belongs to is determined).

As Yi,j =
∑L

l=1
NEIGH l

i,j is the number of times when the data xi and xj are neighbor for L
different, independent runs, it is easy to see that Yi,j is distributed as a Binomial distribution with
parameters L and 9/U .

Using the classical approximation of Binomial Distribution by a Gaussian one (L is large and
9/U not too small), we can build the critical region of the test of null hypothesis H0 "xi and xj

are neighbors by chance" against hypothesis H1: " the fact that xi and xj are neighbors or not is
significant".

We conclude that the critical region for a test level of 5% based on Yi,j , is

]−∞, L
9

U
− 1.96

√

L
9

U
(1−

9

U
)[

⋃

]L
9

U
+ 1.96

√

L
9

U
(1−

9

U
),+∞[ (10)

For the frequency (i.e. the stability index) Mi,j = Yi,j/L, the critical region is

]−∞,
9

U
− 1.96

√

9

UL
(1−

9

U
)[

⋃

]
9

U
+ 1.96

√

9

UL
(1−

9

U
),+∞[ (11)

To simplify the notations, , let us put

A =
9

U
and B = 1.96

√

9

UL
(1−

9

U
). (12)

Then, practically, for each pair of words (xi, xj), we compute the index Mi,j = Yi,j/L, and
apply the following rule:

• if their index is greater than A + B, they are almost always neighbors in a significant way,
the words attract each other.

• if their index is comprised between A−B and A+B, their proximity is due to randomness,
they are a fickle pair.

• if their index is less than A − B, they are almost never neighbor, the words repulse each
other.

2.2. Identification of fickle pairs

We run KORRESP L times and store the result in a matrix M of size (N + p)× (N + p). The
value stored in a given cell i, j is the proportion of maps where i and j are neighbors.

Table 8 displays an example of the first nine rows and columns of such a matrix. We have
highlighted with colors three different situations. According to the theoretical study mentioned
above:
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abaisser abreger addition ajoutement ajouter algorisme aliquot aller anteriorer

abaisser 1 0 0.025 0.275 0 0.05 0 0 0.525

abreger 0 1 0 0 0.25 0 0.325 0 0.025

addition 0.025 0 1 0 0 0.875 0 0.05 0

ajoutement 0.275 0 0 1 0.025 0 0 0.025 0.7

ajouter 0 0.25 0 0.025 1 0.025 0.15 0.125 0

algorisme 0.05 0 0.875 0 0.025 1 0 0 0

aliquot 0 0.325 0 0 0.15 0 1 0.025 0

aller 0 0 0.05 0.025 0.125 0 0.025 1 0

anteriorer 0.525 0.025 0 0.7 0 0 0 0 1

Table 8: Frequency of neighborhood matrix (excerpt)

abaisser ajoutement anteriorer abreger ajouter aliquot addition algorisme aller

abaisser 1 0.275 0.525 0 0 0 0.025 0.05 0

ajoutement 0.275 1 0.7 0 0.025 0 0 0 0.025

anteriorer 0.525 0.7 1 0.025 0 0 0 0 0

abreger 0 0 0.025 1 0.25 0.325 0 0 0

ajouter 0 0.025 0 0.25 1 0.15 0 0.025 0.125

aliquot 0 0 0 0.325 0.15 1 0 0 0.025

addition 0.025 0 0 0 0 0 1 0.875 0.05

algorisme 0.05 0 0 0 0.025 0 0.875 1 0

aller 0 0.025 0 0 0.125 0.025 0.05 0 1

Table 9: Frequency of neighborhood matrix (same excerpt as 8, with row and columns reorganized)

• Black cells stand for pairs that are neighbors with high probability (proximity happens with
frequency greater than A+B, here 0.1787).

• White cells stand for pairs that are not neighbors with high probability (proximity happens
with frequency less than A−B, here 0.0014).

• Grey cells are not conclusive, they are the fickle pairs.

If we rearrange the order of cells and columns through Bertin permutations, we immediately
make remarkable clustering properties appear (see Table 9.)

For each word, through this treatment we get a list of words that can roughly be grouped
around two poles: the strongly associated and the almost never associated ones. Between these
two extremes lies a central yet difficult to characterize.

This technique could be used for classification, but here our main objective is a bit different:
we are mostly interested in a characterization of words that have high mobility in Kohonen maps,
that we call fickle words.

2.3. From fickle pairs to fickle words

We call fickle a word which belongs to a huge number of fickle pairs:

|{i, |Mi,j −A| ≤ B}| ≥ Θ

Unfortunately, it is not quite an easy task to find an appropriate threshold Θ. Here we have
decided to fix it according to data interpretation. The 30 ficklest words, whose number of safe
neighbors/non-neighbors (non-fickle pairs) is between 89 and 119, are displayed in Figure 10.
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contraire "opposite" (89) regle de trois "rule of three" (104) depenser "to expend" (112)
doubler "to double" (89) savoir "to know" (105) racine "root" (113)
falloir "to need" (93) partie "to divide" (105) chose "thing" (113)
meme "same, identical" (93) position "position" (107) compter "to count" (113)
pratique "practical" (94) exemple "for example" (107) dire "to say" (113)
seulement "only" (94) demi "half" (108) nombrer "count" (115)
double "double" (97) garder "to keep"(109) raison "calculation, problem" (116)
multiplication (99) science "science" (109) donner "to give" (117)
reduire "to reduce" (103) pouvoir "can" (111) ensemble "together" (117)
regle "rule" (103) se "if" (111) valoir "to be worth" (119)

Figure 10: 30 ficklest words among 219 studied. For each word, the number between brackets stands for how many
non-fickle pairs it belongs to.

2.4. Graph of robust neighborhood

Let us have a different look at the neighborhood matrix (fij) where fij is the frequency of two
words belonging to the same neighborhood. Instead of trying to jump right ahead and identify
fickle words in an absolute way, we can study the robust connections between words per se, in
order to produce some interesting clustering of the words.

For example, if we have a look at the excerpt from Table 8, we notice immediately that some
groups of words are very often in the same neighborhood, while their connections to the rest of the
graph are much more hazardous. This initial intuition becomes quite obvious if we reorganize the
rows and columns (following Bertin’s permutation matrices idea), as we can see on Table 9.

We cannot display here the whole matrix for the 219 forms - in addition, the algorithm for
reorganization would not be efficient enough - so we have decided to focus on a specific group of
words: the fickle words. Indeed, the fickle words are the most difficult to study, since by definition
they do not have a very fixed position on the Kohonen maps, and additionally it appears that they
are not well distinguished by Factorial Correspondence Analysis either.

Table 11 shows the frequency matrix for the 30 ficklest words. The clustering is not obvious a
priori, so we can use a different representation for better visualization of the underlying structures.
We can fix the threshold A+B as defined in equation (12) and consider this matrix as the adjacency
matrix of a graph G(V,E) such that:

• the set of vertices V is identified to the fickle words

• the set of edges E is defined by (i, j) ∈ E ⇔ fij > A+B

In other terms, G is the graph of highly probable neighborhood relations in Kohonen maps.
In the case of fickle words, the graph G is given by Figure 12.

2.5. Quasi-cliques

Graphs are powerful tools for visualization, since the graphical representation can be built
according to some parameters that ensure highly connected set of vertices to be gathered as much
as possible. Still, it can be interesting not to rely only on graphical intuition, but also to use some
clustering algorithms with performance guarantee.

Since our graph is pretty dense, it appears that the concept we need here is a quasi-clique
coloring. For an introduction to quasi-clique and clique partition problems, one can for example
refer to [25]. A quasi-clique is a subgraph of highest density; typically, if h is a nondecreasing
function, K ⊂ V is a quasi-clique according to h if |E[K]| ≥ h(|K|, |V |). Note that we use the
following notations, which are classical in graph theory: if W ⊂ V is a subset of vertices, then
G[W ] is the subgraph induced by W , and E[W ] is set of edges which are internal to G[W ]. Here
we choose h : |K|, |V | 7→ |K|(|K|− 1)/2− 1. In other terms, we define a quasi-clique as a subgraph
such that every pair of vertices except at most one is connected.
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contraire 1 0 .625 .75 0 .025 0 .075 .2 .125 .05 .05 .425 .05 .025 .65 0 0 .05 .025 .55 .1 0 0 .675 .025 .05 .075 .075 .075

doubler 0 1 .05 .025 .05 .075 .925 .075 .05 .05 .075 .575 .05 .025 .175 .025 .225 .325 .075 .25 .075 .275 .65 .1 .025 .1 .025 .45 .375 .2
falloir .625 .05 1 .775 .025 0 .05 0 .2 .1 .05 .125 .25 .05 .1 .55 .1 .05 .1 .025 .85 .1 .075 .125 .675 .025 .15 .175 .15 .05

meme .75 .025 .775 1 0 .025 .025 .05 .275 .1 .05 .125 .275 .05 .075 .725 .05 .025 .075 .025 .75 .175 .05 .075 .675 .025 .125 .15 .15 .05

pratique 0 .05 .025 0 1 .775 .05 .625 .275 .325 .1 .15 .1 .375 .05 0 .075 .05 .05 .15 .05 .425 .1 0 0 .05 .025 .125 .1 .1
seulement .025 .075 0 .025 .775 1 .075 .675 .25 .275 .125 .15 .125 .35 .05 0 .05 .075 .05 .175 .025 .475 .1 0 0 .05 .025 .175 .075 .025

double 0 .925 .05 .025 .05 .075 1 .025 .075 .05 .175 .5 .05 .05 .175 .025 .35 .275 .1 .275 .1 .275 .625 .1 .025 .075 .05 .475 .325 .2
multiplication .075 .075 0 .05 .625 .675 .025 1 .1 .325 .1 .125 .05 .05 0 .05 .025 .075 .025 .075 0 .5 .025 .025 0 .325 .025 .025 .05 0
reduire .2 .05 .2 .275 .275 .25 .075 .1 1 .275 .225 .225 .075 .275 .1 .325 .325 .1 0 .125 .15 .375 .1 .05 .15 .075 .05 .075 .275 .05

regle .125 .05 .1 .1 .325 .275 .05 .325 .275 1 .025 .225 .175 .1 0 .05 .05 .25 .05 .05 .075 .225 .1 .3 .05 .15 0 .025 .25 .1
regle de trois .05 .075 .05 .05 .1 .125 .175 .1 .225 .025 1 .025 0 .15 .7 .05 .65 .025 .55 .625 .025 .225 .025 .05 .025 .075 .675 .475 0 .3
partie .05 .575 .125 .125 .15 .15 .5 .125 .225 .225 .025 1 .075 .05 .1 .05 .2 .55 .05 .175 .15 .375 .65 .275 .025 .1 0 .3 .775 .125

savoir .425 .05 .25 .275 .1 .125 .05 .05 .075 .175 0 .075 1 .125 .075 .3 0 .025 .1 .05 .175 .075 .1 .025 .25 0 .1 .2 0 .2
exemple .05 .025 .05 .05 .375 .35 .05 .05 .275 .1 .15 .05 .125 1 .075 .075 .1 .05 .075 .3 .05 .15 .1 .025 .025 0 .15 .3 .025 .325

position .025 .175 .1 .075 .05 .05 .175 0 .1 0 .7 .1 .075 .075 1 .075 .6 .125 .775 .725 .05 .1 .05 .2 0 0 .725 .525 .075 .525

demi .65 .025 .55 .725 0 0 .025 .05 .325 .05 .05 .05 .3 .075 .075 1 .075 0 .075 .05 .575 .075 0 .025 .625 .025 .175 .15 .075 .05

garder 0 .225 .1 .05 .075 .05 .35 .025 .325 .05 .65 .2 0 .1 .6 .075 1 .2 .425 .5 .075 .2 .175 .1 .025 .075 .475 .325 .175 .125

science 0 .325 .05 .025 .05 .075 .275 .075 .1 .25 .025 .55 .025 .05 .125 0 .2 1 .125 .1 .025 .15 .475 .35 0 .1 .025 .075 .625 .075

pouvoir .05 .075 .1 .075 .05 .05 .1 .025 0 .05 .55 .05 .1 .075 .775 .075 .425 .125 1 .65 .075 .025 .025 .225 .025 .025 .8 .325 .05 .45

se .025 .25 .025 .025 .15 .175 .275 .075 .125 .05 .625 .175 .05 .3 .725 .05 .5 .1 .65 1 0 .2 .15 .075 0 .05 .65 .675 .125 .55

depenser .55 .075 .85 .75 .05 .025 .1 0 .15 .075 .025 .15 .175 .05 .05 .575 .075 .025 .075 0 1 .175 .175 .025 .8 .025 .075 .175 .1 0
chose .1 .275 .1 .175 .425 .475 .275 .5 .375 .225 .225 .375 .075 .15 .1 .075 .2 .15 .025 .2 .175 1 .425 .025 .075 .25 .025 .15 .15 .05

compter 0 .65 .075 .05 .1 .1 .625 .025 .1 .1 .025 .65 .1 .1 .05 0 .175 .475 .025 .15 .175 .425 1 .075 0 .05 0 .375 .425 .125

dire 0 .1 .125 .075 0 0 .1 .025 .05 .3 .05 .275 .025 .025 .2 .025 .1 .35 .225 .075 .025 .025 .075 1 0 .025 .05 .025 .425 .125

racine .675 .025 .675 .675 0 0 .025 0 .15 .05 .025 .025 .25 .025 0 .625 .025 0 .025 0 .8 .075 0 0 1 .075 0 .025 .05 .025

nombrer .025 .1 .025 .025 .05 .05 .075 .325 .075 .15 .075 .1 0 0 0 .025 .075 .1 .025 .05 .025 .25 .05 .025 .075 1 0 0 .1 0
raison .05 .025 .15 .125 .025 .025 .05 .025 .05 0 .675 0 .1 .15 .725 .175 .475 .025 .8 .65 .075 .025 0 .05 0 0 1 .375 0 .425

donner .075 .45 .175 .15 .125 .175 .475 .025 .075 .025 .475 .3 .2 .3 .525 .15 .325 .075 .325 .675 .175 .15 .375 .025 .025 0 .375 1 .175 .55

ensemble .075 .375 .15 .15 .1 .075 .325 .05 .275 .25 0 .775 0 .025 .075 .075 .175 .625 .05 .125 .1 .15 .425 .425 .05 .1 0 .175 1 .125

valoir .075 .2 .05 .05 .1 .025 .2 0 .05 .1 .3 .125 .2 .325 .525 .05 .125 .075 .45 .55 0 .05 .125 .125 .025 0 .425 .55 .125 1

Table 11: Frequency of neighborhood matrix for the ficklest words only = adjacency matrix of the neighborhood
graph of the ficklest

Unfortunately, finding a maximum quasi-clique is NP-hard in the general case as well as with
this specific function. Still since the graph is small and has bounded degree, we can afford to use
moderately exponential algorithms (see [26]). We build a partition of the graph as such:

Algorithm Glutton Quasi-Clique Decomposition(G)

1: if κ = {H ⊂ V , |H | ≥ 4 ∨ E[H ] ≤ |H |(|H | − 1)/2− 1)} 6= ∅ then
2: Find K which is maximum among κ
3: Return (K,GLUTTON QUASI− CLIQUE DECOMPOSITION(G[V \K]))
4: else
5: Return V

This formal definition can be rephrased with a simple explanation: the algorithm will look for
the maximum size quasi-clique, add it as an item of the partition and proceed recursively until the
graph contains no quasi-clique of size 4 or more. The remaining vertices are left isolated in the
decomposition (note that a quasi-clique of size 3 is simply a path, and thus not very interesting to
study).

Of course the difficult point is the computation of κ at each step. There are basically two
solutions, depending on the density of the graph.

If the graph G(V,E) has high average degree δG = 2|E|/|V |, then its complementary graph
Ḡ(V, V 2 \E) has low average degree δḠ = |V |−1−δG, and thus the algorithm from [26] is efficient.

On the other hand, if the graph has low average degree, we can use the following algorithm,
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Figure 12: Graph of the relations between fickle words. Two nodes are connected if the words are significantly
neighbors.

that basically solves the quasi-clique problem through the resolution of a small (quadratic) number
of clique problems:

Algorithm QUASI CLIQUE(V,E)

1: K = CLIQUE(V,E)
2: for all u, v ∈ V (u, v) /∈ E do
3: K = max{K,CLIQUE(V,E ∪ (u, v))}
4: return K

Here CLIQUE can be any exact algorithm for the maximum clique problem, which is NP-hard
too. To our knowledge, the fastest ones are those designed in [27].

3. Analysis of results

3.1. Robust Kohonen maps

In what follows, we consider the Kohonen map after removing the fickle words (in gray), see
Figure 13. We call this modified map a Robust Kohonen map.

The Robust Kohonen map shows a contrast between the top right corner and the bottom left
one, the same contrast as between left and right sides on the first axis in FCA representation (see
Figure 2).

Indeed, the top right corner contains words linked to arithmetic practice and verbs that are used
to build arithmetical operations as retenir"to retain", emprunter"to borrow", etc. No manuscript
is specific of this part of the map, even if the BNF fr. 2050 and Kadran aux Marchans appear in
the low part of the graph.

On the bottom left corner, one finds the lexical inheritance of the medieval university represented
by the manuscript BNF fr. 1339. Some texts contain a highly specialized vocabulary, with
connections to the university world, with words such as article "article", algorism "algorithm",
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sain "integer", or a vocabulary of geometry used for the extraction of roots (carree).

The other two corners of the map are characterized by vocabulary taken from two specific
manuscripts. The BSG 3143 in the up left corner is a treatise written by Jean Adam for future
Louis XI, that is exceptional in the corpus because it uses Latin words and roman numbers and
also because it had to be pleasant for the prince. In spite of this, it shares with the Nantes 456
and BNF fr.1339 words as gecter, gectons that are marks of abacus algorithms.

In the opposite corner, the Traicté de la pratique is marked by a more descriptive vocabulary
of mathematical problems (item "item", demande "demand", requerir "to call for", quant "quant")
and stronger scientific approach (aliquot "aliquot", corps "field", proportionnellement "proportionally".)

What can we do with the list of "fickle words" from this map ? First, it is remarkable that
a part of fickle words concerns the algorithm of the rule of three. This algorithm consists of a
"multiplication" (multiplier) by the "opposite" (contraire) and of a "division" (diviser). Other
fickle words are related to the operations (reduction "fractions reducing", multiplier "to multiply",
additionner "to add"), and with words having a distinctive didactic flavor (falloir "have to", dire
"to say"). As a matter of fact, the two main technical issues for these XVth century authors are to
teach how to use the rule of three and the fractions to their readers.

3.2. Improved visualization for FCA

The combination of both techniques FCA and SOM whose result is displayed in Figures 14
and 15 is interesting because it preserves properties of the FCA while giving additional information
about the center of the projection - which is usually difficult to interpret. Indeed, the identification
of the fickle words on the FCA projections allows us to improve the general interpretation of the
factorial graphs, where some words are located because of the algorithm and not because of their
attraction to other words and to the texts.

Remember that, on the first two factorial axes (see Figure 14), we have observed an opposition
between the university legacy, on the right, and a more practical pole with rules, problems and
fractions, on the left. It could be tempting to support this observation with very significant words
such as pratique "practical" or règle de trois "rule of three". Still, the enhancement of the fickle
forms on the FCA shows that these words are in fact shared between many different texts and not
only linked to the more ’practical’ ones: Nicolas Chuquet and Traicté en la praticque. As a matter
of fact, they do belong to all the texts.

It is the same for two other words (raison "reason", dire "to say"). The word raison is an
ambiguous word, in a way, because it can mean calculation, with textual matches like "do your
reasons", or indicate mathematical problems. "To say" ranks sixth by order of frequency among
verbs in the corpus. Note that all most important verbs are not fickle words. The first eight verbs for
occurrence are: être(14523) "to be", avoir(4563) "to have", devoir(3826) "must", faire(3431) "to
do", multiplier(3228) "to multiply", dire(2461) "to say", partir(2648) "to divide", "valoir"(2606)
"to be worth". One of the particular meanings of "to say" comes from the orality of this type of
text. Understanding arithmetic operations often supposes saying it aloud.

Another interest of this kind of representation is the interpretation of the center of FCA. As
we can see in Figure 16, fickle words are close to the center, but there are other words in the same
place, which we could interpret.

To conclude, we can see that two levels of interpretation are superimposed: the fickle pairs
reveal the shared lexicon and the factorial map inserts them in a local interaction system. And
since the fickle words list is computed independently from the FCA, we can successively study
these interactions on each axis. It is the articulation between these two levels which makes this
representation interesting. At the end, the meaning of this new kind of factorial map is quite
intuitive and offers easy tools to the argumentation.
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Figure 13: Robust Kohonen map: fickle words are removed (in gray)

3.3. Neighborhood graphs

Bertin matrix (see Table 17) shows some remarkable clustering among fickle words. The
question is now to produce some interpretation of this clustering.

First, we can observe that the Bertin matrix displays four groups along its diagonal, from the
more connected on the top left, to the less connected on the bottom right.

The first list (contraire, depenser, falloir, racine, meme, demi, savoir, see Figure 10 for a
translation) is a collection of rather heterogeneous words. There are words frequently used such as
demi and others bearing a strong polysemy such as falloir.

A possible explanation may be that these groups of words form phrases in the corpus (that is
usually called textual co-occurence): the words are spaced only one or two words from each other.
and that these associations are reflected in the table. In that case, fickle words can be used as a
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Figure 14: Projection on first two factors of the FCA. Only the fickle words are in black.
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Figure 16: Correlation between fickleness and distance to the center. x-axis represents the number of fickle pairs a
word belongs to, while y-axis stands for the square distance to the origin.

tool to extract topoi. Thus, for example, savoir "to know" and contraire "contrary" are often used
in phrases such as savoir par son contraire "to know smth through its contrary".

We can also think that these clustering properties reveal more distant co-occurrences, that
means words appearing in the same sentence or paragraph, but not necessarily the same topos. For
instance, falloir "to have to do" has a lot of such co-occurrences with fickle words like reduire "to
reduce", racine "root" and savoir "to know". In this configuration, we can in fact suppose that
all these words are shared by the same sentences.
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contraire 1 .55 .625 .675 .75 .65 .425 .075 .05 .05 .025 .05 0 .075 .025 0 0 .05 0 0 .075 0 .125 .1 .2 .025 0 .075 .05 .025

depenser .55 1 .85 .8 .75 .575 .175 0 .025 .075 .05 .075 .075 .175 0 .075 .1 .15 .025 .175 .1 .025 .075 .175 .15 .025 .05 0 .05 .025

falloir .625 .85 1 .675 .775 .55 .25 .05 .05 .15 .1 .1 .1 .175 .025 .05 .05 .125 .05 .075 .15 .125 .1 .1 .2 0 .025 0 .05 .025

racine .675 .8 .675 1 .675 .625 .25 .025 .025 0 0 .025 .025 .025 0 .025 .025 .025 0 0 .05 0 .05 .075 .15 0 0 0 .025 .075

meme .75 .75 .775 .675 1 .725 .275 .05 .05 .125 .075 .075 .05 .15 .025 .025 .025 .125 .025 .05 .15 .075 .1 .175 .275 .025 0 .05 .05 .025

demi .65 .575 .55 .625 .725 1 .3 .05 .05 .175 .075 .075 .075 .15 .05 .025 .025 .05 0 0 .075 .025 .05 .075 .325 0 0 .05 .075 .025

savoir .425 .175 .25 .25 .275 .3 1 .2 0 .1 .075 .1 0 .2 .05 .05 .05 .075 .025 .1 0 .025 .175 .075 .075 .125 .1 .05 .125 0
valoir .075 0 .05 .025 .05 .05 .2 1 .3 .425 .525 .45 .125 .55 .55 .2 .2 .125 .075 .125 .125 .125 .1 .05 .05 .025 .1 0 .325 0
regledetrois .05 .025 .05 .025 .05 .05 0 .3 1 .675 .7 .55 .65 .475 .625 .075 .175 .025 .025 .025 0 .05 .025 .225 .225 .125 .1 .1 .15 .075

raison .05 .075 .15 0 .125 .175 .1 .425 .675 1 .725 .8 .475 .375 .65 .025 .05 0 .025 0 0 .05 0 .025 .05 .025 .025 .025 .15 0
position .025 .05 .1 0 .075 .075 .075 .525 .7 .725 1 .775 .6 .525 .725 .175 .175 .1 .125 .05 .075 .2 0 .1 .1 .05 .05 0 .075 0
pouvoir .05 .075 .1 .025 .075 .075 .1 .45 .55 .8 .775 1 .425 .325 .65 .075 .1 .05 .125 .025 .05 .225 .05 .025 0 .05 .05 .025 .075 .025

garder 0 .075 .1 .025 .05 .075 0 .125 .65 .475 .6 .425 1 .325 .5 .225 .35 .2 .2 .175 .175 .1 .05 .2 .325 .05 .075 .025 .1 .075

donner .075 .175 .175 .025 .15 .15 .2 .55 .475 .375 .525 .325 .325 1 .675 .45 .475 .3 .075 .375 .175 .025 .025 .15 .075 .175 .125 .025 .3 0
se .025 0 .025 0 .025 .05 .05 .55 .625 .65 .725 .65 .5 .675 1 .25 .275 .175 .1 .15 .125 .075 .05 .2 .125 .175 .15 .075 .3 .05

doubler 0 .075 .05 .025 .025 .025 .05 .2 .075 .025 .175 .075 .225 .45 .25 1 .925 .575 .325 .65 .375 .1 .05 .275 .05 .075 .05 .075 .025 .1
double 0 .1 .05 .025 .025 .025 .05 .2 .175 .05 .175 .1 .35 .475 .275 .925 1 .5 .275 .625 .325 .1 .05 .275 .075 .075 .05 .025 .05 .075

partie .05 .15 .125 .025 .125 .05 .075 .125 .025 0 .1 .05 .2 .3 .175 .575 .5 1 .55 .65 .775 .275 .225 .375 .225 .15 .15 .125 .05 .1
science 0 .025 .05 0 .025 0 .025 .075 .025 .025 .125 .125 .2 .075 .1 .325 .275 .55 1 .475 .625 .35 .25 .15 .1 .075 .05 .075 .05 .1
compter 0 .175 .075 0 .05 0 .1 .125 .025 0 .05 .025 .175 .375 .15 .65 .625 .65 .475 1 .425 .075 .1 .425 .1 .1 .1 .025 .1 .05

ensemble .075 .1 .15 .05 .15 .075 0 .125 0 0 .075 .05 .175 .175 .125 .375 .325 .775 .625 .425 1 .425 .25 .15 .275 .075 .1 .05 .025 .1
dire 0 .025 .125 0 .075 .025 .025 .125 .05 .05 .2 .225 .1 .025 .075 .1 .1 .275 .35 .075 .425 1 .3 .025 .05 0 0 .025 .025 .025

regle .125 .075 .1 .05 .1 .05 .175 .1 .025 0 0 .05 .05 .025 .05 .05 .05 .225 .25 .1 .25 .3 1 .225 .275 .275 .325 .325 .1 .15

chose .1 .175 .1 .075 .175 .075 .075 .05 .225 .025 .1 .025 .2 .15 .2 .275 .275 .375 .15 .425 .15 .025 .225 1 .375 .475 .425 .5 .15 .25

reduire .2 .15 .2 .15 .275 .325 .075 .05 .225 .05 .1 0 .325 .075 .125 .05 .075 .225 .1 .1 .275 .05 .275 .375 1 .25 .275 .1 .275 .075

seulement .025 .025 0 0 .025 0 .125 .025 .125 .025 .05 .05 .05 .175 .175 .075 .075 .15 .075 .1 .075 0 .275 .475 .25 1 .775 .675 .35 .05

pratique 0 .05 .025 0 0 0 .1 .1 .1 .025 .05 .05 .075 .125 .15 .05 .05 .15 .05 .1 .1 0 .325 .425 .275 .775 1 .625 .375 .05

multiplication .075 0 0 0 .05 .05 .05 0 .1 .025 0 .025 .025 .025 .075 .075 .025 .125 .075 .025 .05 .025 .325 .5 .1 .675 .625 1 .05 .325

exemple .05 .05 .05 .025 .05 .075 .125 .325 .15 .15 .075 .075 .1 .3 .3 .025 .05 .05 .05 .1 .025 .025 .1 .15 .275 .35 .375 .05 1 0
nombrer .025 .025 .025 .075 .025 .025 0 0 .075 0 0 .025 .075 0 .05 .1 .075 .1 .1 .05 .1 .025 .15 .25 .075 .05 .05 .325 0 1

Table 17: Same as Table 11, reorganized and with shades proportional to value.

On the contrary, demi, that is a part of the same well-connected group (according to the
clustering), does not have any specific co-occurrences in the texts with any word in this group.
That is especially interesting, since it reveals the existence of connections that could not have been
deduced from a simple study of co-occurrence with classical tools.

The Figure 18 opens another perspective. Indeed, it shows the words that make the link
between clusters. These fickle words have a lot of different affinities. We can see, for example, that
the positions of reduire "to reduce" and exemple "example" are not very surprising, because these
words are used a lot, in every text, in sentences associating them with various other fickle words,
such as "in all the examples preceding the problems", or "the problem of reducing or converting
the monetary values".

These questions are not solved yet, and the answer cannot be sure without an enlargement of
the corpus. Indeed, we would like to test this hypothesis by using the process described here on a
larger part of the corpus.

Conclusion

In this work, we have shown how to use the Kohonen maps as a complement of Factorial
Correspondence Analysis methods (FCA)classically used in lexicometry,

• to improve the information provided by the different projections of the FCA,

• to make the Kohonen maps more robust with respect to the randomness of the SOM algorithm,
by distinguishing stable neighbor pairs from fickle pairs,

• to build graphs of connections between fickle words which are difficult to analyze by both
FCA and Kohonen map alone.
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Figure 18: Glutton decomposition in quasi-cliques of maximum size.

We think that it will be interesting to use this methodology on a large variety of corpus, such
as political speeches, chivalric culture [28] texts and scientific articles.
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