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A Subpath Kernel for Learning Hierarchical
Image Representations

Yanwei Cui, Laetitia Chapel, and Sébastien Lefevre

Univ. Bretagne-Sud, UMR 6074, IRISA, F-56000 Vannes, France

Abstract. Tree kernels have demonstrated their ability to deal with
hierarchical data, as the intrinsic tree structure often plays a discrimi-
native role. While such kernels have been successfully applied to various
domains such as nature language processing and bioinformatics, they
mostly concentrate on ordered trees and whose nodes are described by
symbolic data. Meanwhile, hierarchical representations have gained in-
creasing interest to describe image content. This is particularly true in
remote sensing, where such representations allow for revealing different
objects of interest at various scales through a tree structure. However, the
induced trees are unordered and the nodes are equipped with numerical
features. In this paper, we propose a new structured kernel for hierarchi-
cal image representations which is built on the concept of subpath kernel.
Experimental results on both artificial and remote sensing datasets show
that the proposed kernel manages to deal with the hierarchical nature of
the data, leading to better classification rates.

Keywords: Hierarchical representation, image classification, structured
kernels, subpath kernel

1 Introduction

Structured data-based learning has become a central topic in machine learn-
ing, as such data representations are met in numerous fields. We focus here on
tree-based representations, whose typical applications are parse trees in Natu-
ral Language Processing [4], XML trees in web mining [8], or even hierarchical
image representations [2]. Since tree structure plays an important role in tasks
like classification or clustering, similarity measures taking explicitly into account
topological characteristics of the tree are sought. Among them, kernels functions
are appealing as they allow the use of popular kernel methods [11].

Various kernels have indeed been proposed to cope with a tree as the under-
lying data structure (see [12] for a review). They mostly rely on a fundamental
idea brought by Haussler with its convolution kernels [7], stating that a kernel
defined on a complex structure can be formed by kernels computed on its sub-
structures. Most often, those kernels are defined for ordered trees, that is to say
trees for which left to right order among nodes or leaves is fixed (mostly because
of the specific nature of the data or due to computational complexity issues).
Examples of such kernels include the subset tree kernel [4] and the subtree kernel
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[14]. Unordered trees received much less attention, with the subpath kernel [8]
being one of the very few existing solutions.

Meanwhile, an emerging paradigm for image classification has advocated the
idea of relying on hierarchical representations [2], which are built using series
of nested partitions or segmentations, rather than the usual flat representation.
This is particularly true in remote sensing, where such representations allow for
revealing different objects of interest at various scales through a tree structure.
However, the induced trees are unordered and the nodes or regions are associated
with numerical features, preventing the use of existing tree kernels.

We propose in this paper a new kernel that arises from the subpath kernel
[8]. Based on some existing adaptations to numerical data from the graph kernel
literature, the designed kernel is able to cope with unordered trees equipped with
numerical data (see Sec. 2). Besides, it considers the complete set of subpaths on
tree structures (instead of paths on graphs), leading to an efficient computation
scheme. Experimental results are given in Sec. 3. They rely on artificial datasets
as well as a real multispectral satellite image. We end the paper with some
concluding remarks and directions for future work.

2 Proposed Kernel

We focus here on structured data represented by trees and subpaths. Let us first
recall that a tree is a directed and connected acyclic graph with a single root
node. A path connecting a node in the tree to one of its descendants is called a
subpath. Individual nodes are also included in the set of subpaths.

We build upon the subpath kernel [8] to design a new kernel able to cope with
numerical data. Let us recall the principles of the original subpath kernel, that
exploits the hierarchical structure by counting all possible common subpaths
embedded in two tree structures equipped with symbolic features. Given two
trees T and T”, the subpath kernel is defined as

K(TT)= > kis,s)= > 68ew h(s,T) h(s',T'), (1)

seT,s'eT’ seT,s'eT’

where kernels k(s,s’) are computed between all subpaths s, s’ of tree T, T” re-
spectively. They rely on the number of occurrences of the subpaths in the tree
written h(s,T) and h(s’,T"). The Kronecker delta function J, o+ equals 1 iif the
two subpaths s, s’ are identical. Figure 1 illustrates for a given simple tree its
possible subpaths and their occurrences in the tree.

2.1 Adaptation to numeric data

The original kernel depicted previously was introduced for data classification in
bioinformatics where nodes take symbolic values. Adapting this kernel to nu-
meric data requires one to change the terms h(s,T) and d, o since strict identity
between subpaths (and their respective node features) does not generally occur.
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(a) Tree T' ) Enumerate all subpaths s; € T

Fig.1: A tree T and all its subpaths s;, that may have multiple occurrences in
T: h(s;,T) =2 for s9 = (A — B) and s5 = (B) ; h(s;, T) = 1 otherwise.

We follow here the scheme proposed with graph kernels for image classification
[1], but considering subpaths instead of random walks as the substructure com-
ponent. Indeed, the use of trees allows a complete enumeration of the subpaths
that is not achievable with graphs.

We replace h(s,T') and h(s’,T") terms in Eq. (1) by a product of some atomic
kernel functions k(n;,n;) computed between pairs of nodes n; € s and n} € s'.
Various atomic kernels are here available, e.g. Gaussian kernel [11] that has
often been successfully used in many contexts. As long as these atomic kernels
are positive definite, the proposed structured kernel is also positive definite (see
[7]). Formulation of the subpath kernel for numeric data is then

K(T,T') = Z k(s,s') = Z O1s],s'| H k(ngini), (2)

seT,s'eT’ seT,s’eT’ niesvn;eS’

where the Kronecker delta function 4, |5/ equals 1 iif the two subpaths s, s" have
the same length, and nodes n;, n} are scanned in descending order along the two
subpaths s, s’ (from the root to the leaf). One might notice that if k(n;,n}) =
0p; n; measures the identicalness of n;, n;, Eq. (2) becomes just another form of
Eq. (1). The naive complexity of comparing all pairs of subpaths between T and
T' is O(|T||T")?) as indicated in [8] (the size of subpath set of a given tree T is
in general |T'|?, with |T| refers to the number of vertices in the tree).

2.2 Efficient computation

Besides the proposed adaptation to numeric data, applying kernels on tree-based
representations of images also raises a computational issue. Indeed, images are
most often made of millions or even billions of pixels, that are put in the tree
structure. While such structure aims to reduce the image content through a
hierarchical representation, it may still be characterized by a huge number of
nodes and edges. So we also need to address this issue to make the proposed
kernel relevant when dealing with images.

Let us note that in the original subpath kernel paper [8], some solutions were
given to lower the computation time. But they are related to symbolic data
and thus cannot be applied here. Inspired from [6], we suggest rather to use
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dynamic programming for comparing all subpaths. This strategy allows us to
break down the complexity of all subpaths comparison into smaller subproblems
in a recursive way, and reuse the solution of one subproblem to solve another
one. Repeated comparisons are then avoided. More specifically, the comparison
is computed recursively between two nodes n € T and n’ € T":

kP (n,n") = k(n,n") + (k(n,n') + 1) Z kP~ (ne,nl) — k(n,n') Z kP72 (ne,nl)
n.€Cr(n),n,eCr (n') n.€Cr(n),n,LeCr (n')
(3)

with C7(n) the set of children of n in T, and k'(n,n’) = k(n,n’) the atomic
kernel measuring the similarity between n and n’, k°(n,n’) = 0 by convention.
We also have p reaching 1 when either n or n’ has no child. For more details, let
us denote ST, ST, two subtrees rooted at n € T, n’ € T’ respectively, (s,s’)
a pair of subpaths with s € ST,,,s" € ST,,;. Then kP(n,n’) sums the similarity
measures of all pairs of subpaths (s,s’) with same length and starting at the
same height in ST, ST, . The similarity is calculated recursively by the first
and second term on the right side of equation, together with the third term kP~2
introduced to prevent false subpaths that compare non-contiguous alignments.

Given a couple of trees T and T” with respective roots r(T') and r(T"), we
finally compute all pairs of subpaths embedded in the trees:

K(T,T") = kP (r(T),r(T")) + Y _KP(r(T),0) + Y K (n,r(T)) . (4)

n' €T’ ,n'#r(T") neT n#r(T)

Dynamic programming allows us to avoid the explicit computation of all pairs
of subpaths between two trees T7 and T5. Instead, only all pairs of vertices are
considered. The complexity is thus O(|T}||Tz|) where |T;| refers to the number
of vertices in the tree T;.

2.3 Additional improvements

The proposed kernel shares with existing structured kernels two main issues.
On the one hand, the value of K(T,T") depends on the size of the trees while
some invariance might be sought. This problem has already been tackled in [4]
through a normalized kernel, that is computed here as

K(T,T') = K(T,T") (K(T,T)K(T',T")) "". (5)

On the other hand, the structured kernel gives the same importance to every
node in the tree. Here nodes represent regions of various size, and larger regions
might be given more attention than smaller ones. By weighting the atomic kernel
by the relative size A,, (i.e., number of pixels) of a node w.r.t. the root of the
tree, and given a parameter 5 > 0, the updated kernel becomes

APAP k(n,n') . (6)

n’
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3 Experiments

We have conducted two experiments to proceed to a finer understanding of the
kernel behavior using an artificial dataset, and to validate the kernel in a realistic
context. Before giving in-depth analysis of the results obtained on both datasets,
we will present first the common experimental setup.

3.1 Experimental Setup

We evaluate kernels in a classification context, considering a one-against-one
SVM classifier (using the Java implementation of LibSVM [3]). The proposed
subpath kernel is systematically compared with a kernel computed on the root of
the tree only (i.e. ignoring all remaining nodes of the tree), called rooted kernel
in the sequel. Our goal is to assess the importance of the various levels of infor-
mation contained in the hierarchical representation w.r.t. a raw analysis of the
whole data. Let us note that standard tree kernels based on substructures other
than paths could hardly be applied here due to their computational complexity
[12]). For the proposed kernel, nodes are compared individually using an atomic
RBF kernel: each node being described by a feature or vector of N attributes,
the kernel is defined for a pair of nodes n,n’ with respective features x, z’ as

k(n,n’) = exp(—vd(z,2")) . (7)
We consider here two types of distances. The first one is an [>~norm distance
dg(z,2') = || — 2'||* , (8)

leading to a Gaussian kernel, for which the features x, ' contain the average and
variance computed from all information contained in the nodes (that can be ac-
cessed from their leaves). The second one is a distance between N-d histograms:

’ al (mj _$9)2
dyz(z,2") = ZW ) (9)
J

j=1

where the features z,z’ are here histograms of M bins per dimension stacked
together. We call x? kernel the resulting atomic kernel.

Three free parameters are determined by a grid search strategy over po-
tential values: the bandwidth  of the RBF atomic kernel (Eq. (7)), the SVM
regularization parameter C, and the size weight 5 € [0, 1] (Eq. (6)).

Accuracies (and standard deviations) of each setup are computed after 100
repetitions of each experiment, choosing randomly 20 data samples from each
class as training samples, using the remaining samples for testing.

3.2 Artificial dataset

In this first experiment, we study the behavior of the proposed tree kernel though
3 different scenarios using an artificial dataset. Unless stated otherwise, we con-
sider M = 4 bins by dimension to construct the histogram. We call structure
information the way leaves are aggregated and the initial number of leaves.
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Class 1 Class 1 Class 1

D ®
Class 2 Class 2 Class 2
@ 5 @ G A
non discriminative on discrimina- non discriminative
tree7 discriminative root tlve root and nodes, root and tree, discrimina-
and nodes. discriminative tree. tive nodes.

Fig.2: An illustration of the different scenarios used for experimental evaluation.

(a) Only the root is discriminative. We generate two types of leaves, A
and B, that are described by a 1-D feature generated according to a uniform dis-
tribution, with non overlapping intervals. Class 1 trees are composed of leaves
of type A only and Class 2 trees of type B only (see Fig. 2a). Number of leaves
and node merging parameters are defined randomly to produce various shapes
of trees within each class. As shown in Tab. 1a, subpath kernel behaves similarly
to rooted kernel: when the structure does not provide additional information,
exploiting it in the proposed subpath kernel does not degrade the performances.

(b) Only the structure is discriminative. We generate only type A
leaves. The two classes of trees can then be discriminated thanks to their struc-
ture, i.e. with different ranges of related parameters (number of leaves and num-
ber of fanouts for each node) for each class, see Fig. 2b. As shown in Tab. 1b,
rooted kernel achieves only 50% accuracy, while the subpath kernel is able to
discriminate the two classes, thanks to the discriminative structure leading to
different subpaths between the two classes. Let us note that when v = 0 and
B = 0, the subpath kernel turns into a kernel that computes the product of the
number subpaths with common length embedded in the two trees.

(c) Only the features of the nodes are discriminative. We generate
both type A and B leaves, and we force type A leaves to merge with type B leaves
in Class 1, while in Class 2, type A (resp. B) leaves always merge with type A
(resp. B) leaves (see Fig. 2¢). Similarly to scenario (a), structure parameters are
selected randomly. As shown in Tab. 1c¢, rooted kernel provides an accuracy about
50%, due to the non discriminative root. Discriminative information contained in
the nodes benefits to the proposed subpath kernel, leading to a 100% accuracy.
Note that even in the presence of irrelevant features, the subpath kernel still
behaves correctly. Indeed, we have experimentally observed that adding 40 non
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discriminative features to each node (so only one dimension among the 41 is
relevant) leads to an accuracy of 97.13 % with Gaussian atomic kernel, and
99.99 % with x? atomic kernel.

(c1) Robustness to outliers. We modify the scenario (¢) to introduce
outlier leaves that take values outside ranges of type A and type B leaves. The
ratio of such leaves varies from 0% to 100%. We construct here (and here only)
the histogram for the x? atomic kernel considering M = 12 bins.

(c2) Robustness to mislabelled leaves. We update the scenario (c1) with
outlier leaves changed to mislabelled leaves. To do so, some leaves of type A are
changed into type B, and vice versa. In the binary classification setup considered
here, the ratio of mislabelled leaves in each class varies from 0 % to 50 %, leading
to more confusing subpaths between the two classes.

We can derive two main observations from Fig. 3: a) the subpath kernel
can maintain a good performance up to a certain ratio of structure distortion,
and b) both accuracy drops (after 50% of outliers in ¢1, between 20% and 40%
mislabelled leaves in ¢2) illustrate that subpath kernel performance is directly
related to the discrimination of substructures between two group of complex
structured data. Further, one might notice that in both scenarios, subpath using
x? atomic kernel always performs better than using Gaussian atomic kernel.
Indeed, histograms provide a rich distribution description of leaf attributes.

Table 1: Mean (and standard deviation) of overall accuracies computed over 100
repetitions for the artificial dataset. Best results (with a statistical significance
less than 0.01% considering the Wilcoxon signed-rank test for matched samples)
between the rooted and subpath kernel — Gaussian or x?— are boldfaced.

. Rooted kernel Subpath kernel
Scenario - 5 - >
Gaussian X Gaussian X
(a) discriminative root only 100.0 (0.0)|100.0 (0.0)|100.0 (0.0){100.0 (0.0)

(b) discriminative structure only|48.9 (4.6) [49.4 (3.4) [100.0 (0.0)|100.0 (0.0)
(c) discriminative nodes only 49.5 (3.5) |51.2 (4.6) {100.0 (0.0){100.0 (0.0)

\
90 9
8 8
\

\

Accuracy(%)
Accuracy(%)
=

% Subpath kernel with G
44 Subpath kernel with * at
20

%% Subpath kernel with Gaussian atomic kernel
44 Subpath kernel with y* atomic kernel

ic kern
kernel

50

a0 60 10 20 30 20
Percentage of outliers Percentage of mislabelled leaves

(a) Robustness to outliers. (b) Robustness to mislabelled leaves.

Fig. 3: Accuracies for scenarios (c1) and (c2).
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3.3 Satellite Image Dataset

Beyond the evaluation conducted on some artificial datasets, we also perform
some experiments on real datasets. Since hierarchical representations are com-
mon in remote sensing, we explore the relevance of the proposed kernel in this
domain. To do so, we consider a QUICKBIRD satellite image with high spatial res-
olution (i.e., 2.4 m per pixel) of Strasbourg Illkirch in France, initially proposed
and discussed in [9]. We can perform quantitative evaluation of the kernel-based
classification procedure thanks to the availability of a ground truth (a partition
of the initial image into 400 regions, each of them being associated to one of
the 7 classes of interest, see list and distribution in Fig. 5). Figure 4 shows the
satellite image and its associated ground truth.

We compute a tree representation of each single region of the ground truth,
using a standard open source hierarchical image segmentation method called
RHSEG [13]. RHSEG allows us to produce a fine segmentation map containing
3180 regions, that are subsequently aggregated to build coarser layers or seg-
mentation maps with less regions (each iteration contains 300 regions less), as
shown in Fig. 4. The coarsest segmentation is nothing but the ground truth.
These different layers are stacked within tree structures. The last step consists
in deleting the redundant nodes that remain unchanged through different scales.
Finally we obtain 400 different trees, where each root represents a ground truth
region and other nodes represent its components (subregions) at different scales.

Results Both rooted and subpath kernels are involved in a supervised classifi-
cation process. Several statistics are derived: overall accuracy (ratio of correctly
classified regions), average accuracy (average of the accuracy measured on each
class), and kappa index (percentage of agreement in the test set, corrected by
the agreement that could be expected by chance). Results are reported in Tab. 2.
We can see that the proposed subpath kernel always outperforms rooted kernel.
It is able to exploit the additional spatial features provided by the hierarchical
representation of individual regions. A deeper analysis is provided in Fig. 5 where
accuracies are provided for each class. Subpath superiority is mainly observed on
classes such as urban vegetation, industrial urban blocks, and agricultural zones.
For some other classes, performances are weaker. Let us note that the reported
results are for the trade-off 8 parameter providing the best overall accuracies. It
may then lead to non adequate values for some classes, as by definition of the
proposed kernel, setting 8 = co would mimic the rooted kernel.

4 Conclusion

In this paper, we introduced a new structured kernel that is able to cope with
unordered trees equipped with numeric data. By doing so, we were able to ap-
ply pattern recognition and machine learning techniques to hierarchical image
representations that become more and more popular, especially in remote sens-
ing. We built upon a subpath kernel initially designed for bioinformatics data,
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arig i
¥ 3180 regions

Fig.4: STRASBOURG dataset. Left: Color composition of a multispectral Quick-
bird image, ©DigitalGlobe, Inc. Right: examples of RHSEG segmentations at
different scales (top: associated ground truth map with 400 regions).

Table 2: Mean (and standard deviation) of overall accuracies (OA), average
accuracies (AA) and Kappa statistics (k) computed over 100 repetitions for
Strasbourg dataset. Computation time (in seconds) is also reported. Best results
(with a statistical significance less than 0.01% considering the Wilcoxon signed-
rank test for matched samples) are boldfaced.

Method OA[%] | AA[%] " time

Rooted kernel, with Gaussian atomic kernel |53.1 0.447 (0.03) | 1.4

(3.0) (2.9)

Subpath kernel, with Gaussian atomic kernel|58.4 (2.6)(60.8 (2.9)|0.498 (0.03)|19.5
Rooted kernel, with x* atomic kernel 57.8 (2.2) (2.6)10.494 (0.03) | 2.7
Subpath kernel, with x? atomic kernel 61.4 (2.8)|64.4 (2.9)|0.532 (0.03)|98.8

as well as some graph kernels that relies on random walks. We show by some
preliminary experiments the abilities and robustness of the proposed kernel. The
encouraging results call for further investigation.

Among future research directions, a comparison with existing kernels in image
analysis is planned. Most of them are based on graph kernels. Since trees are a
particular class of graphs, various graph kernels may be considered (e.g. [5]).
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