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Abstract. This paper presents GraphBPT, a tool for hierarchical rep-
resentation of images based on binary partition trees. It relies on a new
BPT construction algorithm that have interesting tuning properties. Be-
sides, access to image pixels from the tree is achieved efficiently with data
compression techniques, and a textual representation of BPT is also pro-
vided for interoperability. Finally, we illustrate how the proposed tool
takes benefit from probabilistic inference techniques by empowering the
BPT with its equivalent factor graph. The relevance of GraphBPT is
illustrated in the context of image segmentation.
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1 Introduction

A strong interest in the recent decades has been developed towards realizing ma-
chines that can perceive and understand their surroundings. However, computer
vision is still facing a lot of challenges even with high-performance computing
systems. One of these challenges is how to deal with the input of these machines.
Typically, the input to computer vision is of images in their pixel-based rectan-
gular representation, whereas the output is associated with actions or decisions.
Clearly, what kind of output or performance is desired from such a system im-
poses a set of constraints on the visual data representation. A representation for
a storage-efficient system is not the same as for high-accuracy systems.

In these early approaches for analyzing visual data, pixels were treated inde-
pendently [1]. This proved to be successful for a while but the increase in image
resolution due to the advancing sensors technology created the need for a model
that considers spatial relationships. This led to context-based models such as
superpixels, edge-based, and segmentation-based representations, that brought
up the object-based paradigm [2]. Although such models show an advantage in
several applications [3], it still experienced uncertainty in defining what a con-
text is due to factors like scale, context inter- and intra-variance. Consequently,



the concept of hierarchical representation was adopted and it has proven useful
in analyzing images [4–6]. The acyclic nature of some of these representations
makes many of the growing machine-learning techniques exact and efficient. For
instance, the belief propagation algorithm for probabilistic inference is exact on
tree-graphical models [7].

In this paper, we focus on the binary partition trees (BPTs), a special case
of hierarchical representations that allows for greater flexibility than many other
morphological trees. We elaborate on this representation and introduce three
complementary contributions to the state-of-the-art:

1. An efficient implementation of BPT construction algorithm. The implemen-
tation offers a flexible framework to specify and control the way a BPT is
built. The code is freely available3 under LGPL license4.

2. A textual representation of the BPT which makes it portable across different
programming environments and platforms.

3. A demonstration of empowering BPTs with probabilistic inference.

These contributions aim to support the dissemination of the BPT (and more
generally hierarchical representations) to solve computer vision problems.

The paper organization is as follows. We first recall in Sec. 2 the concept
of BPT and introduce in Sec. 3 an efficient algorithm for its computation. We
then propose in Sec. 4 a compact and portable representation of BPTs through
textual files, with efficient access to image data. Sec. 5 presents how BPT can
be combined with the framework of probabilistic inference, with an illustrative
application in image segmentation. The last section is dedicated to conclusion
and future directions.

2 Binary Partition Tree (BPT)

There exist several hierarchical representations that come with useful properties,
e.g. min- and max-trees [8], component trees [9], or trees of shapes [10] that all
aim to extract regional extrema of the image. However, such regions sometimes
do not correspond to objects in the scene. On the other hand, the nodes of a
binary partition tree (BPT) are potential candidates for objects as BPT is able
to couple image regions based on their similarities.

BPT was introduced in [11, 12] as a structured representation of the regions
that can be obtained from an initial partition using binary mergings. In other
words, it is an agglomerative hierarchical clustering of image pixels (see Figs. 3,
4, and 5 for an illustration with a color image, its associated tree, and the
nested partitions, respectively). Image filtering, segmentation, object detection
and recognition based on BPT were demonstrated e.g. in [12–16].

The basic framework of constructing a BPT is simple and straightforward:
starting with the image pixels as the initial regions, a BPT is constructed by

3 http://www-obelix.irisa.fr/software
4 GNU Lesser General Public License, FSF, https://www.gnu.org/licenses/lgpl.html.



successively merging the most similar pairs of regions until all regions are merged
into a single region [17]. The process is governed by the following factors [11]:

– Region Model defines how each region is represented based on its charac-
teristics, e.g. color, shape, texture, etc.

– Merging Criterion defines a score of merging two regions. It is a function
of their region model.

– Merging Order defines the rules to guide the merging process based on
merging criterion.

There is no unique choice for these various parameters. However, a commonly
adopted strategy is to represent each region by its average color in a given color
space, and to first merge two regions that either have models similar one to each
other, or similar to the model of the region built from their possible union [14].
Furthermore, Vilaplana et al. [14] also explore how to take into account edge
and contrast information in the merging process through advanced merging cri-
teria. Let us note that, similarly to the underlying BPT model, the methodology
proposed in this paper is generic, i.e. it can be apply to various region models
and merging criteria.

3 BPT Construction

Based on the strategy proposed for building a BPT in [17], Valero et al. [16]
described an algorithm for constructing BPTs and presented a detailed analysis
on its complexity. For an (N = m ∗ n)-pixel image and assuming 4-connectivity,
the complexity can be expressed as the following:

OBPT (N) = N ∗ Oleaf + (4 ∗N) ∗ (Oedge +Oinsert) + (N − 1) ∗ Omerge (1)

where Oleaf , Oedge, Oinsert = O(log2N) are the complexity costs of building a
leaf node, building an edge between two nodes, inserting an edge into the priority
queue, respectively. Omerge = Oparent + a ∗ (Oedge + Oinsert) + b ∗ Opop is the
complexity of merging two nodes; with Oparent being the cost for constructing
their parent node, and Opop being the cost of poping an edge off the priority
queue. Scale factors a and b correspond respectively to the number of parent
node’s neighbors and the number of two nodes’ neighbors. Here, we describe an
optimized algorithm that lowers some of the terms in Eq. (1).

3.1 Proposed Algorithm

First, the leaf nodes are computed from the image N pixels. Their edges are
also built based on the 4-connectivity scheme. Each edge is built once, so the
term (4 ∗ N) becomes (2 ∗ N − m − n). Moreover, instead of inserting all the
edges for a node, we insert only the most light edge (corresponding to the most
similar neighboring pixels) into the queue; all other edges are irrelevant for the
node of interest. Nevertheless, if it gets merged into a new node, then all of



Algorithm 1: Proposed Algorithm for BPT Construction

Input : An image I of N pixels
Variables: Min-Priority Queue PQ,

A set of nodes V representing the binary partition tree nodes,
A set of edges E connecting neighboring nodes

Output : Binary partition tree of the image BPT

1 foreach pixel p of the image I do
2 u←BuildLeafNode (p)
3 BPT ← UpdateBPT (u)
4 foreach neighboring pixel q of p do
5 v ← leaf node of q
6 Euv ←UpdateNeighborhoodEdges (u,v)
7 PQ.insert(Euv.smallestEdge)

8 for i← 1 to N − 1 do
9 do

10 e← PQ.getHighestPriority()
11 while(e.nodes() have no parents)
12 u, v ← e.nodes()
13 w ← BuildParentNode (u, v)
14 BPT ← UpdateBPT (w)
15 Ew ←UpdateNeighborhoodEdges (w, neighbors of u, neighbors of v)
16 PQ.insert(Ew.smallestEdge)

17 return BPT

its neighbours are going to be considered even those whose connecting edges
are not in the queue. This considerably reduces the priority queue size as only
one insert per node is carried out, whilst the image support is fully considered.
Consequently, the number of insertions and pops is decreased. Nodes are merged
successively in N −1 steps. In each of the merging steps, an edge is taken off the
queue, one edge (the most light one) is inserted due to the new neighborhood
formed; while edges of the merged nodes in the queue are invalidated. We do not
bother about removing the invalidated edges from the priority queue. Instead,
whenever a merging step is done, we pop edges from the priority queue and
merge on the first valid popped edge. This on average, brings the factor b down
to a b′. At the N − 1 step, the BPT root is computed and the BPT construction
is complete. The optimized algorithm is listed in Alg. 1.

3.2 Efficiency evaluation

The new algorithm comes with the following complexity:

OBPT ′(N) = N∗Oleaf+(2∗N−m−n)∗Oedge+N∗Oinsert+(N−1)∗Omerge′ (2)

with
Omerge′ = Oparent + a ∗Oedge +Oinsert + b′ ∗Opop. (3)



Table 1: Performance statistics for a subset of MSRA images (120, 000 pixels)
Performance CPU time
statistics (in seconds)

Minimum 1.499
Maximum 66.277
Standard Deviation 3.788
Mean 2.534
Mode 1.663

Let aaverage and b′average be the average estimation of a and b′, respectively.
With Opop = O(log2(N)) and Oedge being a constant operation, the complexity
can be approximated as:

Oaverage
BPT ′ (N) ≈ O(N ∗ aaverage) +O(N ∗ b′average ∗ log2(N)). (4)

A close look on b′ shows that it can have an average estimation of ≈ 1 because
in the beginning the priority queue has N edges and each of the N − 1 merging
steps adds a single edge and pops one valid edge. Hence the average number of
popped invalid edges b′average is 2N−1

N−1 −1 ≈ 1. Similar analysis can be conducted

on a, leading to an average number being a fraction of N , with a peak of 2
3N in

the worst case (i.e. a thin elongated region).
Besides theoretical analysis, we also evaluated efficiency through runtime

measurement. Previous implementations of BPT in the literature reported an
execution time of 1.5 seconds for a 25, 344-pixel image on a 200 MHz processor
[11] and 1.03 seconds on a 1.87 GHz processor for the same image size [14]. Alg. 1
(coded in Java) reported an execution time of 0.282 seconds on a 2.2 GHz for
the same image size.

A further analysis was conducted on MSRA’s 5, 000 images [18]. We ran our
code with no tuning of BPT parameters and choosing the spectral similarity as
the region model. The execution time varies from 0.6 seconds for a 36, 630-pixel
color image to 3.8 minutes for a 154, 400-pixel color image. Although the execu-
tion time is greatly affected by the number of pixels N , it is as well affected by
the image content. Indeed, image content determines the weights of nodes edges
which consequently affect the performance of both priority queue operations and
image regions compression. Table 1 shows the execution time statistics for 1238
color images of 120, 000 pixels using a 2.2 GHz processor. As a future work, we
plan to study extensively the effects of the similarity measures and provide a
benchmark for comparing various implementations of BPT.

3.3 BPT tuning

As already indicated, the BPT model is attractive due to its flexibility. We keep
such property in our tool by providing a set of tunable parameters to fit the ap-
plication needs (e.g. in object detection, regions of compact geometry are usually
more preferred over others which might not be the case for a segmentation-based



Table 2: BPT construction parameters

Parameter Range Description

Number of Nodes [1, 2N − 1] Specifies the number of nodes the BPT
should have. It can also be set as a fraction
of the total number of nodes.

Number of levels [1, N ] Specifies how many levels the BPT should
have.

Node Size [1, N ] Specifies how many pixels a node should at
least contain. It can also be set as a fraction
of the total number of pixels.

Similarity Measure Weights [0, 1]k Specifies the contribution of the k individ-
ual features to the overall similarity mea-
sure between two nodes.

Node Orientation up, down Specifies whether the nodes levels are as-
signed in a top-down or a bottom-up man-
ner.

application). Currently, these parameters can be set from the source files. As a
future work, we intend to add a friendly interface to the tool for setting them.
Table 2 lists these parameters. Some of them are related and might override
each other. For instance, the number of nodes and levels for a tree are quite
related (a binary tree of l levels, has at most 2l − 1 nodes). Controlling BPT’s
number of nodes, number of levels, and their sizes helps in bringing images of
different scale or size to a normalized representation under their BPTs. The
tree construction relies on a similarity between nodes, that is computed here as
a linear combination of k similarity measures. Such measures as well as their
contribution to the overall similarity measure can be tuned as well. Let us note
that we consider in this paper three measures dealing respectively with color,
spatial, and geometric information. As BPTs could have irregular structure (e.g.
leaf nodes can have different distances from the root), we provide a parameter,
node orientation, that assigns the level of each node based on its distance from
either the root level (level 1) or the leaf nodes level (specified by the parameter,
number of levels). In other words, each node can be assigned to a level either in
a top-down or a bottom-up order.

4 BPT Indexing and Management

4.1 Textual Representation

To make our BPT implementation portable and readable across different pro-
gramming environments and platforms, we worked out a compact textual repre-
sentation of the BPT. The labels: 0, . . . , N − 1 are assigned to the nodes of an
N -BPT in a depth-first order from right to left as shown in Fig. 1.
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Fig. 1: BPT textual representation

Each leaf node l is represented with a single line of comma-separated values
(csv) as the following: [Al, Bl] where Al is the node label, and Bl is the set of
node’s pixels linear indices. On the other hand, each parent node p is represented
by the line: [Cp, Dp, Ep, Fp] where Cp is the node label, Dp, Ep are the children
nodes labels in a descending order, and Fp is the greatest label among descendant
nodes labels. Such a textual representation allows to build BPTs in a top-down
approach directly. Besides, indexing p’s image region is nothing but the pixels
union of leaf nodes whose labels Al intersect with the interval [Ep, Fp].

As each node is represented with a csv line, it is easy to add any other
feature/attribute to its textual representation. For instance, the number of de-
scendant nodes can be appended for each node to help in drawing the tree. Our
tool automatically produces two text files named as bpt.leaves and bpt.parents
which can be read readily to retrieve the BPT structure. Along with the tool,
we have provided MATLAB functions for accessing these files and producing the
BPT structure in a MATLAB environment.

4.2 Region Indexing

Given a node, it is sometimes needed to access the corresponding region in the
image space. Usually, the leaf nodes would have the direct access to the image
pixels. As a result, graph traversal is the technique commonly used to traverse
from a node of interest to its descendant leaf nodes, and hence accessing the
corresponding image region. To avoid traversing the tree, and provide a direct
access to a node’s image region, a bounding box is created for each node that



covers all the pixels included in the corresponding image region, as well as some
neighboring pixels (i.e. pixels that belong to the bounding box but do not belong
to the node of interest). This provides two advantages:

1. It makes BPT more adaptable to grid/window-based computer vision models
and paradigms such as kernel descriptors [19] and convolutional networks [4].

2. It provides a constant time operation for accessing a relaxed representation
(bounding box) of a specific node.

Nevertheless, to retrieve the node’s exact image region, the bounding box can be
provided with a bitmap whose bits correspond to the pixels within the bounding
box. A bit is set to 1 if the corresponding pixel belongs to the node, or 0 other-
wise. The additional memory storage incurred by these bitmaps can significantly
be reduced by compressing them using a suitable compression technique. The
tool currently uses run-length encoding (RLE) to compress the BPT’s bitmaps.
This adds to the complexity of Oparent in Eq. (3) a term that is linear in the
number of pixels in newly-formed node.

5 Probabilistic Graphical Model for BPT

Some of the problems in the domain of computer vision such as object detection
and recognition are naturally ill-posed in a way that it is very difficult to deter-
mine with absolute certainty their exact solutions. In these settings, probabilistic
graphical models become very handy in not only providing a single solution but
a probability distribution over all feasible solutions [20]. Therefore, instead of
the conventional methods that analyse each node as a separate entity for ex-
ample in object detection and recognition problems [13], treating the BPT as
an entire structure by encoding the relationships between its nodes is elegantly
done using a probabilistic graphical model. Here, we focus on representing BPTs
with a discrete factor graph with a conditional distribution. The reader is re-
ferred to [20] for an introduction to these models. The practical interest of such
a connection between morphological representations and probabilistic inference
will be illustrated in the context of image segmentation.

5.1 Inducing a BPT’s factor graph

A BPT can be defined as the tuple (X,E) where X is the set of measure-
ments/observations nodes (color, shape, or other features) that correspond to
the BPT nodes and E is the set of edges connecting the nodes and hence X. X
can be considered as the set of input variables that are always available. On the
other side, an output variable is provided for each node and collectively denoted
as Y . Their values represent the solution to the problem of interest. For instance,
in object detection, we can have a binary variable per node to denote whether it
corresponds to a sought object or not. The factor graph captures the interaction
among these variables by introducing a set of factor nodes F . These factors can



be seen as potential functions that assign scores to the output variables assign-
ments and are application-dependent. Let V = X ∪ Y , then the factor graph
is the tuple (V,F , E) where E ⊆ V × F . Figure 2 shows how a factor graph is
induced from a BPT.

Fig. 2: Inducing a factor graph from a 3-BPT

5.2 Probabilistic Inference on BPT

Once the factor graph is built, probabilistic inference is a straightforward process.
We integrated libDAI [21], a free and open source C++ library for performing
probabilistic inference. As the generated factor graph is of a tree structure,
inference is efficient and exact. For an output variable domain of L, the inference
complexity is of O(|Y ||L|2). We recall that performing an exact inference on a
general network is NP-hard [22, 23].

5.3 Application

We demonstrate here how the tool can be used for one of the most common
problems in computer vision, namely image segmentation (into foreground and
background). Given an image, we would like to segment out the object of interest
using BPT. In other words, we are interested in labelling BPT nodes and hence
image regions with either foreground and background class. As a first step, the
BPT is built from the initial image. Figure 4 shows BPT built for the image in
Fig. 3. As we are targeting objects of homogeneous texture, the contribution of
color information to the similarity measure is set to be the highest. As already
indicated, other sources of information (e.g. edge, spatial, geometric, or com-
plex features) could be considered for the similarity measure depending on the
application context.



Fig. 3: Input Image
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Fig. 4: BPT

Conversely from previous approaches in analyzing BPTs, we deal with them
holistically by performing probabilistic inference on their induced factor graphs.
Put it mathematically, a node xi in the BPT X has a label variable yi ∈ {0, 1},
and Y = {yi} is the set of X’s nodes label variables. Our goal is to find the
highest probable joint assignment of Y given X:

Y ∗ = arg max
Y ∈{0,1}|Y |

P (Y |X) (5)

where P (Y |X) is nothing but the normalized product of the BPT’s factor graph
factors:

P (Y |X) =
1

Z(F)

∏
f∈F :yf∈Y,xf∈X

φf (yf ;xf ) (6)

with Z the normalizing function for a proper probability distribution and φf the
potential function for the factor node f [20]. A crucial aspect of exploiting the
power of factor graphs is how carefully factors (potential functions) are designed.
These factors can be either hand-crafted or learned using well-established ma-
chine learning techniques to suit more complex problems. For the sake of demon-
stration, we have designed the factors based on nodes color information. Figure
5 shows the labelling of BPT nodes across its six levels with transparent green
assigned to background nodes and transparent red assigned to foreground ones.

6 Conclusion

This paper presented an efficient tool for building and managing binary partition
trees as hierarchical representations of images. It relies on a new algorithm that
allows for efficient BPT construction, while still offering several control param-
eters to guide the construction process. Besides, we also introduced an indexing
scheme based on compressed bit maps of the nodes regions. With an additional
manageable storage cost, it avoids the recursive graph traversals that is usually
needed for accessing all pixels belonging to a BPT node. Furthermore, empower-
ing the BPT with probabilistic inference features is made available by inducing
the corresponding factor graph of the BPT. As the induced factor graph is as



Fig. 5: BPT Nodes Labels

well acyclic, probabilistic inferences are exact and efficient. These complemen-
tary contributions, gathered in a publicly available tool, support the BPT as a
tunable model that can be combined with recent machine learning paradigms to
solve various computer vision problems.

We have provided here only a very limited comparison with existing works
[11, 14]. In order to better assess the relevance of our findings, we plan now to
perform a deeper experimental evaluation of our contributions (both the compu-
tational cost of the construction algorithm and the memory cost of the proposed
data structure) and to compare them with more recent works, e.g. [24]. Besides,
we are considering to apply the proposed probabilistic framework to various
problems faced in computer vision, e.g. object recognition or image classifica-
tion. To do so, we will also need to explore various similarity measures and their
impact on the performance of the resulting BPT model.
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