Abdullah Al-Dujaili 
email: aldujail001@e.ntu.edu.sg
  
François Merciol 
email: francois.merciol@irisa.fr
  
Sébastien Lefèvre 
email: sebastien.lefevre@irisa.fr
  
GraphBPT: An Efficient Hierarchical Data Structure for Image Representation and Probabilistic Inference

Keywords: image processing, hierarchical segmentation, binary partition tree, compression, probabilistic inference

published or not. The documents may come   L'archive ouverte pluridisciplinaire

Introduction

A strong interest in the recent decades has been developed towards realizing machines that can perceive and understand their surroundings. However, computer vision is still facing a lot of challenges even with high-performance computing systems. One of these challenges is how to deal with the input of these machines. Typically, the input to computer vision is of images in their pixel-based rectangular representation, whereas the output is associated with actions or decisions.

Clearly, what kind of output or performance is desired from such a system imposes a set of constraints on the visual data representation. A representation for a storage-efficient system is not the same as for high-accuracy systems.

In these early approaches for analyzing visual data, pixels were treated independently [START_REF] Hussain | Change detection from remotely sensed images: From pixel-based to object-based approaches[END_REF]. This proved to be successful for a while but the increase in image resolution due to the advancing sensors technology created the need for a model that considers spatial relationships. This led to context-based models such as superpixels, edge-based, and segmentation-based representations, that brought up the object-based paradigm [START_REF] Blaschke | Object-oriented image processing in an integrated GIS/remote sensing environment and perspectives for environmental applications[END_REF]. Although such models show an advantage in several applications [START_REF] Walter | Object-based classification of remote sensing data for change detection[END_REF], it still experienced uncertainty in defining what a context is due to factors like scale, context inter-and intra-variance. Consequently, the concept of hierarchical representation was adopted and it has proven useful in analyzing images [START_REF] Farabet | Learning hierarchical features for scene labeling[END_REF][START_REF] Lefvre | Hyperspectral image classification from multiscale description with constrained connectivity and metric learning[END_REF][START_REF] Valero | Hyperspectral image representation and processing with binary partition trees[END_REF]. The acyclic nature of some of these representations makes many of the growing machine-learning techniques exact and efficient. For instance, the belief propagation algorithm for probabilistic inference is exact on tree-graphical models [START_REF] Koller | Probabilistic Graphical Models: Principles and Techniques -Adaptive Computation and Machine Learning[END_REF].

In this paper, we focus on the binary partition trees (BPTs), a special case of hierarchical representations that allows for greater flexibility than many other morphological trees. We elaborate on this representation and introduce three complementary contributions to the state-of-the-art:

1. An efficient implementation of BPT construction algorithm. The implementation offers a flexible framework to specify and control the way a BPT is built. The code is freely available3 under LGPL license4 . 2. A textual representation of the BPT which makes it portable across different programming environments and platforms. 3. A demonstration of empowering BPTs with probabilistic inference.

These contributions aim to support the dissemination of the BPT (and more generally hierarchical representations) to solve computer vision problems.

The paper organization is as follows. We first recall in Sec. 2 the concept of BPT and introduce in Sec. 3 an efficient algorithm for its computation. We then propose in Sec. 4 a compact and portable representation of BPTs through textual files, with efficient access to image data. Sec. 5 presents how BPT can be combined with the framework of probabilistic inference, with an illustrative application in image segmentation. The last section is dedicated to conclusion and future directions.

Binary Partition Tree (BPT)

There exist several hierarchical representations that come with useful properties, e.g. min-and max-trees [START_REF] Salembier | Antiextensive connected operators for image and sequence processing[END_REF], component trees [START_REF] Jones | Component trees for image filtering and segmentation[END_REF], or trees of shapes [START_REF] Monasse | Scale-space from a level lines tree[END_REF] that all aim to extract regional extrema of the image. However, such regions sometimes do not correspond to objects in the scene. On the other hand, the nodes of a binary partition tree (BPT) are potential candidates for objects as BPT is able to couple image regions based on their similarities.

BPT was introduced in [START_REF] Garrido | Extensive operators in partition lattices for image sequence analysis[END_REF][START_REF] Salembier | Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval[END_REF] as a structured representation of the regions that can be obtained from an initial partition using binary mergings. In other words, it is an agglomerative hierarchical clustering of image pixels (see Figs. 3,4, and 5 for an illustration with a color image, its associated tree, and the nested partitions, respectively). Image filtering, segmentation, object detection and recognition based on BPT were demonstrated e.g. in [START_REF] Salembier | Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval[END_REF][START_REF] Salerno | Object recognition based on binary partition trees[END_REF][START_REF] Vilaplana | Binary partition trees for object detection[END_REF][START_REF] Giró-I Nieto | Part-Based Object Retrieval With Binary Partition Trees[END_REF][START_REF] Valero | Hyperspectral image representation and processing with binary partition trees[END_REF].

The basic framework of constructing a BPT is simple and straightforward: starting with the image pixels as the initial regions, a BPT is constructed by successively merging the most similar pairs of regions until all regions are merged into a single region [START_REF] Garrido | Hierarchical Region Based Processing of Images and Video Sequences: Application to Filtering, Segmentation and Information Retrieval[END_REF]. The process is governed by the following factors [START_REF] Garrido | Extensive operators in partition lattices for image sequence analysis[END_REF]:

-Region Model defines how each region is represented based on its characteristics, e.g. color, shape, texture, etc. -Merging Criterion defines a score of merging two regions. It is a function of their region model. -Merging Order defines the rules to guide the merging process based on merging criterion.

There is no unique choice for these various parameters. However, a commonly adopted strategy is to represent each region by its average color in a given color space, and to first merge two regions that either have models similar one to each other, or similar to the model of the region built from their possible union [START_REF] Vilaplana | Binary partition trees for object detection[END_REF]. Furthermore, Vilaplana et al. [START_REF] Vilaplana | Binary partition trees for object detection[END_REF] also explore how to take into account edge and contrast information in the merging process through advanced merging criteria. Let us note that, similarly to the underlying BPT model, the methodology proposed in this paper is generic, i.e. it can be apply to various region models and merging criteria.

BPT Construction

Based on the strategy proposed for building a BPT in [START_REF] Garrido | Hierarchical Region Based Processing of Images and Video Sequences: Application to Filtering, Segmentation and Information Retrieval[END_REF], Valero et al. [START_REF] Valero | Hyperspectral image representation and processing with binary partition trees[END_REF] described an algorithm for constructing BPTs and presented a detailed analysis on its complexity. For an (N = m * n)-pixel image and assuming 4-connectivity, the complexity can be expressed as the following:

O BP T (N ) = N * O leaf + (4 * N ) * (O edge + O insert ) + (N -1) * O merge (1)
where O leaf , O edge , O insert = O(log 2 N ) are the complexity costs of building a leaf node, building an edge between two nodes, inserting an edge into the priority queue, respectively.

O merge = O parent + a * (O edge + O insert ) + b * O pop
is the complexity of merging two nodes; with O parent being the cost for constructing their parent node, and O pop being the cost of poping an edge off the priority queue. Scale factors a and b correspond respectively to the number of parent node's neighbors and the number of two nodes' neighbors. Here, we describe an optimized algorithm that lowers some of the terms in Eq. (1).

Proposed Algorithm

First, the leaf nodes are computed from the image N pixels. Their edges are also built based on the 4-connectivity scheme. Each edge is built once, so the term (4 * N ) becomes (2 * N -m -n). Moreover, instead of inserting all the edges for a node, we insert only the most light edge (corresponding to the most similar neighboring pixels) into the queue; all other edges are irrelevant for the node of interest. Nevertheless, if it gets merged into a new node, then all of its neighbours are going to be considered even those whose connecting edges are not in the queue. This considerably reduces the priority queue size as only one insert per node is carried out, whilst the image support is fully considered. Consequently, the number of insertions and pops is decreased. Nodes are merged successively in N -1 steps. In each of the merging steps, an edge is taken off the queue, one edge (the most light one) is inserted due to the new neighborhood formed; while edges of the merged nodes in the queue are invalidated. We do not bother about removing the invalidated edges from the priority queue. Instead, whenever a merging step is done, we pop edges from the priority queue and merge on the first valid popped edge. This on average, brings the factor b down to a b . At the N -1 step, the BPT root is computed and the BPT construction is complete. The optimized algorithm is listed in Alg. 1.

Efficiency evaluation

The new algorithm comes with the following complexity: Let a average and b average be the average estimation of a and b , respectively.

O BP T (N ) = N * O leaf +(2 * N -m-n) * O edge +N * O insert +(N -1) * O merge (2) with O merge = O parent + a * O edge + O insert + b * O pop . (3) 
With O pop = O(log 2 (N )) and O edge being a constant operation, the complexity can be approximated as:

O average BP T (N ) ≈ O(N * a average ) + O(N * b average * log 2 (N )). (4) 
A close look on b shows that it can have an average estimation of ≈ 1 because in the beginning the priority queue has N edges and each of the N -1 merging steps adds a single edge and pops one valid edge. Hence the average number of popped invalid edges b average is 2N -1 N -1 -1 ≈ 1. Similar analysis can be conducted on a, leading to an average number being a fraction of N , with a peak of 2 3 N in the worst case (i.e. a thin elongated region).

Besides theoretical analysis, we also evaluated efficiency through runtime measurement. Previous implementations of BPT in the literature reported an execution time of 1.5 seconds for a 25, 344-pixel image on a 200 MHz processor [START_REF] Garrido | Extensive operators in partition lattices for image sequence analysis[END_REF] and 1.03 seconds on a 1.87 GHz processor for the same image size [START_REF] Vilaplana | Binary partition trees for object detection[END_REF]. Alg. 1 (coded in Java) reported an execution time of 0.282 seconds on a 2.2 GHz for the same image size.

A further analysis was conducted on MSRA's 5, 000 images [START_REF] Liu | Learning to detect a salient object[END_REF]. We ran our code with no tuning of BPT parameters and choosing the spectral similarity as the region model. The execution time varies from 0.6 seconds for a 36, 630-pixel color image to 3.8 minutes for a 154, 400-pixel color image. Although the execution time is greatly affected by the number of pixels N , it is as well affected by the image content. Indeed, image content determines the weights of nodes edges which consequently affect the performance of both priority queue operations and image regions compression. Table 1 shows the execution time statistics for 1238 color images of 120, 000 pixels using a 2.2 GHz processor. As a future work, we plan to study extensively the effects of the similarity measures and provide a benchmark for comparing various implementations of BPT.

BPT tuning

As already indicated, the BPT model is attractive due to its flexibility. We keep such property in our tool by providing a set of tunable parameters to fit the application needs (e.g. in object detection, regions of compact geometry are usually more preferred over others which might not be the case for a segmentation-based application). Currently, these parameters can be set from the source files. As a future work, we intend to add a friendly interface to the tool for setting them. Table 2 lists these parameters. Some of them are related and might override each other. For instance, the number of nodes and levels for a tree are quite related (a binary tree of l levels, has at most 2 l -1 nodes). Controlling BPT's number of nodes, number of levels, and their sizes helps in bringing images of different scale or size to a normalized representation under their BPTs. The tree construction relies on a similarity between nodes, that is computed here as a linear combination of k similarity measures. Such measures as well as their contribution to the overall similarity measure can be tuned as well. Let us note that we consider in this paper three measures dealing respectively with color, spatial, and geometric information. As BPTs could have irregular structure (e.g. leaf nodes can have different distances from the root), we provide a parameter, node orientation, that assigns the level of each node based on its distance from either the root level (level 1) or the leaf nodes level (specified by the parameter, number of levels). In other words, each node can be assigned to a level either in a top-down or a bottom-up order.

BPT Indexing and Management

Textual Representation

To make our BPT implementation portable and readable across different programming environments and platforms, we worked out a compact textual representation of the BPT. The labels: 0, . . . , N -1 are assigned to the nodes of an N -BPT in a depth-first order from right to left as shown in Fig. 1. 
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BPT Textual Representation

Fig. 1: BPT textual representation

Each leaf node l is represented with a single line of comma-separated values (csv) as the following: [A l , B l ] where A l is the node label, and B l is the set of node's pixels linear indices. On the other hand, each parent node p is represented by the line: [C p , D p , E p , F p ] where C p is the node label, D p , E p are the children nodes labels in a descending order, and F p is the greatest label among descendant nodes labels. Such a textual representation allows to build BPTs in a top-down approach directly. Besides, indexing p's image region is nothing but the pixels union of leaf nodes whose labels A l intersect with the interval [E p , F p ].

As each node is represented with a csv line, it is easy to add any other feature/attribute to its textual representation. For instance, the number of descendant nodes can be appended for each node to help in drawing the tree. Our tool automatically produces two text files named as bpt.leaves and bpt.parents which can be read readily to retrieve the BPT structure. Along with the tool, we have provided MATLAB functions for accessing these files and producing the BPT structure in a MATLAB environment.

Region Indexing

Given a node, it is sometimes needed to access the corresponding region in the image space. Usually, the leaf nodes would have the direct access to the image pixels. As a result, graph traversal is the technique commonly used to traverse from a node of interest to its descendant leaf nodes, and hence accessing the corresponding image region. To avoid traversing the tree, and provide a direct access to a node's image region, a bounding box is created for each node that covers all the pixels included in the corresponding image region, as well as some neighboring pixels (i.e. pixels that belong to the bounding box but do not belong to the node of interest). This provides two advantages:

1. It makes BPT more adaptable to grid/window-based computer vision models and paradigms such as kernel descriptors [START_REF] Bo | Object recognition with hierarchical kernel descriptors[END_REF] and convolutional networks [START_REF] Farabet | Learning hierarchical features for scene labeling[END_REF]. 2. It provides a constant time operation for accessing a relaxed representation (bounding box) of a specific node.

Nevertheless, to retrieve the node's exact image region, the bounding box can be provided with a bitmap whose bits correspond to the pixels within the bounding box. A bit is set to 1 if the corresponding pixel belongs to the node, or 0 otherwise. The additional memory storage incurred by these bitmaps can significantly be reduced by compressing them using a suitable compression technique. The tool currently uses run-length encoding (RLE) to compress the BPT's bitmaps. This adds to the complexity of O parent in Eq. ( 3) a term that is linear in the number of pixels in newly-formed node.

Probabilistic Graphical Model for BPT

Some of the problems in the domain of computer vision such as object detection and recognition are naturally ill-posed in a way that it is very difficult to determine with absolute certainty their exact solutions. In these settings, probabilistic graphical models become very handy in not only providing a single solution but a probability distribution over all feasible solutions [START_REF] Nowozin | Structured learning and prediction in computer vision[END_REF]. Therefore, instead of the conventional methods that analyse each node as a separate entity for example in object detection and recognition problems [START_REF] Salerno | Object recognition based on binary partition trees[END_REF], treating the BPT as an entire structure by encoding the relationships between its nodes is elegantly done using a probabilistic graphical model. Here, we focus on representing BPTs with a discrete factor graph with a conditional distribution. The reader is referred to [START_REF] Nowozin | Structured learning and prediction in computer vision[END_REF] for an introduction to these models. The practical interest of such a connection between morphological representations and probabilistic inference will be illustrated in the context of image segmentation.

Inducing a BPT's factor graph

A BPT can be defined as the tuple (X, E) where X is the set of measurements/observations nodes (color, shape, or other features) that correspond to the BPT nodes and E is the set of edges connecting the nodes and hence X. X can be considered as the set of input variables that are always available. On the other side, an output variable is provided for each node and collectively denoted as Y . Their values represent the solution to the problem of interest. For instance, in object detection, we can have a binary variable per node to denote whether it corresponds to a sought object or not. The factor graph captures the interaction among these variables by introducing a set of factor nodes F. These factors can be seen as potential functions that assign scores to the output variables assignments and are application-dependent. Let V = X ∪ Y , then the factor graph is the tuple (V, F, E) where E ⊆ V × F. Figure 2 shows how a factor graph is induced from a BPT.

Fig. 2: Inducing a factor graph from a 3-BPT

Probabilistic Inference on BPT

Once the factor graph is built, probabilistic inference is a straightforward process. We integrated libDAI [START_REF] Mooij | libDAI: A free and open source C++ library for discrete approximate inference in graphical models[END_REF], a free and open source C++ library for performing probabilistic inference. As the generated factor graph is of a tree structure, inference is efficient and exact. For an output variable domain of L, the inference complexity is of O(|Y ||L| 2 ). We recall that performing an exact inference on a general network is NP-hard [START_REF] Mcauley | Hierarchical image-region labeling via structured learning[END_REF][START_REF] Cooper | The computational complexity of probabilistic inference using bayesian belief networks[END_REF].

Application

We demonstrate here how the tool can be used for one of the most common problems in computer vision, namely image segmentation (into foreground and background). Given an image, we would like to segment out the object of interest using BPT. In other words, we are interested in labelling BPT nodes and hence image regions with either foreground and background class. As a first step, the BPT is built from the initial image. Figure 4 shows BPT built for the image in Fig. 3. As we are targeting objects of homogeneous texture, the contribution of color information to the similarity measure is set to be the highest. As already indicated, other sources of information (e.g. edge, spatial, geometric, or complex features) could be considered for the similarity measure depending on the application context. Conversely from previous approaches in analyzing BPTs, we deal with them holistically by performing probabilistic inference on their induced factor graphs. Put it mathematically, a node x i in the BPT X has a label variable y i ∈ {0, 1}, and Y = {y i } is the set of X's nodes label variables. Our goal is to find the highest probable joint assignment of Y given X:

Y * = arg max Y ∈{0,1} |Y | P (Y |X) (5) 
where P (Y |X) is nothing but the normalized product of the BPT's factor graph factors:

P (Y |X) = 1 Z(F) f ∈F :y f ∈Y,x f ∈X φ f (y f ; x f ) (6) 
with Z the normalizing function for a proper probability distribution and φ f the potential function for the factor node f [START_REF] Nowozin | Structured learning and prediction in computer vision[END_REF]. A crucial aspect of exploiting the power of factor graphs is how carefully factors (potential functions) are designed. These factors can be either hand-crafted or learned using well-established machine learning techniques to suit more complex problems. For the sake of demonstration, we have designed the factors based on nodes color information. Figure 5 shows the labelling of BPT nodes across its six levels with transparent green assigned to background nodes and transparent red assigned to foreground ones.

Conclusion

This paper presented an efficient tool for building and managing binary partition trees as hierarchical representations of images. It relies on a new algorithm that allows for efficient BPT construction, while still offering several control parameters to guide the construction process. Besides, we also introduced an indexing scheme based on compressed bit maps of the nodes regions. With an additional manageable storage cost, it avoids the recursive graph traversals that is usually needed for accessing all pixels belonging to a BPT node. Furthermore, empowering the BPT with probabilistic inference features is made available by inducing the corresponding factor graph of the BPT. As the induced factor graph is as Fig. 5: BPT Nodes Labels well acyclic, probabilistic inferences are exact and efficient. These complementary contributions, gathered in a publicly available tool, support the BPT as a tunable model that can be combined with recent machine learning paradigms to solve various computer vision problems.

We have provided here only a very limited comparison with existing works [START_REF] Garrido | Extensive operators in partition lattices for image sequence analysis[END_REF][START_REF] Vilaplana | Binary partition trees for object detection[END_REF]. In order to better assess the relevance of our findings, we plan now to perform a deeper experimental evaluation of our contributions (both the computational cost of the construction algorithm and the memory cost of the proposed data structure) and to compare them with more recent works, e.g. [START_REF] Najman | Playing with kruskal: Algorithms for morphological trees in edge-weighted graphs[END_REF]. Besides, we are considering to apply the proposed probabilistic framework to various problems faced in computer vision, e.g. object recognition or image classification. To do so, we will also need to explore various similarity measures and their impact on the performance of the resulting BPT model.
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 123456710 Proposed Algorithm for BPT Construction Input : An image I of N pixels Variables: Min-Priority Queue P Q, A set of nodes V representing the binary partition tree nodes, A set of edges E connecting neighboring nodes Output : Binary partition tree of the image BP T 1 foreach pixel p of the image I do Euv ←UpdateNeighborhoodEdges (u,v) Q.insert(Euv.smallestEdge) 8 for i ← 1 to N -1 do 9 do ← P Q.getHighestPriority() 11 while(e.nodes() have no parents) 12 u, v ← e.nodes() 13 w ← BuildParentNode (u, v) 14 BP T ← UpdateBPT (w) 15 Ew ←UpdateNeighborhoodEdges (w, neighbors of u, neighbors of v) 16 P Q.insert(Ew.smallestEdge) 17 return BP T
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Table 1 :

 1 Performance statistics for a subset of MSRA images (120, 000 pixels)

	Performance	CPU time
	statistics	(in seconds)
	Minimum	1.499
	Maximum	66.277
	Standard Deviation	3.788
	Mean	2.534
	Mode	1.663

Table 2 :

 2 BPT construction parameters

	Parameter	Range Description
	Number of Nodes	[1, 2N -1] Specifies the number of nodes the BPT
		should have. It can also be set as a fraction
		of the total number of nodes.
	Number of levels	[1, N ] Specifies how many levels the BPT should
		have.
	Node Size	[1, N ] Specifies how many pixels a node should at
		least contain. It can also be set as a fraction
		of the total number of pixels.
	Similarity Measure Weights [0, 1] k Specifies the contribution of the k individ-
		ual features to the overall similarity mea-
		sure between two nodes.
	Node Orientation	up, down Specifies whether the nodes levels are as-
		signed in a top-down or a bottom-up man-
		ner.
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