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Abstract—An important aspect of interpretability in Fuzzy
Linguistic Summaries (FLS) is the absence of opposition
therein, which is not guaranteed by the the current approaches
used for their generation, possibly leading to confusion for the
end-user. In this paper, we first introduce a 3-level hierarchy
to organise the models of opposition starting from simpler sen-
tences, then enriched with generalised quantifiers and thirdly
considering the several negation operators allowed by fuzzy
logic. We then introduce a general model of opposition for FLS
sentences, which we propose to represent as a 4-dimensional
cube. We additionally discuss the antonym property in this
analysis framework and prove it for general protoforms.

Index Terms—Fuzzy Linguistic Summaries, Interpretability,
Consistency, Square of Opposition, Antonymy

I. INTRODUCTION

Fuzzy Linguistic Summaries (FLS) [1], [2] can be defined
as texts made of several sentences describing distinct char-
acteristics of a given dataset. Their interpretability [3], [4]
is a central issue, related more specifically to the one of
consistency, i.e. absence of contradiction. Indeed, standard
FLS [1], [5], [6] do not ensure that opposed sentences, e.g.
“Most young people are short” and “Most young people
are tall”, cannot be returned within the same summary.

In order to prevent them, such oppositions must first be
identified, which is not trivial due to the numerous degrees
of freedom allowed in the generation of these sentences,
as discussed in this paper. It furthermore proposes a form-
alism detailing these oppositions and a representation as a
4-dimensional cube.

The paper is organised as follows: first, a reminder about
FLS and in particular their truth evaluation is given in
Section II. Sections III to V describe the proposed hier-
archical view of the opposition issue, presenting existing
models describing oppositions between sentences, organised
according to their generality, i.e. having increasing degrees
of freedom: Section III describes formalisms allowing to
represent opposition between sentences, either simple or
quantified using only ∀ and ∃. Section IV considers the case
of sentences built using generalised quantifiers. Section V
details a third degree of freedom present in sentences com-
posing FLS, namely the use of different kinds of negation in
fuzzy logic. In Section VI, we propose to study opposition
in FLS at a general level, by first defining the parts of
sentences over which negations can be applied, then detailing
the different types of sentences which can be generated
using all the degrees of freedom introduced in Sections III

to V. It proposes the 4-dimensional cube of oppositions that
constitutes a graphical representation of all relations holding
between all variants of negations that can be built using
the various degrees of freedom existing in FLS. Finally, the
relation of duality is discussed in Section VII, allowing to
prove a specific property of FLS so far satisfied for simple
protoforms only.

II. FUZZY LINGUISTIC SUMMARIES

A. Protoform Definition

A Fuzzy Linguistic Summary (FLS) is a set of sentences
describing data [1], [2], [5]–[7]. Each sentence is a couple
made of an instantiated protoform, which is a sentence
schema, and a truth degree t, measuring the protoform
adequacy with the data. In the case of people described by
their age and height, such a sentence can be illustrated by the
example “Less than 5 young people are short” (t = 0.83).

The protoforms considered in this paper are
“QRx are P ”, where x denotes the studied data, Q,
R, P are respectively called quantifier, qualifier and
summariser. In the previous example, Q is LessThan5, R is
Young, P is Short and x is a list of people.

In a general setting, Q is modelled by a fuzzy set, denoting
either an absolute quantifier as About10 or MoreThan5, or a
relative one as LessThanHalf or Most [6]. R and P are also
fuzzy sets, representing modalities of linguistic variables [8].

B. Truth Value Evaluation

Though alternative proposals exist for protoform truth
value evaluation (see e.g. [7], [9]–[13]), this paper focuses
on the standard one, which consists in a three step process to
compute the truth value of the protoform “QRx are P ” [1].

First, the membership of each data x to R and P is com-
puted through their membership functions, denoted R(x)
and P (x) respectively.

Then, the number of x being both R and P is evaluated
through the counting function ν:

ν(R,P ) =
∑
x∈X
> (R (x) , P (x)) (1)

where > is a t-norm. ν is the fuzzy cardinality of the fuzzy
intersection of R and P . Indeed, the fuzzy cardinality is
defined for a fuzzy set A as |A| =

∑
xA(x).

The third step is the quantification of the count returned
by ν, i.e. the membership of this count to Q. Absolute



quantifiers are usually defined over R+, to quantify any
positive value, while relative quantifiers are defined on [0, 1]
to express ratios. Hence, in the case of absolute quantifiers,
the count returned by ν is used as is, whereas in the case
of relative ones, it is divided by the size of the considered
universe R, computed as its fuzzy cardinality.

So as to take into account the two types of quantifiers, a
normalising function ρ is introduced:

ρ(R,Q) =

{
1 if Q is absolute
1/
∣∣R∣∣ if Q is relative

(2)

The general expression of the truth value is then:

t (QRx are P ) = Q (ρ(R,Q) · ν (R,P )) (3)

C. Proposed Hierarchical View of the Opposition Issue

The computation of the truth value defined in Eq. (3) takes
into account the whole dataset, but not the other sentences.
It thus does not guarantee that truth values numerically
reflect opposition between sentences, where actually both
the notions of opposed sentences and their expected truth
values are to be defined and justified. As discussed in this
paper, the various parameters implied in the truth evaluation
show how complex the detection of opposite sentences is.

Even though a clear definition of opposite sentences in the
context of FLS has not been exposed yet, the question has
been raised several times and solved in simpler paradigms,
detailed in the three next sections: they present how oppos-
ition is identified in increasingly complex frameworks, i.e.
allowing sentences to be built with a growing number of
degrees of freedom. In Section III, oppositions are repres-
ented for simple and quantified sentences. The only degree
of freedom for these sentences relies on the use or not of
the quantifiers All or Some.

However, FLS allow richer and more complex generalised
quantifiers to be employed as a second degree of freedom,
detailed in Section IV. The different adaptations of the
representations of opposition designed to take into account
these quantifiers are also presented.

Then, Section V details a third degree of freedom linked to
the use of different negations in fuzzy logic, namely antonym
and complement. The representation of oppositions in this
broader context has not been given yet and is proposed in
Section VI.

III. 1st LEVEL: SIMPLE AND QUANTIFIED SENTENCES

The simplest kind of opposition, studied in the first
subsection, is the one between two simple sentences usually
denoted “S is P ” and “S is P ′”, with S a subject and
P and P ′ two predicates, e.g. “John is tall” and “John
is short”. In this formalism, S denotes an individual and
such a sentence corresponds to a simplified protoform “x
is P ”, with neither quantifier nor qualifier. It is then extended
to two specific quantifiers to study the opposition between
quantified sentences of the form “All S are P ” or “Some S

are P ”, yielding its representation as squares, as detailed in
the second and third subsections.

Lastly, more elaborate proposals regarding the opposition
between both simple and quantified sentences are presented
in the last subsection.

A. Opposition of Simple Sentences

The earliest study of opposition for simple sentences dates
back to Aristotle and relies on the two laws of Excluded
Middle (EM) and Non Contradiction (NC) [14, p. 62]. EM
states that “S is P or not P ” and NC that “No S is P and
not P ”.

From these two laws, Aristotle introduce three classical
relations of opposition for simple sentences of the form “S
is P ”, namely contradiction, contrary and subcontrary: given
two predicates P and P ′, “S is P ” and “S is P ′” are in
contradiction if S must be either P or P ′ but not both. For
instance, an object is either P = cold or P ′ = not cold, not
both. Therefore, two predicates in a contradiction relation
both satisfy EM, since S has to be P or P ′, and NC, since
S cannot be P and P ′.

The contrary relation is satisfied if S cannot be both P
and P ′ but may be neither: e.g. an object cannot be both
P = hot and P ′ = cold, but can be lukewarm. So two
predicates in a contrary relation satisfy NC but not EM.

The subcontrary relation is satisfied if S must be either
P or P ′, possibly both: e.g. an object has to be either P =
not hot or P ′ = not cold, and can be both if it is lukewarm.
Hence, two predicates in a subcontrary relation satisfy EM
but not NC.

B. Classical Square of Opposition

Based on the three relations defined for simple sentences,
the classical or Aristotelian square of oppositions has been
proposed for quantified sentences, considering the quantifiers
All and Some, yielding the four sentences “All S are P ”,
“No S is P ”, “Some S are P ” and “Some S are not P ”.
It must be underlined that a shift in the meaning of S
occurs in this classic notation: S here becomes a predicate
that an individual x can satisfy or not. These sentences
can be interpreted using the protoform notations detailed
in Section II-A with the quantifiers All, None or Some, the
qualifier S and the summariser P or not P .

Their oppositions are modelled in the square illustrated
on Fig. 1. Corners A/E satisfy the contrary relation since
“All S are P ” and “No S is P ” cannot be true but may be
false together. Similarly, A/O and E/I are in contradiction,
and I/O satisfy the subcontrary relation.

An additional relation, called subaltern, is also present in
the square. It is an implication, not an opposition: “All S
are P ” implies that “Some S are P ”, and “No S are P ”
that “Some S are not P ”.

For instance, if S is a person and P his or her tallness, then
the corner A “All persons are tall” satisfies a contradiction
relation with O “Some persons are not tall”, a contrary one



(A) All S are P (E) No S is P

Contradiction

(I) Some S are P (O) Some S are not P
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Figure 1. Classical or Aristotelian square of opposition

(A) Q(S, P ) (E) Q(S,¬P )

External negation

(I) ¬Q(S,¬P ) (O) ¬Q(S, P )
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Figure 2. Modern square of opposition

with E “No person is tall” and a subaltern or implication
one with I “Some persons are tall”.

C. Modern Square of Opposition

The modern square (see Fig. 2) also models opposition
between quantified sentences, but differs from the classical
one in three respects [15]. First, it is generally formalised
using the notation Q(S, P ) to represent “Q S are P ”. It
has as a specific case “All S are P ” for Q = All. Second,
it uses of a general quantifier Q which can differ from All
or Some. Third, it considers 3 rather than 4 relations: the
internal negation which is the negation of the predicate P ,
and the external negation, which is the negation of the whole
sentence. The dual relation is defined as the commutative
composition of an internal and an external negation.

Thus, the modern square is more expressive than the
classical one since it allows quantifiers different from All (∀)
and Some (∃) to be used. Moreover, if Q is ∀ and ¬Q is
∃, it is equivalent to the classical square, as illustrated on
Fig. 3 with a modern formalism: e.g. the A corner standing
for “All S are P ” is formally written ∀x, S(x) → P (x)
(the parentheses are omitted in the following to lighten
the formalism), using a logical implication between the
predicates S and P and making the involved individuals x
explicit. The internal negation of A, yielding the E corner,
is computed by applying a negation on P : ∀x, Sx→ ¬Px,
read “No S is P ”. The external negation of A is O,
obtained with a negation over the entire expression, yielding
¬(∀x, Sx → Px) = ∃x, ¬(¬Sx ∨ Px) = ∃x, Sx ∧ ¬Px,
read “Some S are not P ”. The last corner I is deduced with
an internal negation over O, yielding ∃x, Sx ∧ Px, read
“Some S are P ”.

Clearly, the classical relations are verified in this square:
the contrary relation holds for the corners A/E, contradiction

(A) ∀x, Sx→ Px (E) ∀x, Sx→ ¬Px

External negation

(I) ∃x, Sx ∧ Px (O) ∃x, Sx ∧ ¬Px

Internal negation

Internal negation

D
ual D
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l

Figure 3. Modern square for Q = ∀

(U)
∀x, (Sx→ Px) ∨ ∀y, (Sy → ¬Py)

(A) ∀x,
Sx→ Px

(I) ∃x,
Sx ∧ Px

(Y)
∃x, (Sx ∧ Px) ∧ ∃y, (Sy ∧ ¬Py)

(E) ∀x,
Sx→ ¬Px

(O) ∃x,
Sx ∧ ¬Px

Figure 4. Hexagon of opposition [16]

for A/O and E/I , subcontrary for I/O, and subaltern for
A/I and E/O. As shown in Section IV, this is not the case
for any quantifier Q.

D. Other Structures of Opposition

a) Interpretation of “Some”: Beside the extension of
the square to other quantifiers described above, other inter-
pretations of ∀ and ∃ have been proposed, yielding more
complex shapes than the square. In particular, in the pre-
viously mentioned squares, Some is interpreted as “Some,
maybe all”. However, it may be understood as “Some, but
not all”. The hexagon of opposition [16] illustrated on Fig. 4
is defined using this stricter definition. It adds two corners
to the classical square: Y , interpreted as “Neither all nor
none”, and U , “All or none”. The three classical relations
are satisfied with these two new corners.

As the three mutually exclusive cases A, E and Y are such
that A ∧E and A ∧ Y and E ∧ Y are false and A ∨E ∨ Y
is a tautology, they can be represented as an hexagon [17].

b) Simple Sentences with More Than Two Terms:
Another direction of extension aims at considering terms dif-
ferent from P or not P for simple sentences. A geometrical
method to design shapes satisfying the classical relations is
proposed in [18] for any set of terms building a partition of
the universe in a set of predicates P1, ..., Pn such that for
all x, P1(x) ∨ ... ∨ Pn(x) is true and ∀i, j, Pi(x) ∧ Pj(x)
is false. In this method, each element Pi of the partition is
linked to the others through a contrary relation; its contra-
dictory term ¬Pi is located symmetrically with respect to the
centre of the shape; subcontrary terms are identified as the
contradiction of contrary terms and linked with one another,
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Figure 5. n−partition polygons maintaining the 4 relations of the classical
square [18]

and adjacent corners are linked with a subaltern relation [18].
Fig. 5 illustrates the construction of shapes containing an
increasing number of terms and maintaining the classical
relations. In the cube, represented in the 2D-figure as an
octagon, {A,B,C,D} is a partition of the universe. Hence,
considering the A vertex, contrary relations hold with B,
C, D, contradiction with ¬A and subalterns with ¬B, ¬C
and ¬D. The subcontrary relation holds for vertices with a
negation, as e.g. between ¬A and ¬B, ¬C and ¬D.

E.g. considering the colour of an object, A for Red and
B for Green in the square, if the object is Red then it is
not Green, as the subaltern relation from A to B illustrates,
and it cannot be not Red as shown by the contradiction
relation between A and ¬A. With C for Blue and the
hexagon, if an object is Red then it is not Green and not Blue
as indicated by the subaltern relations from A to B and from
A to C and so on for the other relations and figures.

IV. 2nd LEVEL: GENERALISED QUANTIFIERS

In this section, a new degree of freedom is added through
generalised quantifiers, presented in the next subsections,
with their semantics and their links with the logical squares.

A. Generalised Quantifiers

Generalised quantifiers [19] allow to express intermediary
states between ∀ and ∃. In a linguistic context, the gener-
alised quantifier LessThan5(S, P ) for instance is read “Less
than 5 S are P ”, and its truth value is evaluated as the
truth value of an expression using standard set operators,
as LessThan5(S, P )⇔ |S ∩ P | < 5. Other examples of set
interpretation of quantifiers include [20]:

All (S, P )⇔ S ⊆ P
No (S, P )⇔ S ∩ P = ∅

MoreThan20% (S, P )⇔ |S ∩ P | / |S| > 0.2

Most (S, P )⇔ |S ∩ P | > |S − P |

The set notations used in this context can be compared to
the propositional ones used for the modern square, e.g. for
All(S, P ), S ⊆ P applying to the predicate interpretation, is
equivalent to ∀x(Sx→ Px).

(A) |S ∩ P | < 5 (E) |S − P | < 5

External negation

(I) |S − P | ≥ 5 (O) |S ∩ P | ≥ 5

Internal negation

Internal negation

D
ual D

ua
l

Figure 6. Modern square of LessThan5(S, P )

B. Links with Logical Squares

Generalised quantifiers can be used directly within the
modern square of opposition [15] since it is designed with
a generic quantifier Q, as opposed to the classical one using
“All”, “Some”, and “No”. For instance the corners of the
square illustrated on Fig. 6 are built using the definitions of
internal and external negations for the quantifier LessThan5.

It must be remarked that these definitions do not satisfy
the relations of the classical square [21]: on Fig. 6, the
subcontrary relation does not hold between the corners I
and O since they can be both false (if 4 S are P and 4 S
are not P for instance).

Several proposals have been made in order to include
generalised quantifiers in the classical square. Two squares,
one with Few, Many and the other with Many, Most are
proposed [22] but they require several prerequisites to satisfy
the classical relations: Many must be interpreted as the
contradiction of Most in one case and of Few in the other;
furthermore, Many must account for less than 50% of the
elements for the subcontrary to hold.

In the framework of fuzzy type theory, intermediate quan-
tifiers [23] are used to model several generalised quantifiers
satisfying the classical relations. As detailed in [24], they are
classical ∀ or ∃ quantifiers whose universe of quantification
can be modified in an imprecise way.

Hence, generalised quantifiers, enhancing the expressive
power of quantified sentences and adding a degree of
freedom in their construction, also make oppositions more
difficult to formalise since they do not systematically satisfy
the classical relations.

V. 3rd LEVEL: FUZZY NEGATIONS

Simple and quantified sentences have been presented in
the previous sections using classical logic, equipped with the
single negation operator ¬. Fuzzy logic though allows more
than one negation, yielding an additional degree of freedom
in the constitution of sentences in FLS. In this notation,
the predicates involved in the considered sentences are thus
considered as fuzzy predicates associated with a truth degree
in [0, 1] and represented by their membership functions.

In the following, A denotes a fuzzy set with a membership
function defined from [a−, a+] to [0, 1]. A(x) represents the
degree to which “x is A”, to be compared to the sentence
“S is P ” from Section III-A with S = x and P = A.



After reminding the classical fuzzy negation operator, this
section discusses the three negations defined for predicates
in fuzzy logic, namely complement, antonym and antonym
complement as well as their links with the classical relations.

A. Negation Operator
Given an interval I = [i−, i+], the fuzzy negation oper-

ator n is defined as:

∀y ∈ I, n (I, y) = i+ − i− − y
Hence, the negation is an involution from I to I , cor-

responding to an axial symmetry with respect to the axis
y = (i++i−)/2. In the following, when I is clearly defined,
n(I, y) is written n(y) or equivalently y.

B. Complement
For any fuzzy set A, its complement A is defined as:

A(x) = n([0, 1], A(x)) = 1−A(x) (4)

i.e. the negation of the membership function A(x), defined
in [0, 1].

The fuzzy complement is the direct counterpart of the
classical negation, equal to the latter for a crisp set. It is
also involutive, i.e. A = A.

As illustrated on Fig. 7, A is symmetric to A with respect
to the horizontal axis y = 1/2.

It must be noted that, although usually A 6= A, there
exists a fuzzy set such that A = A, which may make
this opposition relation counterintuitive. Yet, this fuzzy set
is defined by the membership function A(x) = 1/2 for
all x ∈ [a−, a+], which is an uninteresting fuzzy set in a
linguistic context and is not likely to occur in FLS.

C. Antonym
For any fuzzy set A, its antonym Â is defined as:

Â(x) = A(n([a−, a+], x)) = A(a+− a−− x) = A(x) (5)

i.e. the negation of the parameter x defined in [a−, a+]. It
is involutive, i.e. ˆ̂

A = A.
As illustrated on Fig. 8, Â is symmetric to A with respect

to the vertical axis x = (a+ − a−) /2.
It can be underlined, again, that although in most cases

A 6= Â, there exist fuzzy sets such that A = Â: in a Ruspini
partition made of an odd number of equally sized modalities,
the central modality is equal to its antonym, as illustrated
by B on Fig. 8.

D. Antonym Complement

The antonym complement (a.c.) Â is the composition of
an antonym and a complement and is defined as:

Â(x) = 1−A(a+ − a− − x) = A(x) (6)

It is commutative, so Â = Â [25]. Furthermore, if A = B̂,
then Â = B, A = B̂, Â = B.

As illustrated on Fig. 9 and 10, Â is symmetric to A with
respect to the point ((a+ − a−) /2, 1/2).

0

1
A = B B = A

Figure 7. A and B are complements

0

1
A = Ĉ B = B̂ C = Â

Figure 8. A and C are antonyms, B is self antonym

0

1
A ÂB = Â

Figure 9. A and B (dashed) are antonym complements

0

1
A = Â A = Â

Figure 10. A is a self antonym complement

E. Establishing Links Between Classical Relations and
Fuzzy Negations

In order to study the relations between the three fuzzy neg-
ations discussed above (complement, antonym and antonym
complement), and the classical relations (contradiction, con-
trary, subcontrary and subaltern), the Non Contradiction and
the Excluded Middle must be defined in a fuzzy context.
We propose two variants for them: a strict one, associating
>(A,¬A) = 0 with NC and ⊥(A,¬A) = 1 with EM,
and a soft one, defining >(A,¬A) ≤ 0.5 for NC and
⊥(A,¬A) ≥ 0.5 for EM. We propose in this paper to use the
soft variant since it is semantically consistent with the two
laws and allows to satisfy interesting properties under the
general assumptions that the used t-norm and t-conorm are
dual and that the considered modalities of linguistic variables
define Ruspini partitions.

In this context, different properties are indeed easily
provable. First, the fuzzy complement behaves as a classical
contradiction since it satisfies both NC and EM. Indeed, due
to the properties of Ruspini partitions, min(A,A) ≤ 0.5
and thus >(A,A) ≤ 0.5, hence satisfying NC. Moreover, as
>(A,A) = 1−⊥(A,A), so ⊥(A,A) ≥ 0.5, thus satisfying
EM. Linguistically, the labels for complement modalities can
be Hot / not Hot or Few / not Few.

Second, the fuzzy antonym behaves as a classical con-
trary since it satisfies NC under the constraint that both A
and Â are modalities of an underlying linguistic variable.
Indeed, the Ruspini partition properties directly entail that
>(A, Â) = 0 if A and Â are not adjacent, and >(A, Â) ≤
0.5 if they are, thus satisfying NC in both cases. It is however
trivially not satisfied if A = Â, which is the case with the
central modality of a uniform Ruspini partition for instance.



Linguistically, the labels for antonym modalities can be Hot /
Cold or Most / Few.

Third, the fuzzy antonym complement behaves as a clas-
sical subcontrary with A: indeed, since >(A, Â) ≤ 0.5,
⊥(A, Â) ≥ 0.5 so A and Â satisfy EM. Linguistically, the
labels for antonym complement modalities can be Hot / not
Cold or Most / not Few.

Lastly, the fuzzy antonym complement satisfies an implic-
ation relation, in a similar way as in the modern square. In-
deed, in a Ruspini partition, Â(x) ≤ A(x), so A(x) ≤ Â(x).
So, denoting Ig(x, y) and I∆(x, y) the Gödel and Goguen
fuzzy implications respectively, Ig(A, Â)= I∆(A, Â)= 1.
For instance, the pair Hot / not Cold, can be seen as an
implication, i.e. if it is hot, then it is not cold, or with a pair
of quantifiers, if “Most S are P ” then “not Few S are P ”.
If the antonym and the complement, usually different, are
equal, then A = Â, and A is a.c. with itself, implying that A
and Â partition the whole universe of discourse (see Fig. 10).

Thus, negations in fuzzy logic allow to satisfy the classical
relations for simple sentences. The next section discusses the
matter of quantified ones and thus proposes a study in the
general case of FLS, integrating all degrees of freedom.

VI. PROPOSED GENERAL MODEL OF OPPOSITION

In this section, opposition between quantified sentences
used in FLS is studied. First, the different negation proto-
forms are presented, followed by the operations which can
be applied on them, based on the fuzzy negations. Their
representation as quadruplets is next introduced, and finally,
the 4-cube of opposition showing the relations between the
negation protoforms is introduced.

A. Negation Protoforms

As reminded in Section II, a protoform “QRx are P ” is
made of a quantifier Q, a qualifier R and a summariser P .
A negation holds between two protoforms only if they relate
to the same universe of discourse, i.e. if they share the
same qualifier R. For instance, “Most young are short” is
a negation of “Most young are tall”, since they refer to the
same universe of discourse, the young persons. Conversely,
it is not a negation of “Most elder are short”, since the
sentences relate to different universes of discourse.

Therefore, the two parts over which a negation can be
applied to define a negation for a protoform are the quan-
tifier Q and the summariser P . For this reason, protoforms
are denoted QP only in the sequel.

The different combinations of fuzzy set negations applied
over QP allow to define the 16 possible negation proto-
forms: QP , QP̂ , QP , QP̂ , Q̂P , Q̂P̂ , Q̂ P , Q̂ P̂ , QP , QP̂ ,
QP , QP̂ , Q̂ P , Q̂ P̂ , Q̂ P , Q̂ P̂ .

It can be noted that some of these negation protoforms
may be equal depending on the definitions of Q and P . For
instance, if Q = Q̂, then obviously QP = Q̂P .

B. Negation Protoforms Representation

The 16 forms of protoforms listed above can be obtained
from one another combining operations applying the com-
plement of the quantifier or the summariser, respectively
denoted c1 and c2, or the antonym of the quantifier or the
summariser, respectively denoted a1 and a2: for instance,
a1(a2(c2(QP ))) = Q̂ P̂ . Due to commutativity, operations
can be applied in any order.

It can be noted that due to the involutivity and commut-
ativity of these operations, all the 16 negations protoforms
can be generated using at most 4 operations starting from
any of them.

The specific combinations a1 ◦ c1 and a2 ◦ c2 represent
the antonym complement operations on the quantifier and
the summariser and are denoted ac1 and ac2 respectively.
The combination a1 ◦ c2, called duality, is discussed in
Section VII.

The 16 forms of negation protoforms can also be repres-
ented as quadruplets (a, b, c, d) in {0, 1}4, where each com-
ponent equals 1 if a given operation is applied, starting from
QP . a stands for applying a1, b for c1, c for a2 and d for c2.
For instance, (1, 0, 0, 1) corresponds to a1(c2(QP )), so Q̂ P .
The notation is allowed since antonym and complement are
commutative.

This notation also allows to write the truth value defined
by Eq. (3) as, for any protoform p = (a, b, c, d):

t (p) =
∣∣b−Q(

∣∣a− ρ (R,Q)×
ν(R (x) , |d− P (|c− x|)|)

∣∣)∣∣ (7)

x is explicitly denoted in the parentheses of the ν function
so as to take into account c.

C. The Proposed 4-cube of Oppositions

The figure of oppositions between the quantified sentences
in FLS must thus include 16 vertices whose quadruplet rep-
resentation indicates they are the corners of a 4-dimensional
cube, thus yielding a more complex graphic as the figures
discussed in Sections III and IV. Now, a classic represent-
ation in 3 dimensions of a 4-dimensional cube is a pair of
nested cubes, as illustrated on Fig. 11.

Coloured edges link the 16 vertices. Thick edges represent
the four basic negation operations, in green for antonyms, red
for complements: vertical edges correspond to c1, horizontal
ones to a2, depth ones to a1. Thin edges going from one cube
to another represent c2, thus rendering the fourth dimension.
Blue and orange thin edges represent composed operations,
respectively antonym complement and duality d, discussed
in the next section.

56 edges are present in the 4-cube of oppositions: 7
operations (a1, a2, c1, c2, ac1, ac2, d) over 16 vertices
yield 7 × 16 = 112 directed links. Since each operation
is involutive, each edge is symmetric, dividing by two the
number of links.
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Figure 11. The proposed 4-cube of oppositions

D. Relations with the Modern Square of Opposition

As established in Subsection V-E, non quantified sen-
tences with fuzzy negations have several links with the
classical square of opposition represented on Fig. 1. In this
subsection, we show that quantified protoforms used in FLS
and their 4-cube representation have links with the modern
square of opposition represented on Fig. 2.

In the modern square, only two operations can be con-
sidered, namely internal and external negation: the corres-
ponding protoforms can be represented as couples (α, β)
where α (respectively β) denotes the application of internal
(respectively external) negation. For instance, (0, 1) repres-
ents Q(S,¬P ).

Since the corners of the modern square are defined by a
starting protoform over which 3 transformations are applied,
namely an internal negation, an external negation, and a
composition of both, then any set of four protoforms in the
4-cube such that, applying these 3 transformations over one
of them yields the 3 others defines a modern square too.

9 couples of negation operators {a1, c1, ac1} ×
{a2, c2, ac2} can be chosen to define internal and external
negation so as to find different modern squares. Since a
modern square definition can start from any of the 16
vertices and dividing by the permutation of the corners due
to the operation involutivity, then (16 × 9)/4 = 36 modern
squares can be found in the 4-cube.

For instance, with the couple (a1, c2), the modern square
QP , Q̂P , QP , Q̂ P on the front face of the inner cube
is determined. Another, less visible, square is given by the
corners QP , Q̂P , QP , Q̂ P . It must be remarked that the
order of application of the negation operators differs between
the modern square and the 4-cube. They nonetheless describe
the same opposition relations, in a different order.

VII. ESTABLISHING ANTONYMY FROM DUALITY

This section discusses the specific case of the a1c2 com-
bination, that relates QP with Q̂ P , Q̂P with QP , QP with
Q̂ P and so on.

A. Definition

The antonymy property (not to be confused with the ant-
onym fuzzy negation, see Section V-C), desired in FLS [1],
[9], [10], [26], states that:

t(QP ) = t(Q̂ P ) (8)

e.g. “Most young people are tall” has the same truth value
as “Few young people are not tall”.

As discussed in Section VI-A, some pairs of negation
protoforms can be equal depending on the properties of
Q and P , e.g. QP = Q̂P if Q = Q̂. Obviously, equal
protoforms have equal truth values, so if QP = Q̂P , then
t(QP ) = t(Q̂P ).

The antonymy property, in turn, involves protoforms dif-
ferent in their definitions: when it is satisfied, t(QP ) =
t(Q̂ P ), even if QP 6= Q̂ P .

This relation deserves a specific attention for two reasons.
First, it holds a particular role in the 4-cube of opposition
since it is an equality on truth values, not on protoforms.

Second, it does not only involve Q and P , but also the
qualifier R as it expresses a constraint on the truth value
whose evaluation depends on R. It is satisfied when R is
always true, i.e. for protoforms “Qx are P ”, but not in the
general case “QRx are P ” [1], [6].

Below, we introduce the definition of the counting func-
tion negation, defining a final level of opposition in FLS,
and a condition under which antonymy holds.

B. Negation of the Counting Function

The counting function ν (R,P ) defined in Eq. (1) counts
the number of elements in R being P . Hence, R can be seen
as a restriction of the universe over which the number of P
are counted. So, denoting |R| =

∑
xR (x), the interval of

definition of ν is [0, |R|] and does not depend on P . Hence,
the negation of ν is denoted:

ν(R,P ) = n([0, |R|], ν(R,P )) = |R| − ν(R,P ) (9)

Semantically, the negation of the counting function de-
pends on the number of considered elements, e.g. if 8 out
of 10 satisfy P , the negation of this count is 10− 8 = 2.



C. Duality Property
With the negation of the counting function, we introduce

the duality property, satisfied for a counting function ν iff:

ν(R,P ) = ν (R,P ) (10)

The counting function is based on a t-norm (Eq. (1)).
Among the four classical t-norms, drastic, Łukasiewicz, min
and probabilistic, only the latter verifies duality. Indeed,
denoting it >P :

ν(R,P ) =
∑
>P (R, 1− P ) =

∑
R(1− P )

=
∑

R−
∑
>P (R,P )

= |R| − ν(R,P ) = ν(R,P )

It can be easily shown that this relation is not satisfied with
the other three t-norms.

D. Link between Duality and Antonymy Properties
We now show that a counting function satisfying the

duality property also satisfies the antonymy property.
If Q is an absolute quantifier defined on [0, |R|], then

ρ(R,Q) = 1 (Eq. 2) and :

t(QP ) = Q(ν(R,P )) = Q(ν(R,P )) = Q̂(ν(R,P )) = t(Q̂ P )

If Q is a relative quantifier defined on [0, 1], then
ρ(R,Q) = 1/|R| and :

t(QP ) = Q(ν(R,P )/|R|) = Q(1− ν(R,P )/|R|)
= Q̂(ν(R,P )/|R|) = t(Q̂ P )

Hence, the antonymy property can be satisfied with >P

on general protoforms “QRx are P ” and in this case, the
duality relation in the 4-cube is an equality.

VIII. CONCLUSION

We proposed in this paper a thorough analysis of the dif-
ferent models of opposition between sentences of increasing
complexity, from simple ones based on a single negation
operator to quantified ones using generalised quantifiers and
the several fuzzy negation operators defined in fuzzy logic.

As a result, we propose a complete view of all degrees
of freedom inducing opposition as well as a graphical
representation of all 16 negation forms, as a 4-cube of
opposition. Additionally, introducing the notion of negation
of the counting function, we establish a way to generally
satisfy the antonymy property. Furthermore, we detail the
relations between quantified sentences used in FLS and both
the classical and modern squares of opposition.

Ongoing and future works cover a general definition of
consistency in FLS based on the 4-cube, the definition
and implementation of efficient algorithms ensuring non
contradiction in FLS, and a further study of the counting
function.
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