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Abstract. The only rigorous approaches for achieving a numerical proof
of optimality in global optimization are interval-based methods that in-
terleave branching of the search-space and pruning of the subdomains
that cannot contain an optimal solution. State-of-the-art solvers gener-
ally integrate local optimization algorithms to compute a good upper
bound of the global minimum over each subspace. In this document,
we propose a cooperative framework in which interval methods cooper-
ate with evolutionary algorithms. The latter are stochastic algorithms
in which a population of candidate solutions iteratively evolves in the
search-space to reach satisfactory solutions.
Within our cooperative solver Charibde, the evolutionary algorithm and
the interval-based algorithm run in parallel and exchange bounds, so-
lutions and search-space in an advanced manner via message passing.
A comparison of Charibde with state-of-the-art interval-based solvers
(GlobSol, IBBA, Ibex) and NLP solvers (Couenne, BARON) on a bench-
mark of difficult COCONUT problems shows that Charibde is highly
competitive against non-rigorous solvers and converges faster than rig-
orous solvers by an order of magnitude.

1 Motivation

We consider n-dimensional continuous constrained optimization problems over
a hyperrectangular domain D = D1 × . . .×Dn:

(P) min
x∈D⊂Rn

f(x)

s.t. gi(x) ≤ 0, i ∈ {1, . . . ,m}
hj(x) = 0, j ∈ {1, . . . , p}

(1)

When f , gi and hj are non-convex, the problem may have multiple local
minima. Such difficult problems are generally solved using generic exhaustive
branch and bound (BB) methods. The objective function and the constraints
are bounded on disjoint subspaces by enclosure methods. By keeping track of



the best known upper bound of the global minimum, subspaces that cannot
contain a global minimizer are discarded (pruned).

Several authors proposed hybrid approaches in which a BB algorithm cooper-
ates with another technique to enhance the pruning of the search-space. Hybrid
algorithms may be classified into two categories [24]: integrative approaches, in
which one of the two methods replaces a particular operator of the other method,
and cooperative methods, in which the methods are independent and are run se-
quentially or in parallel. Previous works include

– integrative approaches: [34] integrates a stochastic genetic algorithm (GA)
within an interval BB. The GA provides the direction along which a box
is partitioned, and an individual is generated within each subbox. At each
generation, the best evaluation updates the best known upper bound of the
global minimum. In [9], the crossover operator is replaced by a BB that
determines the best individual among the offspring.

– cooperative approaches: [28] sequentially combines an interval BB and a
GA. The interval BB generates a list L of remaining small boxes. The GA’s
population is initialized by generating a single individual within each box
of L. [12] (BB and memetic algorithm) and [7] (beam search and memetic
algorithm) describe similar parallel strategies: the BB identifies promising
regions that are then explored by the metaheuristic. [1] hybridizes a GA and
an interval BB. The two independent algorithms exchange upper bounds and
solutions through shared memory. New optimal results are presented for the
rotated Michalewicz (n = 12) and Griewank functions (n = 6).

In this communication, we build upon the cooperative scheme of [1]. The
efficiency and reliability of their solver remain very limited; it is not competi-
tive against state-of-the-art solvers. Their interval techniques are naive and may
lose solutions, while the GA may send evaluations subject to roundoff errors.
We propose to hybridize a stochastic differential evolution algorithm (close to a
GA), described in Section 2, and a deterministic interval branch and contract
algorithm, described in Section 3. Our hybrid solver Charibde is presented in
Section 4. Experimental results (Section 5) show that Charibde is highly com-
petitive against state-of-the-art solvers.

2 Differential Evolution

Differential evolution (DE) [29] is among the simplest and most efficient meta-
heuristics for continuous problems. It combines the coordinates of existing indi-
viduals (candidate solutions) with a given probability to generate new individ-
uals. Initially devised for continuous unconstrained problems, DE was extended
to mixed problems and constrained problems [23].

Let NP denote the size of the population, W > 0 the amplitude factor and
CR ∈ [0, 1] the crossover rate. At each generation (iteration), NP new individuals
are generated: for each individual x = (x1, . . . , xn), three other individuals u =
(u1, . . . , un) (called base individual), v = (v1, . . . , vn) and w = (w1, . . . , wn),



all different and different from x, are randomly picked in the population. The
coordinates yi of the new individual y = (y1, . . . , yn) are computed according to

yi =
{
ui +W × (vi − wi) if i = R or ri < CR
xi otherwise

(2)

where ri is picked in [0, 1] with uniform probability. The index R, picked in
{1, . . . , n} with uniform probability for each x, ensures that at least a coordinate
of y differs from that of x. y replaces x in the population if it is “better” than
x (in unconstrained optimization, y is better than x if it improves the objective
function).

Figure 1 depicts a two-dimensional crossover between individuals x, u (base
individual), v and w. The contour lines of the objective function are shown in
grey. The difference v−w, scaled by W , yields the direction (an approximation
of the direction opposite the gradient) along which u is translated to yield y.
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Fig. 1: Crossover of the differential evolution

3 Reliable Computations

The only reliable approaches for achieving a numerical proof of optimality in
global optimization are interval-based methods that interleave branching of the
search-space and pruning of the subdomains that cannot contain an optimal
solution.

Reliable (or rigorous) methods provide bounds on the global minimum, even
in the presence of roundoff errors. Section 3.1 introduces interval arithmetic, an
extension of real arithmetic. Reliable global optimization is detailed in Section
3.2, and interval contractors are mentioned in Section 3.3.

3.1 Interval Arithmetic

An interval X with floating-point bounds defines the set {x ∈ R | X ≤ x ≤ X}.
IR denotes the set of all intervals. The width of X is w(X) = X −X. m(X) =



X+X
2 is the midpoint of X. A box X is a Cartesian product of intervals. The

width of a box is the maximum width of its components. The convex hull �(X,Y )
of X and Y is the smallest interval enclosing X and Y .

Interval arithmetic [19] extends real arithmetic to intervals. Interval arith-
metic implemented on a machine must be rounded outward (the left bound is
rounded toward −∞, the right bound toward +∞) to guarantee conservative
properties. The interval counterparts of binary operations and elementary func-
tions produce the smallest interval containing the image. The conservative prop-
erties of interval arithmetic allow to build interval extensions (Definition 1) of
functions that may be expressed as a finite composition of elementary functions.

Definition 1 (Interval extension). Let f : Rn → R. F : IRn → IR is an
interval extension (or inclusion function) of f iff

∀X ∈ IRn, f(X) := {f(x) | x ∈X} ⊂ F (X)
∀X ∈ IRn,∀Y ∈ IRn, X ⊂ Y ⇒ F (X) ⊂ F (Y )

(3)

Interval extensions with various sharpnesses may be defined (Example 1).
The natural interval extension FN replaces the variables with their domains and
the elementary functions with their interval counterparts. The Taylor interval
extension FT is based on the Taylor expansion at point c ∈X.

Example 1 (Interval extensions). Let f(x) = x2−x, X = [−2, 0.5] and c = −1 ∈
X. Then

– FN (X) = X2 −X = [−2, 0.5]2 − [−2, 0.5] = [0, 4]− [−2, 0.5] = [−0.5, 6];
– FT (X, c) = 2 + (2X − 1)(X + 1) = 2 + [−5, 0][−1, 1.5] = [−5.5, 7].

Example 1 shows that interval arithmetic often overestimates the range of a
real-valued function. This is due to the dependency problem, an inherent behavior
of interval arithmetic. Dependency decorrelates multiple occurrences of the same
variable in an analytical expression (Example 2).

Example 2 (Dependency). Let X = [−5, 5]. Then

X −X = [−10, 10] = {x1 − x2 | x1 ∈ X,x2 ∈ X}
⊃ {x− x | x ∈ X} = {0}

(4)

Interval extensions (FN , FT ) have different convergence orders, that is the
overestimation decreases at different speeds with the width of the interval.

3.2 Global Optimization

The conservative properties of interval arithmetic allow to compute a rigorous
enclosure of the range of a function over a box. The first branch and bound
algorithms for continuous optimization based on interval arithmetic were devised
in the 1970s [20][27], then refined during the following years [14]: the search-space



is partitioned into subspaces (boxes that may share faces). The objective function
and the constraints are evaluated on each subspace. The subspaces that cannot
contain a global minimizer are discarded and are not further explored.

To overcome the pessimistic enclosures of interval arithmetic, interval branch
and bound algorithms have recently been endowed with filtering algorithms (Sec-
tion 3.3) that narrow the bounds of the boxes without loss of solutions. Stemming
from the Interval Analysis and Interval Constraint Programming communities,
filtering (or contraction) algorithms discard values from the domains by enforc-
ing local (each constraint individually) or global (all constraints simultaneously)
consistencies. The resulting methods, called interval branch and contract (IBC)
algorithms, interleave steps of contraction and steps of bisection.

3.3 Interval Contractors

State-of-the-art contractors (contraction algorithms) include HC4 [6], Box [32],
Mohc [2], 3B [17], CID [31] and X-Newton [3]. Only HC4 and X-Newton are
used in this communication.

HC4Revise is a two-phase algorithm that exploits the syntax tree of a con-
straint to contract each occurrence of the variables. The first phase (evaluation)
evaluates each node (elementary function) using interval arithmetic. The sec-
ond phase (propagation) uses projection functions to inverse each elementary
function. HC4Revise is generally used as the revise procedure (subcontractor)
of HC4, an AC3-like propagation loop.

X-Newton computes an outer linear relaxation of the objective function and
the constraints, then computes a lower bound of the initial problem using LP
techniques (e.g. the simplex algorithm). 2n additional calls may contract the
domains of the variables.

4 Charibde: a Cooperative Approach

4.1 Hybridization of Stochastic and Deterministic Techniques

Our hybrid algorithm Charibde (Cooperative Hybrid Algorithm using Reliable
Interval-Based methods and Differential Evolution), written in OCaml [16], com-
bines a stochastic DE and a deterministic IBC for non-convex constrained opti-
mization. Although it embeds a stochastic component, Charibde is a fully rig-
orous solver.

Previous Work Preliminary results of a basic version of Charibde were pub-
lished in 2013 [33] on classical multimodal problems (7 bound-constrained and 4
inequality-constrained problems) widely used in the Evolutionary Computation
community. We showed that Charibde benefitted from the start of convergence
of the DE algorithm, and completed the proof of convergence faster than a stan-
dard IBC algorithm. We provided new optimal results for 3 problems (Rana,
Eggholder and Michalewicz).



Contributions In this communication, we present two contributions:

1. we devised a new cooperative exploration strategy MaxDist that
– selects boxes to be explored in a novel manner;
– periodically reduces DE’s domain;
– restarts the population within the new (smaller) domain.

An example illustrates the evolution of the domain without loss of solutions;
2. we assess the performance of Charibde against state-of-the-art rigorous (Glob-

Sol, IBBA, Ibex) and non-rigorous (Couenne, BARON) solvers on a bench-
mark of difficult problems.

Cooperative Scheme Two independent parallel processes exchange bounds,
solutions and search-space via MPI message passing (Figure 2).

Differential
Evolution

population

best individual best upper bound

punctual solution

Interval Branch and
Contract

subspacesdomain

updates

injected into

reduce

Fig. 2: Cooperative scheme of Charibde

The cooperation boils down to three main steps:

1. whenever the DE improves its best evaluation, the best individual and its
evaluation are sent to the IBC to update the best known upper bound f̃ ;

2. whenever the IBC finds a better punctual solution (e.g. the center of a box),
it is injected into DE’s population;

3. the exploration strategy MaxDist periodically reduces the search-space of
DE, then regenerates the population in the new search-space.

Sections 4.2 and 4.3 detail the particular implementations of the DE (Algo-
rithm 1) and the IBC (Algorithm 2) within Charibde.

4.2 Differential Evolution

Population-based metaheuristics, in particular DE, are endowed with mecha-
nisms that help escape local minima. They are quite naturally recommended to
solve difficult multimodal problems for which traditional methods struggle to
converge. They are also capable of generating feasible solutions without any a
priori knowledge of the topology. DE has proven greatly beneficial for improving
the best known upper bound f̃ , a task for which standard branch and bound
algorithms are not intrinsically intended.



Algorithm 1 Charibde: Differential Evolution
function DifferentialEvolution(f : objective function, C: system of con-
straints, D: search-space, NP: size of population, W : amplitude factor, CR:
crossover rate)

P ← initial population, randomy generated in D
f̃ ← +∞
repeat

(x, fx)← MPI ReceiveIBC()
Insert x into P
f̃ ← fx

Generate temporary population P ′ by crossover
P ← P ′

(xbest, fbest)← BestIndividual(P )
if fbest < f̃ then

f̃ ← fbest

MPI SendIBC(xbest, fbest)
end if

until termination criterion is met
return best individual of P

end function

Algorithm 2 Charibde: Interval Branch and Contract
function IntervalBranchAndContract(F : objective function, C: system of con-
straints, D: search-space, ε: tolerance)

f̃ ← +∞ . best known upper bound
Q ← {D} . priority queue
while Q 6= ∅ do

(xDE , fDE)← MPI ReceiveDE()
f̃ ← min(f̃ , fDE)
Extract a box X from Q
Contract X w.r.t. constraints . Algorithm 3
if X cannot be discarded then

if F (m(X)) < f̃ then . midpoint test
f̃ ← F (m(X)) . update best upper bound
MPI SendDE(m(X), F (m(X)))

end if
Split X into {X1,X2}
Insert {X1,X2} into Q

end if
end while
return (f̃ , x̃)

end function

Base Individual In the standard DE strategy, all the current individuals have
the same probability to be selected as the base individual u. We opted for an
alternative strategy [23] that guarantees that all individuals of the population
play this role once and only once at each generation: the index of the base



individual is obtained by summing the index of the individual x and an offset
in {1, . . . ,NP − 1}, drawn with uniform probability.

Bound Constraints When a coordinate yi of y (computed during the crossover)
exceeds the bounds of the component Di of the domain D, the bounce-back
method [23] replaces yi with a valid coordinate y′i that lies between the base
coordinate ui and the violated bound:

y′i =
{
ui + ω(Di − ui) if yi > Di

ui + ω(Di − ui) if yi < Di

(5)

where ω is drawn in [0, 1] with uniform probability.

Constraint Handling The extension of evolutionary algorithms to constrained
optimization has been addressed by numerous authors. We implemented the di-
rect constraint handling [23] that assigns to each individual a vector of evalua-
tions (objective function and constraints), and selects the new individual y (see
Section 2) based upon simple rules:

– x and y are feasible and y has a lower or equal objective value than x;
– y is feasible and x is not;
– x and y are infeasible, and y does not violate any constraint more than x.

Rigorous Feasibility Numerous NLP solvers tolerate a slight violation (relax-
ation) of the inequality constraints (e.g. g ≤ 10−6 instead of g ≤ 0). The eval-
uation of a “pseudo-feasible” solution x (that satisfies such relaxed constraints)
is not a rigorous upper bound of the global minimum; roundoff errors may even
lead to absurd conclusions: f(x) may be lower than the global minimum, and
(or) x may be very distant from actual feasible solutions in the search-space.

To ensure that an individual x is numerically feasible (i.e. that the evaluations
of the constraints are non-positive), we evaluate the constraints gi using interval
arithmetic. x is considered as feasible when the interval evaluations Gi(x) are
non-positive, that is ∀i ∈ {1, . . . ,m}, Gi(x) ≤ 0.

Rigorous Objective Function When x is a feasible point, the evaluation f(x)
may be subject to roundoff errors; the only reliable upper bound of the global
minimum available is F (x) (the right bound of the interval evaluation). However,
evaluating the individuals using only interval arithmetic is much costlier than
cheap floating-point arithmetic.

An efficient in-between solution consists in systematically computing the
floating-point evaluations f(x), and computing the interval evaluation F (x)
whenever the best known “round to nearest” evaluation is improved. F (x) is
then compared to the best known reliable upper bound f̃ : if f̃ is improved, F (x)
is sent to the IBC. This implementation greatly reduces the cost of evaluations,
while ensuring that all the values sent to the IBC are rigorous.



4.3 Interval Branch and Contract

Branching aims at refining the computation of lower bounds of the functions
using interval arithmetic. Two strategies may be found in the early literature:

– the variable with the largest domain is bisected;
– the variables are bisected one after the other in a round-robin scheme.

More recently, the Smear heuristic [10] has emerged as a competitive alternative
to the two standard strategies. The variable xi for which the interval quantity
∂F
∂xi

(X)(Xi − xi) is the largest is bisected.
Charibde’s main contractor is detailed in Algorithm 3. We exploit the con-

tracted nodes of HC4Revise to compute partial derivatives via automatic differ-
entiation [26]. HC4Revise is a revise procedures within a quasi-fixed point with
tolerance η ∈ [0, 1]: the propagation loop stops when the box X is not suffi-
ciently contracted, i.e. when the size of X becomes larger than a fraction ηw0
of the initial size w0. Most contractors include an evaluation phase that yields a
lower bound of the problem on the current box. Charibde thus computes several
lower bounds (natural, Taylor, LP) as long as the box is not discarded. Charibde
calls ocaml-glpk [18], an OCaml binding for GLPK (GNU Linear Programming
Kit). Since the solution of the linear program is computed using floating-point
arithmetic, it may be subject to roundoff errors. A cheap postprocessing step [21]
computes a rigorous bound on the optimal solution of the linear program, thus
providing a rigorous lower bound of the initial problem.

Algorithm 3 Charibde: contractor for constrained optimization
function Contraction(in-out X: box, F : objective function, in-out f̃ : best upper
bound, in-out C: system of constraints)

lb← −∞ . lower bound
repeat

w0 ← w(X) . initial size
FX ← HC4Revise(F (X) ≤ f̃) . evaluation of f/contraction
lb← FX . lower bound by natural form
G← ∇F (X) . gradient by AD
lb← max(lb, SecondOrder(X, F, f̃ ,G)) . second-order form
C ← HC4(X, C, η) . quasi-fixed point with tolerance η
if use linearization then

lb← max(lb, Linearization(X, F, f̃ ,G, C)) . simplex or X-Newton
end if

until X = ∅ ou w(X) > ηw0
return lb

end function

When the problem is subject to equality constraints hj (j ∈ {1, . . . , p}),
IBBA [22], Ibex [30] and Charibde handle a relaxed problem where each equality



constraint hj(x) = 0 (j ∈ {1, . . . , p}) is replaced by two inequalities:

−ε= ≤ hj(x) ≤ ε= (6)

ε= may be chosen arbitrarily small.

4.4 MaxDist: a New Exploration Strategy

The boxes that cannot be discarded are stored in a priority queue Q to be
processed at a later stage. The order in which the boxes are extracted determines
the exploration strategy of the search-space (“best-first”, “largest first”, “depth-
first”). Numerical tests suggest that

– the “best-first” strategy is rarely relevant because of the overestimated range
(due to the dependency problem);

– the “largest first” strategy does not give advantage to promising regions;
– the “depth-first” strategy tends to quickly explore the neighborhood of local

minima, but struggles to escape from them.

We propose a new exploration strategy called MaxDist. It consists in ex-
tracting from Q the box that is the farthest from the current solution x̃. The
underlying ideas are to

– explore the neighborhood of the global minimizer (a tedious task when the
objective function is flat in this neighborhood) only when the best possible
upper bound is available;

– explore regions of the search-space that are hardly accessible by the DE
algorithm.

The distance between a point x and a box X is the sum of the distances between
each coordinate xi and the closest bound of Xi. Note that MaxDist is an adap-
tive heuristic: whenever the best known solution x̃ is updated, Q is reordered
according to the new priority of the boxes.

Preliminary results (not presented here) suggest that MaxDist is competi-
tive with standard strategies. However, the most interesting observation lies in
the behavior of Q: when using MaxDist, the maximum size of Q (the maxi-
mum number of boxes simultaneously stored in Q) remains remarkably low (a
few dozens compared to several thousands for standard strategies). This offers
promising perspectives for the cooperation between DE and IBC: the remaining
boxes of the IBC may be exploited in the DE to avoid exploring regions of the
search-space that have already been proven infeasible or suboptimal.

The following numerical example illustrates how the remaining boxes are
exploited to reduce DE’s domain through the generations. Let

min
(x,y)∈(X,Y )

− (x+ y − 10)2

30 − (x− y + 10)2

120

s.t. 20
x2 − y ≤ 0

x2 + 8y − 75 ≤ 0

(7)



be a constrained optimization problem defined on the box X×Y = [0, 10]×[0, 10]
(Figure 3a). The dotted curves represent the frontiers of the two inequality
constraints, and the contour lines of the objective function are shown in solid
dark. The feasible region is the banana-shaped set, and the global minimizer is
located in its lower right corner.
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Fig. 3: Evolution of DE’s domain with the number of generations

The initial domain of DE (which corresponds to the initial box in the IBC)
is first contracted with respect to the constraints of the problem. The initial
population of DE is then generated within this contracted domain, thus avoiding
obvious infeasible regions of the search-space. This approach is similar to that
of [11]. Figure 3b depicts the contraction (the black rectangle) of the initial



domain with respect to the constraints (sequentially by HC4Revise): X × Y =
[1.4142, 8.5674]× [0.2, 9.125].

Periodically, we compute the convex hull �(Q) of the remaining boxes of Q
and replace DE’s domain with �(Q). Note that

1. the convex hull (linear complexity) may be computed at low cost, because
the size of Q remains small when using MaxDist;

2. by construction, MaxDist handles boxes on the rim of the remaining domain
(the boxes of Q), which boosts the reduction of the convex hull.

Figures 3c and 3d represent the convex hull �(Q) of the remaining subboxes in
the IBC, respectively after 10 and 20 DE generations. The population is then
randomly regenerated within the new contracted domain �(Q). The convex
hull operation progressively eliminates local minima and infeasible regions. The
global minimum eventually found by Charibde with precision ε = 10−8 is f̃ =
f(8.532424, 0.274717) = −2.825296148; both constraints are active.

5 Experimental Results

Currently, GlobSol [15], IBBA [22] and Ibex [8] are among the most efficient
solvers in rigorous constrained optimization. They share a common skeleton of
interval branch and bound algorithm, but differ in the acceleration techniques.
GlobSol uses the reformulation-linearization technique (RLT), that introduces
new auxiliary variables for each intermediary operation. IBBA calls a contractor
similar to HC4Revise, and computes a relaxation of the system of constraints us-
ing affine arithmetic. Ibex is dedicated to both numerical CSPs and constrained
optimization; it embeds most of the aforementioned contractors (HC4, 3B, Mohc,
CID, X-Newton). Couenne [5] and BARON [25] are state-of-the-art NLP solvers.
They are based on a non-rigorous spatial branch and bound algorithms, in which
the objective function and the constraints are over- and underestimated by con-
vex relaxations. Although they perform an exhaustive exploration of the search-
space, they cannot guarantee a given precision on the value of the optimum.

All five solvers and Charibde are compared on a subset of 11 COCONUT con-
strained problems (Table 1), extracted by Araya [3] for their difficulty: ex2 1 7,
ex2 1 9, ex6 2 6, ex6 2 8, ex6 2 9, ex6 2 11, ex6 2 12, ex7 2 3, ex7 3 5, ex14 1 7
and ex14 2 7. Because of numerical instabilities of the ocaml-glpk LP library
(“assert failure”), the results of the problems ex6 1 1, ex6 1 3 and ex 6 2 10 are
not presented. The second and third columns give respectively the number of
variables n and the number of constraints m. The fourth (resp. fifth) column
specifies the type of the objective function (resp. the constraints): L is linear, Q
is quadratic and NL is nonlinear. The logsize of the domain D (sixth column)
is log(

∏n
i=1(Di −Di)).

The comparison of CPU times (in seconds) for solvers GlobSol, IBBA, Ibex,
Couenne, BARON and Charibde on the benchmark of 11 problems is detailed in
Table 2. Mean times and standard deviations (in brackets) are given for Charibde
over 100 runs. The numerical precision on the objective function ε = 10−8 and



the tolerance for equality constaints ε= = 10−8 were identical for all solvers.
TO (timeout) indicates that a solver could not solve a problem within one hour.
The results of GlobSol (proprietary piece of software) were not available for
all problems; only those mentioned in [22] are presented. The results of IBBA
were also taken from [22]. The results of Ibex were taken from [3]: only the
best strategy (simplex, X-NewIter or X-Newton) for each benchmark problem
is presented. Couenne and BARON (only the commercial version of the code is
available) were run on the NEOS server [13].

Table 1: Description of difficult COCONUT problems
Type

Problem n m f gi, hj Domain logsize
ex2 1 7 20 10 Q L +∞
ex2 1 9 10 1 Q L +∞
ex6 2 6 3 1 NL L −3 · 10−6

ex6 2 8 3 1 NL L −3 · 10−6

ex6 2 9 4 2 NL L −2.77
ex6 2 11 3 1 NL L −3 · 10−6

ex6 2 12 4 2 NL L −2.77
ex7 2 3 8 6 L NL 61.90
ex7 3 5 13 15 L NL +∞
ex14 1 7 10 17 L NL 23.03
ex14 2 7 6 9 L NL +∞

Table 2: Comparison of convergence times (in seconds) between GlobSol, IBBA,
Ibex, Charibde (mean and standard deviation over 100 runs), Couenne and
BARON on difficult constrained problems

Rigorous Non rigorous
Problem GlobSol IBBA Ibex Charibde Couenne BARON
ex2 1 7 16.7 7.74 34.9 (13.3) 476 16.23
ex2 1 9 154 9.07 35.9 (0.29) 3.01 3.58
ex6 2 6 306 1575 136 3.3 (0.41) TO 5.7
ex6 2 8 204 458 59.3 2.9 (0.37) TO TO
ex6 2 9 463 523 25.2 2.7 (0.03) TO TO
ex6 2 11 273 140 7.51 1.96 (0.06) TO TO
ex6 2 12 196 112 22.2 8.8 (0.17) TO TO
ex7 2 3 TO 544 1.9 (0.30) TO TO
ex7 3 5 TO 28.91 4.5 (0.09) TO 4.95
ex14 1 7 TO 406 4.2 (0.13) 13.86 0.56
ex14 2 7 TO 66.39 0.2 (0.04) 0.01 0.02
Sum > 1442 TO 1312.32 101.26 TO TO



Charibde was run on an Intel Xeon E31270 @ 3.40GHz x 8 with 7.8 GB of
RAM. BARON and Couenne were run on 2 Intel Xeon X5660 @ 2.8GHz x 12
with 64 GB of RAM. IBBA and Ibex were run on similar processors (Intel x86,
3GHz). The difference in CPU time between computers is about 10% [4], which
makes the comparison quite fair.

The hyperparameters of Charibde for the benchmark problems are given in
Table 3; NP is the population size, and η is the quasi-fixed point ratio. The
amplitude W = 0.7, the crossover rate CR = 0.9 and the MaxDist strategy
are common to all problems. Tuning the hyperparameters is generally problem-
dependent, and requires structural knowledge about the problem: the population
size NP may be set according to the dimension and the number of local minima,
the crossover rate CR is related to the separability of the problem, and the
techniques based on linear relaxation have little influence for problems with few
constraints, but are cheap when the constraints are linear.

Table 3: Hyperparameters of Charibde for the benchmark problems
Problem NP Bisections Fixed-point ratio (η) LP X-Newton
ex2 1 7 20 RR 0.9 X X
ex2 1 9 100 RR 0.8 X
ex6 2 6 30 Smear 0 X
ex6 2 8 30 Smear 0 X
ex6 2 9 70 Smear 0
ex6 2 11 35 Smear 0
ex6 2 12 35 RR 0 X
ex7 2 3 40 Largest 0 X X
ex7 3 5 30 RR 0 X
ex14 1 7 40 RR 0 X
ex14 2 7 40 RR 0 X

Charibde outperforms Ibex on 9 out of 11 problems, IBBA on 10 out of 11
problems and GlobSol on all the available problems. The cumulated CPU time
shows that Charibde (101.26s) improve the performances of Ibex (1312.32s) by
an order of magnitude (ratio: 13) on this benchmark of 11 difficult problems.
Charibde also proves highly competitive with non-rigorous solvers Couenne and
BARON. The latter are faster or have similar CPU times on some of the 11 prob-
lems, however they both time out on at least five problems (seven for Couenne,
five for BARON). Overall, Charibde seems more robust and solves all the prob-
lems of the benchmark, while providing a numerical proof of optimality. Surpris-
ingly, the convergence times do not seem directly related to the dimensions of
the instances. They may be explained by the nature of the objective function
and constraints (in particular, Charibde seems to struggle when the objective
function is quadratic) and the dependency induced by the multiple occurrences
of the variables.



Table 4 presents the best upper bounds obtained by Charibde, Couenne
and BARON at the end of convergence (precision reached or timeout). Trun-
cated digits on the upper bounds are bounded (e.g. 1.238

7 denotes [1.237, 1.238]
and −1.238

7 denotes [−1.238,−1.237]). The incorrect digits of the global minima
obtained by Couenne and BARON are underlined. This demonstrates that non-
rigorous solvers may be affected by roundoff errors, and may provide solutions
that are infeasible or have an objective value lower than the global minimum
(Couenne on ex2 1 9, BARON on ex2 1 7, ex2 1 9, ex6 2 8, ex6 2 12, ex7 2 3
and ex7 3 5). For the most difficult instance ex7 2 3, Couenne is not capable
of finding a feasible solution with a satisfactory evaluation within one hour. It
would be very informative to compute the ratio between the size of the feasible
domain (the set of all feasible points) and the size of the entire domain. On the
other hand, the strategy MaxDist within Charibde greatly contributes to finding
an excellent upper bound of the global minimum, which significantly accelerates
the interval pruning phase.

Table 4: Best upper bounds obtained by Charibde, Couenne and BARON
Problem Charibde Couenne BARON
ex2 1 7 −4150.410133929

8 −4150.410127318
7 −4150.410160798

7
ex2 1 9 −0.3750000075 −0.375000154

3 −0.375001111
0

ex6 2 6 −0.000002603
2 0.000000711

0 −0.000002603
2

ex6 2 8 −0.027006350
49 −0.027006350

49 −0.027006371
0

ex6 2 9 −0.034066185
4 −0.034066184 −0.034066191

0
ex6 2 11 −0.000002673

2 −0.000002673
2 −0.000002673

2
ex6 2 12 0.289194740

39 0.28919475 0.289191699
8

ex7 2 3 7049.248020529
8 1050 7049.020291707

6
ex7 3 5 1.206716992

1 1.2068965 0.239824488
7

ex14 1 7 0.000000010
09 0.000000001

0 0
ex14 2 7 0.000000008

7 0.000000001
0 0

6 Conclusion

We proposed a cooperative hybrid solver Charibde, in which a deterministic
interval branch and contract cooperates with a stochastic differential evolution
algorithm. The two independent algorithms run in parallel and exchange bounds,
solutions and search-space in an advanced manner via message passing. The do-
main of the population-based metaheuristic is periodically reduced by removing
local minima and infeasible regions detected by the branch and bound.

A comparison of Charibde with state-of-the-art interval-based solvers (Glob-
Sol, IBBA, Ibex) and NLP solvers (Couenne, BARON) on a benchmark of dif-
ficult COCONUT problems shows that Charibde is highly competitive against
non-rigorous solvers (while bounding the global minimum) and converges faster
than rigorous solvers by an order of magnitude.
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