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Hybridization of Interval CP and Evolutionary Algorithms for Optimizing Difficult Problems

The only rigorous approaches for achieving a numerical proof of optimality in global optimization are interval-based methods that interleave branching of the search-space and pruning of the subdomains that cannot contain an optimal solution. State-of-the-art solvers generally integrate local optimization algorithms to compute a good upper bound of the global minimum over each subspace. In this document, we propose a cooperative framework in which interval methods cooperate with evolutionary algorithms. The latter are stochastic algorithms in which a population of candidate solutions iteratively evolves in the search-space to reach satisfactory solutions. Within our cooperative solver Charibde, the evolutionary algorithm and the interval-based algorithm run in parallel and exchange bounds, solutions and search-space in an advanced manner via message passing. A comparison of Charibde with state-of-the-art interval-based solvers (GlobSol, IBBA, Ibex) and NLP solvers (Couenne, BARON) on a benchmark of difficult COCONUT problems shows that Charibde is highly competitive against non-rigorous solvers and converges faster than rigorous solvers by an order of magnitude.

Motivation

We consider n-dimensional continuous constrained optimization problems over a hyperrectangular domain D = D 1 × . . . × D n : (P) min

x∈D⊂R n f (x) s.t. g i (x) ≤ 0, i ∈ {1, . . . , m} h j (x) = 0, j ∈ {1, . . . , p} (1) 
When f , g i and h j are non-convex, the problem may have multiple local minima. Such difficult problems are generally solved using generic exhaustive branch and bound (BB) methods. The objective function and the constraints are bounded on disjoint subspaces by enclosure methods. By keeping track of the best known upper bound of the global minimum, subspaces that cannot contain a global minimizer are discarded (pruned).

Several authors proposed hybrid approaches in which a BB algorithm cooperates with another technique to enhance the pruning of the search-space. Hybrid algorithms may be classified into two categories [START_REF] Puchinger | Combining metaheuristics and exact algorithms in combinatorial optimization: A survey and classification[END_REF]: integrative approaches, in which one of the two methods replaces a particular operator of the other method, and cooperative methods, in which the methods are independent and are run sequentially or in parallel. Previous works include integrative approaches: [START_REF] Zhang | A new interval-genetic algorithm[END_REF] integrates a stochastic genetic algorithm (GA) within an interval BB. The GA provides the direction along which a box is partitioned, and an individual is generated within each subbox. At each generation, the best evaluation updates the best known upper bound of the global minimum. In [START_REF] Cotta | Embedding branch and bound within evolutionary algorithms[END_REF], the crossover operator is replaced by a BB that determines the best individual among the offspring. -cooperative approaches: [START_REF] Sotiropoulos | A new hybrid genetic algorithm for global optimization[END_REF] sequentially combines an interval BB and a GA. The interval BB generates a list L of remaining small boxes. The GA's population is initialized by generating a single individual within each box of L. [START_REF] Gallardo | On the hybridization of memetic algorithms with branch-and-bound techniques[END_REF] (BB and memetic algorithm) and [START_REF] Blum | Hybrid metaheuristics in combinatorial optimization: A survey[END_REF] (beam search and memetic algorithm) describe similar parallel strategies: the BB identifies promising regions that are then explored by the metaheuristic. [START_REF] Alliot | Finding and proving the optimum: Cooperative stochastic and deterministic search[END_REF] hybridizes a GA and an interval BB. The two independent algorithms exchange upper bounds and solutions through shared memory. New optimal results are presented for the rotated Michalewicz (n = 12) and Griewank functions (n = 6).

In this communication, we build upon the cooperative scheme of [START_REF] Alliot | Finding and proving the optimum: Cooperative stochastic and deterministic search[END_REF]. The efficiency and reliability of their solver remain very limited; it is not competitive against state-of-the-art solvers. Their interval techniques are naive and may lose solutions, while the GA may send evaluations subject to roundoff errors. We propose to hybridize a stochastic differential evolution algorithm (close to a GA), described in Section 2, and a deterministic interval branch and contract algorithm, described in Section 3. Our hybrid solver Charibde is presented in Section 4. Experimental results (Section 5) show that Charibde is highly competitive against state-of-the-art solvers.

Differential Evolution

Differential evolution (DE) [START_REF] Storn | Differential evolution -a simple and efficient heuristic for global optimization over continuous spaces[END_REF] is among the simplest and most efficient metaheuristics for continuous problems. It combines the coordinates of existing individuals (candidate solutions) with a given probability to generate new individuals. Initially devised for continuous unconstrained problems, DE was extended to mixed problems and constrained problems [START_REF] Price | Differential Evolution -A Practical Approach to Global Optimization[END_REF].

Let NP denote the size of the population, W > 0 the amplitude factor and CR ∈ [0, 1] the crossover rate. At each generation (iteration), NP new individuals are generated:

for each individual x = (x 1 , . . . , x n ), three other individuals u = (u 1 , . . . , u n ) (called base individual), v = (v 1 , . . . , v n ) and w = (w 1 , . . . , w n ),
all different and different from x, are randomly picked in the population. The coordinates y i of the new individual y = (y 1 , . . . , y n ) are computed according to

y i = u i + W × (v i -w i ) if i = R or r i < CR x i otherwise (2)
where r i is picked in [0, 1] with uniform probability. The index R, picked in {1, . . . , n} with uniform probability for each x, ensures that at least a coordinate of y differs from that of x. y replaces x in the population if it is "better" than x (in unconstrained optimization, y is better than x if it improves the objective function). Figure 1 depicts a two-dimensional crossover between individuals x, u (base individual), v and w. The contour lines of the objective function are shown in grey. The difference vw, scaled by W , yields the direction (an approximation of the direction opposite the gradient) along which u is translated to yield y.
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Fig. 1: Crossover of the differential evolution

Reliable Computations

The only reliable approaches for achieving a numerical proof of optimality in global optimization are interval-based methods that interleave branching of the search-space and pruning of the subdomains that cannot contain an optimal solution.

Reliable (or rigorous) methods provide bounds on the global minimum, even in the presence of roundoff errors. Section 3.1 introduces interval arithmetic, an extension of real arithmetic. Reliable global optimization is detailed in Section 3.2, and interval contractors are mentioned in Section 3.3.

Interval Arithmetic

An interval X with floating-point bounds defines the set {x ∈ R | X ≤ x ≤ X}. IR denotes the set of all intervals. The width of X is w(X) = X -X. m(X) = is the midpoint of X. A box X is a Cartesian product of intervals. The width of a box is the maximum width of its components. The convex hull (X, Y ) of X and Y is the smallest interval enclosing X and Y .

Interval arithmetic [START_REF] Moore | Interval Analysis[END_REF] extends real arithmetic to intervals. Interval arithmetic implemented on a machine must be rounded outward (the left bound is rounded toward -∞, the right bound toward +∞) to guarantee conservative properties. The interval counterparts of binary operations and elementary functions produce the smallest interval containing the image. The conservative properties of interval arithmetic allow to build interval extensions (Definition 1) of functions that may be expressed as a finite composition of elementary functions.

Definition 1 (Interval extension). Let

f : R n → R. F : IR n → IR is an interval extension (or inclusion function) of f iff ∀X ∈ IR n , f (X) := {f (x) | x ∈ X} ⊂ F (X) ∀X ∈ IR n , ∀Y ∈ IR n , X ⊂ Y ⇒ F (X) ⊂ F (Y ) (3) 
Interval extensions with various sharpnesses may be defined (Example 1). The natural interval extension F N replaces the variables with their domains and the elementary functions with their interval counterparts. The Taylor interval extension F T is based on the Taylor expansion at point c ∈ X.

Example 1 (Interval extensions

). Let f (x) = x 2 -x, X = [-2, 0.5] and c = -1 ∈ X. Then -F N (X) = X 2 -X = [-2, 0.5] 2 -[-2, 0.5] = [0, 4] -[-2, 0.5] = [-0.5, 6]; -F T (X, c) = 2 + (2X -1)(X + 1) = 2 + [-5, 0][-1, 1.5] = [-5.5, 7].
Example 1 shows that interval arithmetic often overestimates the range of a real-valued function. This is due to the dependency problem, an inherent behavior of interval arithmetic. Dependency decorrelates multiple occurrences of the same variable in an analytical expression (Example 2).

Example 2 (Dependency). Let

X = [-5, 5]. Then X -X = [-10, 10] = {x 1 -x 2 | x 1 ∈ X, x 2 ∈ X} ⊃ {x -x | x ∈ X} = {0} (4) 
Interval extensions (F N , F T ) have different convergence orders, that is the overestimation decreases at different speeds with the width of the interval.

Global Optimization

The conservative properties of interval arithmetic allow to compute a rigorous enclosure of the range of a function over a box. The first branch and bound algorithms for continuous optimization based on interval arithmetic were devised in the 1970s [START_REF] Moore | On computing the range of a rational function of n variables over a bounded region[END_REF][27], then refined during the following years [START_REF] Hansen | Global optimization using interval analysis[END_REF]: the search-space is partitioned into subspaces (boxes that may share faces). The objective function and the constraints are evaluated on each subspace. The subspaces that cannot contain a global minimizer are discarded and are not further explored.

To overcome the pessimistic enclosures of interval arithmetic, interval branch and bound algorithms have recently been endowed with filtering algorithms (Section 3.3) that narrow the bounds of the boxes without loss of solutions. Stemming from the Interval Analysis and Interval Constraint Programming communities, filtering (or contraction) algorithms discard values from the domains by enforcing local (each constraint individually) or global (all constraints simultaneously) consistencies. The resulting methods, called interval branch and contract (IBC) algorithms, interleave steps of contraction and steps of bisection.

Interval Contractors

State-of-the-art contractors (contraction algorithms) include HC4 [START_REF] Benhamou | Revising hull and box consistency[END_REF], Box [START_REF] Van Hentenryck | Numerica: a modeling language for global optimization[END_REF], Mohc [START_REF] Araya | Exploiting monotonicity in interval constraint propagation[END_REF], 3B [START_REF] Lhomme | Consistency techniques for numeric csps[END_REF], CID [START_REF] Trombettoni | Constructive interval disjunction[END_REF] and X-Newton [START_REF] Araya | A contractor based on convex interval taylor[END_REF]. Only HC4 and X-Newton are used in this communication.

HC4Revise is a two-phase algorithm that exploits the syntax tree of a constraint to contract each occurrence of the variables. The first phase (evaluation) evaluates each node (elementary function) using interval arithmetic. The second phase (propagation) uses projection functions to inverse each elementary function. HC4Revise is generally used as the revise procedure (subcontractor) of HC4, an AC3-like propagation loop.

X-Newton computes an outer linear relaxation of the objective function and the constraints, then computes a lower bound of the initial problem using LP techniques (e.g. the simplex algorithm). 2n additional calls may contract the domains of the variables.

Charibde: a Cooperative Approach

Hybridization of Stochastic and Deterministic Techniques

Our hybrid algorithm Charibde (Cooperative Hybrid Algorithm using Reliable Interval-Based methods and Differential Evolution), written in OCaml [START_REF] Leroy | The objective caml system release 3.12. Documentation and userâĂŹs manual[END_REF], combines a stochastic DE and a deterministic IBC for non-convex constrained optimization. Although it embeds a stochastic component, Charibde is a fully rigorous solver.

Previous Work

Preliminary results of a basic version of Charibde were published in 2013 [START_REF] Vanaret | Preventing premature convergence and proving the optimality in evolutionary algorithms[END_REF] on classical multimodal problems (7 bound-constrained and 4 inequality-constrained problems) widely used in the Evolutionary Computation community. We showed that Charibde benefitted from the start of convergence of the DE algorithm, and completed the proof of convergence faster than a standard IBC algorithm. We provided new optimal results for 3 problems (Rana, Eggholder and Michalewicz).

Contributions In this communication, we present two contributions:

1. we devised a new cooperative exploration strategy MaxDist that selects boxes to be explored in a novel manner; -periodically reduces DE's domain; -restarts the population within the new (smaller) domain.

An example illustrates the evolution of the domain without loss of solutions; 2. we assess the performance of Charibde against state-of-the-art rigorous (Glob-Sol, IBBA, Ibex) and non-rigorous (Couenne, BARON) solvers on a benchmark of difficult problems.

Cooperative Scheme Two independent parallel processes exchange bounds, solutions and search-space via MPI message passing (Figure 2). The cooperation boils down to three main steps:

1. whenever the DE improves its best evaluation, the best individual and its evaluation are sent to the IBC to update the best known upper bound f ; 2. whenever the IBC finds a better punctual solution (e.g. the center of a box), it is injected into DE's population; 3. the exploration strategy MaxDist periodically reduces the search-space of DE, then regenerates the population in the new search-space.

Sections 4.2 and 4.3 detail the particular implementations of the DE (Algorithm 1) and the IBC (Algorithm 2) within Charibde.

Differential Evolution

Population-based metaheuristics, in particular DE, are endowed with mechanisms that help escape local minima. They are quite naturally recommended to solve difficult multimodal problems for which traditional methods struggle to converge. They are also capable of generating feasible solutions without any a priori knowledge of the topology. DE has proven greatly beneficial for improving the best known upper bound f , a task for which standard branch and bound algorithms are not intrinsically intended. 

Q = ∅ do (xDE, fDE) ← MPI ReceiveDE() f ← min( f , fDE) Extract a box X from Q Contract X w.r.t. constraints Algorithm 3 if X cannot be discarded then if F (m(X)) < f then midpoint test f ← F (m(X)) update best upper bound MPI SendDE(m(X), F (m(X))) end if Split X into {X1, X2} Insert {X1, X2} into Q end if end while return ( f , x) end function
Base Individual In the standard DE strategy, all the current individuals have the same probability to be selected as the base individual u. We opted for an alternative strategy [START_REF] Price | Differential Evolution -A Practical Approach to Global Optimization[END_REF] that guarantees that all individuals of the population play this role once and only once at each generation: the index of the base individual is obtained by summing the index of the individual x and an offset in {1, . . . , NP -1}, drawn with uniform probability.

Bound Constraints When a coordinate y i of y (computed during the crossover) exceeds the bounds of the component D i of the domain D, the bounce-back method [START_REF] Price | Differential Evolution -A Practical Approach to Global Optimization[END_REF] replaces y i with a valid coordinate y i that lies between the base coordinate u i and the violated bound:

y i = u i + ω(D i -u i ) if y i > D i u i + ω(D i -u i ) if y i < D i ( 5 
)
where ω is drawn in [0, 1] with uniform probability.

Constraint Handling

The extension of evolutionary algorithms to constrained optimization has been addressed by numerous authors. We implemented the direct constraint handling [START_REF] Price | Differential Evolution -A Practical Approach to Global Optimization[END_REF] that assigns to each individual a vector of evaluations (objective function and constraints), and selects the new individual y (see Section 2) based upon simple rules:

-x and y are feasible and y has a lower or equal objective value than x; -y is feasible and x is not; -x and y are infeasible, and y does not violate any constraint more than x.

Rigorous Feasibility Numerous NLP solvers tolerate a slight violation (relaxation) of the inequality constraints (e.g. g ≤ 10 -6 instead of g ≤ 0). The evaluation of a "pseudo-feasible" solution x (that satisfies such relaxed constraints) is not a rigorous upper bound of the global minimum; roundoff errors may even lead to absurd conclusions: f (x) may be lower than the global minimum, and (or) x may be very distant from actual feasible solutions in the search-space.

To ensure that an individual x is numerically feasible (i.e. that the evaluations of the constraints are non-positive), we evaluate the constraints g i using interval arithmetic. x is considered as feasible when the interval evaluations G i (x) are non-positive, that is ∀i ∈ {1, . . . , m}, G i (x) ≤ 0.

Rigorous Objective Function

When x is a feasible point, the evaluation f (x) may be subject to roundoff errors; the only reliable upper bound of the global minimum available is F (x) (the right bound of the interval evaluation). However, evaluating the individuals using only interval arithmetic is much costlier than cheap floating-point arithmetic.

An efficient in-between solution consists in systematically computing the floating-point evaluations f (x), and computing the interval evaluation F (x) whenever the best known "round to nearest" evaluation is improved. F (x) is then compared to the best known reliable upper bound f : if f is improved, F (x) is sent to the IBC. This implementation greatly reduces the cost of evaluations, while ensuring that all the values sent to the IBC are rigorous.

Interval Branch and Contract

Branching aims at refining the computation of lower bounds of the functions using interval arithmetic. Two strategies may be found in the early literature:

the variable with the largest domain is bisected; -the variables are bisected one after the other in a round-robin scheme.

More recently, the Smear heuristic [START_REF] Csendes | Subdivision direction selection in interval methods for global optimization[END_REF] has emerged as a competitive alternative to the two standard strategies. The variable x i for which the interval quantity

∂F ∂xi (X)(X i -x i ) is the largest is bisected.
Charibde's main contractor is detailed in Algorithm 3. We exploit the contracted nodes of HC4Revise to compute partial derivatives via automatic differentiation [START_REF] Schichl | Interval analysis on directed acyclic graphs for global optimization[END_REF]. HC4Revise is a revise procedures within a quasi-fixed point with tolerance η ∈ [0, 1]: the propagation loop stops when the box X is not sufficiently contracted, i.e. when the size of X becomes larger than a fraction ηw 0 of the initial size w 0 . Most contractors include an evaluation phase that yields a lower bound of the problem on the current box. Charibde thus computes several lower bounds (natural, Taylor, LP) as long as the box is not discarded. Charibde calls ocaml-glpk [START_REF] Mimram | ocaml-glpk[END_REF], an OCaml binding for GLPK (GNU Linear Programming Kit). Since the solution of the linear program is computed using floating-point arithmetic, it may be subject to roundoff errors. A cheap postprocessing step [START_REF] Neumaier | Safe bounds in linear and mixed-integer linear programming[END_REF] computes a rigorous bound on the optimal solution of the linear program, thus providing a rigorous lower bound of the initial problem. 

system of constraints) lb ← -∞ lower bound repeat w0 ← w(X) initial size F X ← HC4Revise(F (X) ≤ f ) evaluation of f /contraction lb ← F X lower bound by natural form G ← ∇F (X) gradient by AD lb ← max(lb, SecondOrder(X, F, f , G)) second-order form C ← HC4(X, C, η) quasi-fixed point with tolerance η if use linearization then lb ← max(lb, Linearization(X, F, f , G, C)) simplex or X-Newton end if until X = ∅ ou w(X) > ηw0 return lb end function
When the problem is subject to equality constraints h j (j ∈ {1, . . . , p}), IBBA [START_REF] Ninin | A reliable affine relaxation method for global optimization[END_REF], Ibex [START_REF] Trombettoni | Inner regions and interval linearizations for global optimization[END_REF] and Charibde handle a relaxed problem where each equality constraint h j (x) = 0 (j ∈ {1, . . . , p}) is replaced by two inequalities:

-ε = ≤ h j (x) ≤ ε = (6)
ε = may be chosen arbitrarily small.

MaxDist: a New Exploration Strategy

The boxes that cannot be discarded are stored in a priority queue Q to be processed at a later stage. The order in which the boxes are extracted determines the exploration strategy of the search-space ("best-first", "largest first", "depthfirst"). Numerical tests suggest that the "best-first" strategy is rarely relevant because of the overestimated range (due to the dependency problem); -the "largest first" strategy does not give advantage to promising regions; -the "depth-first" strategy tends to quickly explore the neighborhood of local minima, but struggles to escape from them.

We propose a new exploration strategy called MaxDist. It consists in extracting from Q the box that is the farthest from the current solution x. The underlying ideas are to explore the neighborhood of the global minimizer (a tedious task when the objective function is flat in this neighborhood) only when the best possible upper bound is available; -explore regions of the search-space that are hardly accessible by the DE algorithm.

The distance between a point x and a box X is the sum of the distances between each coordinate x i and the closest bound of X i . Note that MaxDist is an adaptive heuristic: whenever the best known solution x is updated, Q is reordered according to the new priority of the boxes. Preliminary results (not presented here) suggest that MaxDist is competitive with standard strategies. However, the most interesting observation lies in the behavior of Q: when using MaxDist, the maximum size of Q (the maximum number of boxes simultaneously stored in Q) remains remarkably low (a few dozens compared to several thousands for standard strategies). This offers promising perspectives for the cooperation between DE and IBC: the remaining boxes of the IBC may be exploited in the DE to avoid exploring regions of the search-space that have already been proven infeasible or suboptimal.

The following numerical example illustrates how the remaining boxes are exploited to reduce DE's domain through the generations. Let The initial domain of DE (which corresponds to the initial box in the IBC) is first contracted with respect to the constraints of the problem. The initial population of DE is then generated within this contracted domain, thus avoiding obvious infeasible regions of the search-space. This approach is similar to that of [START_REF] Focacci | Local search and constraint programming[END_REF]. Figure 3b depicts the contraction (the black rectangle) of the initial domain with respect to the constraints (sequentially by HC4Revise):

X × Y = [1.4142, 8.5674] × [0.2, 9.125].
Periodically, we compute the convex hull (Q) of the remaining boxes of Q and replace DE's domain with (Q). Note that 1. the convex hull (linear complexity) may be computed at low cost, because the size of Q remains small when using MaxDist; 2. by construction, MaxDist handles boxes on the rim of the remaining domain (the boxes of Q), which boosts the reduction of the convex hull.

Figures 3c and3d represent the convex hull (Q) of the remaining subboxes in the IBC, respectively after 10 and 20 DE generations. The population is then randomly regenerated within the new contracted domain (Q). The convex hull operation progressively eliminates local minima and infeasible regions. The global minimum eventually found by Charibde with precision ε = 10 -8 is f = f (8.532424, 0.274717) = -2.825296148; both constraints are active.

Experimental Results

Currently, GlobSol [START_REF] Kearfott | Rigorous global search: continuous problems[END_REF], IBBA [START_REF] Ninin | A reliable affine relaxation method for global optimization[END_REF] and Ibex [START_REF] Chabert | Contractor programming[END_REF] are among the most efficient solvers in rigorous constrained optimization. They share a common skeleton of interval branch and bound algorithm, but differ in the acceleration techniques. GlobSol uses the reformulation-linearization technique (RLT), that introduces new auxiliary variables for each intermediary operation. IBBA calls a contractor similar to HC4Revise, and computes a relaxation of the system of constraints using affine arithmetic. Ibex is dedicated to both numerical CSPs and constrained optimization; it embeds most of the aforementioned contractors (HC4, 3B, Mohc, CID, X-Newton). Couenne [START_REF] Belotti | Branching and bounds tighteningtechniques for non-convex minlp[END_REF] and BARON [START_REF] Sahinidis | Baron: A general purpose global optimization software package[END_REF] are state-of-the-art NLP solvers. They are based on a non-rigorous spatial branch and bound algorithms, in which the objective function and the constraints are over-and underestimated by convex relaxations. Although they perform an exhaustive exploration of the searchspace, they cannot guarantee a given precision on the value of the optimum. All five solvers and Charibde are compared on a subset of 11 COCONUT constrained problems (Table 1), extracted by Araya [START_REF] Araya | A contractor based on convex interval taylor[END_REF] for their difficulty: ex2 1 7, ex2 1 9, ex6 2 6, ex6 2 8, ex6 2 9, ex6 2 11, ex6 2 12, ex7 2 3, ex7 3 5, ex14 1 7 and ex14 2 7. Because of numerical instabilities of the ocaml-glpk LP library ("assert failure"), the results of the problems ex6 1 1, ex6 1 3 and ex 6 2 10 are not presented. The second and third columns give respectively the number of variables n and the number of constraints m. The fourth (resp. fifth) column specifies the type of the objective function (resp. the constraints): L is linear, Q is quadratic and NL is nonlinear. The logsize of the domain D (sixth column) is log(

n i=1 (D i -D i )).
The comparison of CPU times (in seconds) for solvers GlobSol, IBBA, Ibex, Couenne, BARON and Charibde on the benchmark of 11 problems is detailed in Table 2. Mean times and standard deviations (in brackets) are given for Charibde over 100 runs. The numerical precision on the objective function ε = 10 -8 and the tolerance for equality constaints ε = = 10 -8 were identical for all solvers. TO (timeout) indicates that a solver could not solve a problem within one hour. The results of GlobSol (proprietary piece of software) were not available for all problems; only those mentioned in [START_REF] Ninin | A reliable affine relaxation method for global optimization[END_REF] are presented. The results of IBBA were also taken from [START_REF] Ninin | A reliable affine relaxation method for global optimization[END_REF]. The results of Ibex were taken from [START_REF] Araya | A contractor based on convex interval taylor[END_REF]: only the best strategy (simplex, X-NewIter or X-Newton) for each benchmark problem is presented. Couenne and BARON (only the commercial version of the code is available) were run on the NEOS server [START_REF] Gropp | Optimization environments and the NEOS server[END_REF]. Charibde was run on an Intel Xeon E31270 @ 3.40GHz x 8 with 7.8 GB of RAM. BARON and Couenne were run on 2 Intel Xeon X5660 @ 2.8GHz x 12 with 64 GB of RAM. IBBA and Ibex were run on similar processors (Intel x86, 3GHz). The difference in CPU time between computers is about 10% [START_REF] Araya | Upper bounding in inner regions for global optimization under inequality constraints[END_REF], which makes the comparison quite fair.

The hyperparameters of Charibde for the benchmark problems are given in Table 3; N P is the population size, and η is the quasi-fixed point ratio. The amplitude W = 0.7, the crossover rate CR = 0.9 and the MaxDist strategy are common to all problems. Tuning the hyperparameters is generally problemdependent, and requires structural knowledge about the problem: the population size N P may be set according to the dimension and the number of local minima, the crossover rate CR is related to the separability of the problem, and the techniques based on linear relaxation have little influence for problems with few constraints, but are cheap when the constraints are linear. Charibde outperforms Ibex on 9 out of 11 problems, IBBA on 10 out of 11 problems and GlobSol on all the available problems. The cumulated CPU time shows that Charibde (101.26s) improve the performances of Ibex (1312.32s) by an order of magnitude (ratio: 13) on this benchmark of 11 difficult problems. Charibde also proves highly competitive with non-rigorous solvers Couenne and BARON. The latter are faster or have similar CPU times on some of the 11 problems, however they both time out on at least five problems (seven for Couenne, five for BARON). Overall, Charibde seems more robust and solves all the problems of the benchmark, while providing a numerical proof of optimality. Surprisingly, the convergence times do not seem directly related to the dimensions of the instances. They may be explained by the nature of the objective function and constraints (in particular, Charibde seems to struggle when the objective function is quadratic) and the dependency induced by the multiple occurrences of the variables. Table 4 presents the best upper bounds obtained by Charibde, Couenne and BARON at the end of convergence (precision reached or timeout). Truncated digits on the upper bounds are bounded (e.g. 1.23 8 7 denotes [1.237, 1.238] and -1.23 8 7 denotes [-1.238, -1.237]). The incorrect digits of the global minima obtained by Couenne and BARON are underlined. This demonstrates that nonrigorous solvers may be affected by roundoff errors, and may provide solutions that are infeasible or have an objective value lower than the global minimum (Couenne on ex2 1 9, BARON on ex2 1 7, ex2 1 9, ex6 2 8, ex6 2 12, ex7 2 3 and ex7 3 5). For the most difficult instance ex7 2 3, Couenne is not capable of finding a feasible solution with a satisfactory evaluation within one hour. It would be very informative to compute the ratio between the size of the feasible domain (the set of all feasible points) and the size of the entire domain. On the other hand, the strategy MaxDist within Charibde greatly contributes to finding an excellent upper bound of the global minimum, which significantly accelerates the interval pruning phase. 

Conclusion

We proposed a cooperative hybrid solver Charibde, in which a deterministic interval branch and contract cooperates with a stochastic differential evolution algorithm. The two independent algorithms run in parallel and exchange bounds, solutions and search-space in an advanced manner via message passing. The domain of the population-based metaheuristic is periodically reduced by removing local minima and infeasible regions detected by the branch and bound. A comparison of Charibde with state-of-the-art interval-based solvers (Glob-Sol, IBBA, Ibex) and NLP solvers (Couenne, BARON) on a benchmark of difficult COCONUT problems shows that Charibde is highly competitive against non-rigorous solvers (while bounding the global minimum) and converges faster than rigorous solvers by an order of magnitude.
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Table 1 :

 1 Description of difficult COCONUT problems

				Type	
	Problem n m	f	gi, hj Domain logsize
	ex2 1 7	20 10 Q	L	+∞
	ex2 1 9	10 1	Q	L	+∞
	ex6 2 6	3	1 NL	L	-3 • 10 -6
	ex6 2 8	3	1 NL	L	-3 • 10 -6
	ex6 2 9	4	2 NL	L	-2.77
	ex6 2 11 3	1 NL	L	-3 • 10 -6
	ex6 2 12 4	2 NL	L	-2.77
	ex7 2 3	8	6	L	NL	61.90
	ex7 3 5	13 15 L	NL	+∞
	ex14 1 7 10 17 L	NL	23.03
	ex14 2 7 6	9	L	NL	+∞

Table 2 :

 2 Comparison of convergence times (in seconds) between GlobSol, IBBA, Ibex, Charibde (mean and standard deviation over 100 runs), Couenne and BARON on difficult constrained problems

			Rigorous		Non rigorous
	Problem GlobSol IBBA	Ibex	Charibde	Couenne BARON
	ex2 1 7		16.7	7.74	34.9 (13.3)	476	16.23
	ex2 1 9		154	9.07	35.9 (0.29)	3.01	3.58
	ex6 2 6	306	1575	136	3.3 (0.41)	TO	5.7
	ex6 2 8	204	458	59.3	2.9 (0.37)	TO	TO
	ex6 2 9	463	523	25.2	2.7 (0.03)	TO	TO
	ex6 2 11	273	140	7.51	1.96 (0.06)	TO	TO
	ex6 2 12	196	112	22.2	8.8 (0.17)	TO	TO
	ex7 2 3		TO	544	1.9 (0.30)	TO	TO
	ex7 3 5		TO	28.91	4.5 (0.09)	TO	4.95
	ex14 1 7		TO	406	4.2 (0.13)	13.86	0.56
	ex14 2 7		TO	66.39	0.2 (0.04)	0.01	0.02
	Sum	> 1442	TO	1312.32	101.26	TO	TO

Table 3 :

 3 Hyperparameters of Charibde for the benchmark problems

	Problem NP Bisections Fixed-point ratio (η) LP X-Newton
	ex2 1 7	20	RR	0.9
	ex2 1 9	100	RR	0.8
	ex6 2 6	30	Smear	0
	ex6 2 8	30	Smear	0
	ex6 2 9	70	Smear	0
	ex6 2 11 35	Smear	0
	ex6 2 12 35	RR	0
	ex7 2 3	40	Largest	0
	ex7 3 5	30	RR	0
	ex14 1 7 40	RR	0
	ex14 2 7 40	RR	0

Table 4 :

 4 Best upper bounds obtained by Charibde, Couenne and BARON

	Problem	Charibde	Couenne	BARON
	ex2 1 7 ex2 1 9 ex6 2 6	-4150.41013392 9 8 -0.3750000075 -0.00000260 3 2	-4150.41012731 8 7 -0.37500015 4 3 0.00000071 1 0	-4150.41016079 8 7 -0.37500111 1 0 -0.00000260 3 2
	ex6 2 8 ex6 2 9	-0.0270063 50 49 -0.03406618 5 4	-0.0270063 50 49 -0.034066184	-0.02700637 1 0 -0.03406619 1 0
	ex6 2 11	-0.00000267 3 2	-0.00000267 3 2	-0.00000267 3 2
	ex6 2 12 ex7 2 3 ex7 3 5 ex14 1 7	0.2891947 40 39 7049.24802052 9 8 1.20671699 2 1 0.0000000 10 09	0.28919475 10 50 1.2068965 0.00000000 1 0	0.28919169 9 8 7049.02029170 7 6 0.23982448 8 7 0
	ex14 2 7	0.00000000 8 7	0.00000000 1 0	0