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Abstract. We study the structural simplification of chemical reaction
networks preserving the deterministic kinetics. We aim at finding simpli-
fication rules that can eliminate intermediate molecules while preserving
the dynamics of all others. The rules should be valid even though the net-
work is plugged into a bigger context. An example is Michaelis-Menten’s
simplification rule for enzymatic reactions. In this paper, we present a
large class of structural simplification rules for reaction networks that
can eliminate intermediate molecules at equilibrium, without assuming
that all molecules are at equilibrium, i.e. in a steady state. We prove the
correctness of our simplification rules for all contexts that preserve the
equilibrium of the eliminated molecules. Finally, we illustrate at a con-
crete example network from systems biology that our simplification rules
may allow to drastically reduce the size of reaction networks in practice.

1 Introduction

In systems biology [18], reaction networks are used to represent biological sys-
tems. They enable formal analyses [9], simulations with several semantics [7],
parameter estimations and identifications [1], etc. With bigger and bigger net-
works, in order to keep the analyses as simple as possible, or to have quick simu-
lations (in particular in the context of real-time control [29]), we need to be able
to simplify reaction networks. Indeed, the reactions of many metabolic reaction
networks are often motivated by simplifications of concrete chemical reactions,
see e.g. [21], but these simplifications are always done in informal manner with-
out any semantical guarantees. An exception is Michaelis-Menten’s simplification
rule of enzymatic reactions, which is properly justified under quasi-steady-state
assumption [27].

One usual approach is to simplify the ordinary differential equation (ODE)
systems, that describe the deterministic semantics of reaction networks, but not
the reaction networks themselves. In [17], authors presented a method based
on the structure of enzyme-catalysed reactions to compute a simplified ODE
system at steady-state. In [6], authors used dependency analysis of rule-based
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models to obtain a simplified ODE system. Many other simplification methods
use the distinction between slow and fast reactions, as for instance methods
based on invariant manifolds [11], quasi-steady state [3,27], quasi-equilibrium
approximation [12] or tropicalization [28]. Other methods reduce the number of
parameters, for instance by using Lie symmetries [19]. However, most of those
methods require the parameter values, or at least their magnitudes, and those
data are often unknown. Moreover, it is useful to preserve the reaction network
and not just its ODE system, and transforming an ODE system back to a reaction
network is a difficult issue, since not always possible, or not possible in a unique
manner [8].

Another approach is to consider reaction networks as programs [5,25,16], and
to apply simplification rules directly to such programs, similarly to what is done
in compiler construction [26,24]. This means to directly simplify the reaction net-
work and not the corresponding ODE system, or even while ignoring the kinetics
all over. Such structural simplification methods are usually based on a small-step
semantics, saying how chemical solutions may evolve non-deterministically. They
are often contextual, i.e. the simplification rules remain correct when the network
is plugged into a bigger context. In our own previous work [20], we proposed to
simplify reaction networks while preserving the reachability of final components,
called attractors. However, those methods do not fit well with the deterministic
semantics, even though the simplification rules obtained seem sensible for bi-
ological systems. Previous structural simplification methods were presented in
[10], where subgraph epimorphisms are used to reduce reaction networks. Sim-
ilar works had been done in Petri Nets [2,23], preserving its usual properties
(liveness, deadlock, termination, etc). In [4], Cardelli presented morphisms that
preserve the deterministic semantics, but does not give simplification rules for
them.

In this article, we aim at finding a new approach for simplifying reaction
networks that preserves the deterministic semantics, i.e. the evolution of con-
centrations of molecular species over time. The approach should be structural in
that it applies to reaction networks directly without computing the ODE system.
It should be contextual, so that we can easily simplify modules or subnetworks
in a larger context while preserving the overall dynamics. Therefore, we pro-
pose a collection of simplification rules that eliminate intermediate molecules
while preserving the dynamics of all others. Some simplification rules are based
on partial equilibrium conditions on the intermediate molecules (but a general
steady-state is not assumed). Such conditions were already assumed to justify
Michaelis-Menten’s exact simplification for enzymatic reactions [22] which is
widely accepted. There the intermediate complex needs to be at equilibrium;
when it is only close to the equilibrium, then a small error is made which can be
estimated. A network obtained by applying a simplification rule has the same
deterministic semantics than the original one, in all contexts that preserve the
equilibrium conditions on intermediate molecules. For applying a simplification
rule, the corresponding ODE system is not needed, and the kinetic parameters
may be unknown. We illustrate the usefulness of the simplification by applying
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Fig. 1. Reaction graphs of the Gene network on the left, and its two simplifications.
Molecules are represented by circles, and reactions by squares. In the kinetic expres-
sions near the reactions, the ki are parameters while xA is a variable representing the
concentration of a molecule A. x0

G denotes the initial concentration of G. A dash arrow
means that the molecule acts as a modulator in the reaction, while a dot arrow means
that the molecule can be modified by the context.

it to biological examples, where it allows to drastically reduce the size of reaction
networks.

Outline. We first illustrate the basic ideas and motivations at an example
in Section 2. We recall the formal definitions of reaction networks with their
deterministic semantics in Section 3. In Section 4, we contribute a contextual
equivalence relation for reaction networks, and in Section 5 a set of simplification
axioms, that we prove correct with respect to this equivalence relation. In Sec-
tion 6, we illustrate at a biological example, how much reaction networks can be
simplified in practice. We finally conclude and discuss future work in Section 7.

2 Preliminary example

We first present a preliminary example, to illustrate our simplification.
Consider the reaction network Gene in Fig. 1 on the left. It has four species: a

geneG , an inhibitor Inh, somemRNA, and a protein P . The reaction r1 describes
a transcription, the production of mRNA in presence of a gene G . This gene is
required to apply the reaction, but its amount is not modified by it. This reaction
has also a modulator, Inh, indicated by a dashed arrow. A modulator influences
the speed rate of a reaction, but is not required to apply it. Here, Inh slows down
the reaction r1. The reaction r2 is the translation of mRNA into the protein P ,
while the reaction r3 (resp. r4) describes the degradation of mRNA (resp. P ).
Aside from the first one, every reaction has a simple mass-action kinetic.

In order to simplify the network, we first need to specify how the environment
interacts with the network: this is indicated by pending dotted arrows in Fig. 1.



We consider here that G and mRNA are internal molecules, that is, they can not
be modified by the context. Then, the context can be any set of reactions that
does not contain G and mRNA. It can for instance transform P into another
protein, or produces something else in presence of Inh, etc.

In this network, we are especially interested in the protein P , and on the
contrary we want to eliminate the intermediate mRNA. To do that, we will
assume that mRNA is at equilibrium, i.e. its concentration, xmRNA, is constant
over time.

Let us simplify our network. First, notice that the gene G is not modified by
any reaction. It is used in reaction r1, but only as an activator, i.e. on both sides
of the reaction. Moreover, G is an internal molecule, that can not be modified
by the context. Therefore its concentration, xG , is constant over time: xG = x0G .
Then we make this modification in the kinetic expression of reaction r1, and
remove completely G from the network. The new network is pictured in Fig. 1
(middle).

Now, consider the intermediate mRNA. It is an internal molecule, and its
(complete) ordinary differential equation is:

dxmRNA

dt
=

k1x
0
G

k0 + xInh
− k−1xmRNA

Since we assumed that mRNA is at equilibrium, i.e.
dxmRNA

dt
= 0, we deduce:

xmRNA =
k1x

0
G

k−1(k0 + xInh)

Therefore we remove mRNA from the network, and replace the variable xmRNA

in the kinetics of reaction r2, by the expression computed above. We obtain the
simplified network in Fig. 1 (right) where r1, r2 and r3 are merged into the new
reaction r123.

As we will see in this paper, the simplification rules used above preserve the
deterministic semantics of reaction networks, in every context. So the simplified
network is contextual equilibrium-equivalent to the first one. Note that we can
not simplify the network anymore, since both Inh and P can be modified by the
context.

3 Reaction networks

We introduce reaction networks and define their deterministic semantics in terms
of ordinary differential equations.

Let Spec be a set of molecular species ranging over by A,B,C. We define a
(chemical) solution s ∈ Sol : Spec→ N0 as a function from molecular species to
natural numbers. Given natural numbers n1, . . . , nk, we denote by n1A1 + . . .+
nkAk the solution that contains ni molecules of species Ai for all 1 ≤ i ≤ k and
0 molecule of all other species.



A kinetic reaction r = (s1 As2 ; e) is a pair composed of a reaction s1 As2
and a kinetic expression e. The reaction transforms the solution s1, called reac-
tants, into the solution s2, called products. The molecules present in the same
amount in both reactants and products are called activators. They are not modi-
fied by the reaction, but are required to apply it. Kinetic expressions are symbolic
functions defined from concentration variables, VarsSpec = {xA | A ∈ Spec}, sym-
bols of initial concentrations, Consti = {x0A | A ∈ Spec}, and symbols of kinetic
parameters, Constk = {k0, k1, . . .}:

e, f, . . . ::= x | x0 | k | e+ f | e− f | e× f | e/f | −e | (e)

where x ∈ VarsSpec, x0 ∈ Consti and k ∈ Constk. As usual, we also simply
denote ef for e× f .

The (chemical) concentration of a chemical species is a function from time to
positive numbers R+ → R+. Kinetic expressions are interpreted as actual kinetic
functions by means of an assignment α that maps concentration variables to
concentrations (αc), initial concentrations to non negative real values (α0) and
kinetic parameters to non negative real values (αk):

αc : VarsSpec → (R+ → R+) α0 : Consti → R+ αk : Constk → R+

We only consider assignments α consistent on initial concentrations, that is for
any species A, αc(xA)(0) = α0(x

0
A). Given an assignment α, the interpretation

[e]α of a kinetic expression e is thus defined as follows:

[x]α(t) = αc(x)(t) [x0]α(t) = α0(x
0) [k]α(t) = αk(k) [(e)]α(t) = [e]α(t)

[−e]α = −[e]α [e op f ]α(t) = [e]α(t) op [f ]α(t) where op ∈ {+,−,×, /}
Given a set of kinetic reactions, we only consider assignments α such that

for any kinetic expression e occurring in this network, its interpretation [e]α :
R+ → R+ is a continuously differentiable function from time to non negative real
numbers, standing for the actual reaction rate. Kinetic reactions (s1 As2 ; e)
also have to respect the following coherence property : the actual rate given by
any assignment α is equal to zero if and only if one of the reactants is not
present: ∀α. [e]α(t) = 0 iff ∃A ∈ s1.[xA]α(t) = 0. Note that a kinetic expression
can contain concentration variables of molecules that are not present in the
reactants of the reaction; such molecules, called modulators, are not required to
apply the reaction, but modify its rate.

Definition 1. A reaction network is a pair 〈I,R〉, composed of a set of internal
molecules I, which specifies that some molecules can not interact with the context,
and a set of kinetic reactions R.

From any network N = 〈I,R〉 and from its kinetic expressions, we can infer
a system of ordinary differential equations defined by

ODE(N) =

dxA
dt

=
∑

(s1 As2 ; e)∈R

(s2(A)− s1(A))e


A∈Spec



Given any assignment α0 of the initial concentrations and any assignment αk
of the kinetic parameters, by the Cauchy-Lipschitz theorem, the system ODE(N)
has a unique differentiable solution αc, defined on a maximal interval including 0.
Moreover, we only consider solutions αc defined on (at least) [0,+∞[. Otherwise,
we say that N has no valid solution for these assignments.

An equilibrium condition e is defined similarly to kinetic expressions and
interpreted as function from time to positive numbers. It is satisfied by an

assignment α iff αc satisfies
de

dt
= 0 given the initial concentration and pa-

rameter assignments α0 and αk. An equilibrium condition can for instance im-
pose the equilibrium of a particular molecule (for instance e = xA), a solution
(e =

∑
A∈s s(A)xA), or a reaction (e = f for the reaction (r ; f)). We denote by

E a set of equilibrium conditions. Given a network N and equilibrium conditions
E, the deterministic dynamics of N that satisfies E is defined as

sol(N,E) = {α | αc satisfies E and is a valid solution of ODE(N)

for initial concentrations α0 and parameter assignments αk}

Since we are particularly interested in the molecules that are not at equi-
librium, we say that two assignments α and α′ are equal modulo equilibrium
conditions, denoted αEα

′, if they are equal on those molecules.

4 Contextual Equilibrium-Equivalence

We present here a notion of weak equilibrium-equivalence between reaction net-
works, then the definition of contexts, and finally the contextual equilibrium-
equivalence.

Definition 2 (Weak Equilibrium-Equivalence). Two networks N and M
are weakly equilibrium-equivalent for E, denoted N ∼E M , if they have the
same solutions modulo equilibrium conditions sol(N,E) =E sol(M,E).

A context C is itself a reaction network. Given a set of internal molecules I,
we say that a context C is compatible with I if ∀A ∈ I, A has no occurrence in C.
We denote by Context(I) the set of compatible contexts with I. Given a network
N = 〈I,R〉 and a compatible context C = 〈I ′, R′〉 ∈ Context(I), we denote by
C[N ] = 〈I ∪ I ′, R ∪R′〉 the network placed into the context.

Definition 3 (Contextual Equilibrium-Equivalence). Let E be an equi-
librium, the reaction networks N = 〈I,R〉 and M = 〈I ′, R′〉 are contextually
equilibrium-equivalent for E, denoted N ≡E M , if they are weakly equilibrium-
equivalent in any compatible context, i.e. ∀C ∈ Context(I ∪ I ′). C[N ] ∼E C[M ].

5 Simplification axioms

In this section, we present some simplification axioms, that transform a net-
work into a contextually equilibrium-equivalent network. The soundness proofs



of those axioms are given in the annex4. These simplification axioms reduce the
size of a reaction network, either by completely removing a molecule from the set
of reactions, by decreasing the number of reactions, or by simplifying a reaction.

We first present 2 simple simplification axioms, followed by 4 instances of
a more general axiom, based on the presence of an intermediate molecule. Fi-
nally, we present this general axiom. Notice that the axioms are quite similar
to the ones we presented for the attractor equivalence with a qualitative and
observational semantics in [20].

The first 2 simplification axioms are given in Fig. 2. The first one, (useless),
deletes a reaction sAs that does not impact the network dynamics. The axiom
(activator) removes an internal molecule A only used as an activator in the
reactions (i.e. is always present in the same amount in both sides of the reaction).
It is for instance the case for the gene G in the Gene network in Section 2.

(useless)
〈∅, {(sAs ; e)}〉 ≡E 〈∅, ∅〉

∀(s1 As2 ; e) ∈ R, s1(A) = s2(A)
(activator)

〈{A}, R〉 ≡E 〈{A}, {(r\A ; e[x
0
A/xA]) | (r ; e) ∈ R}〉

Fig. 2. Simple simplification axioms.

The next four axioms in Fig. 3 are instances of the more general axiom
(intermediate). These axioms aim at eliminating an internal and intermediate
molecule which is at equilibrium.

In the first one, (inter), the intermediate molecule A is only used in two
reactions, one time as the unique product, and the other as the unique reactant.
Since A is at equilibrium, the kinetic expressions of these reactions have to be
equal, i.e. e = k2xA. The axiom removes A and merges both reactions into one,
keeping only the kinetic expression e. The parameter k2 is eliminated.

The second axiom, (Michaelis-Menten), simplifies a three-steps enzyme-
catalyzed transformation. A substrate S binds to an enzyme E to form the
complex C. Then the complex either transforms back to S +E, or produces the
product P while releasing E. Assuming that the enzyme E and the complex
C are at equilibrium, the axiom merges the reactions into a unique one, that
directly transforms S into P . The equilibrium of C imposes that the simplified
reaction has a Michaelis-Menten kinetics of the form V

xS
xS +K

[22].

The last two, (cascade1) and (cascade2), concern a cascade of reactions,
where the intermediate molecule A, at equilibrium, is produced in presence of
some activators s, and then is either degraded or used to produce some s′. The
axioms eliminate A, so the simplified networks directly produced s′ in presence
of s. The simplified kinetic expressions are obtained by computing the value of
xA at equilibrium, and by replacing it in the third kinetic reaction.

4 www.cristal.univ-lille.fr/~guillaume.madelaine/doc/2015_structural_simplification.pdf
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xA ∈ E A /∈ s, s′
(inter)

〈{A}, {(sAA ; e), (AAs′ ; k2xA)}〉 ≡E 〈{A}, {(sAs′ ; e)}〉

xC , xE ∈ E
(Michaelis-Menten)

〈{E,C},
{(E + SAC ; k1xExS),
(CAE + S ; k−1xC),
(CAE + P ; k2xC))}〉

≡E

〈{E,C},
{(SAP ; k2(x

0
E + x0

C)
xS

xS +
k2 + k−1

k1

)}〉

xA ∈ E A /∈ s, s′
(cascade1)

〈{A}, {(sAs+A ; e),
(AA∅ ; k−1xA), (AAs′ ; k2xA)}〉

≡E 〈{A}, {(sAs+s′ ;
k2

k−1 + k2
e)}〉

xA ∈ E A /∈ s, s′
(cascade2)

〈{A}, {(sAs+A ; e),
(AA∅ ; k−1xA), (AAA+ s′ ; e′)}〉 ≡

E 〈{A}, {(sAs+ s′ ; e′[
e

k−1
/xA])}〉

Fig. 3. Instances of intermediate molecule axiom.

We finally present in Fig. 4 the general axiom (intermediate). In this ax-
iom, we consider an intermediate internal molecule A, at equilibrium. It sim-
plifies a model with one reaction that can produce A, with a (non-empty) set
of reactions that has only A as reactant and whose kinetic expressions are lin-
ear in xA, and possibly a set of reactions with A as activator. Then the axiom
eliminates A, and merges two-by-two the reactions. The linearity of the kinetic
expression of some reactions is necessary to easily compute the expression of xA
at equilibrium, that is in this case xA =

∑
j ej/

∑
l e
′
l.

(intermediate)

xA ∈ E ∀t.(
∑

l e
′
l)(t) 6= 0 A /∈ s(1), s(2), s

(2′)
l , s

(1′′)
m , s

(2′′)
m xA /∈ e′l

〈{A}, {(s(1) As(2) +A ; e)}∪
{(AAs

(2′)
l ; xAe

′
l)}l∪

{(s(1
′′)

m +AAs
(2′′)
m +A ; e′′m)}m〉

≡E
〈{A}, {(s(1) As(2) + s

(2′)
l ; e′l

e∑
l e
′
l

)}l∪

{(s(1
′′)

m + s(1) As
(2′′)
m + s(1) ; e′′m[

e∑
l e
′
l

/xA])}m〉

Fig. 4. General intermediate molecule axiom.

6 Simplification of the Tet-On reaction network

We present here the simplification of the Tet-On system [13,14,15] using our
axioms. The initial Tet-Ondetailed reaction network, depicted in Fig. 5 (left), has
10 reactions and 11 parameters. We simplify it into the contextually equilibrium-
equivalent Tet-Onsimple network, depicted on Fig. 5 (right), with only two reac-
tions and 3 parameters.
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Fig. 5. Reaction graphs of the detailed (left) and simplified (right) Tet-On networks.
Molecules are represented by circles, and reactions by squares. In the kinetic expres-
sions near the reactions, the ki are parameters while xA is a variable representing the
concentration of a molecule A. A dash arrow means that the molecule acts as a mod-
ulator in the reaction, while a dot arrow means that the molecule can be modified by
the context. In the right network, the parameters are V = x0

PTRE3G
V1k4k6/k3(k5 + k6)

and K = k1k−2K1/x
0
rtTAkink2.

The Tet-On system [13,14,15] describes how the production of activated green
fluorescent proteins (GFPa) in a cell can be stimulated by the presence of doxy-
cycline (Dox ) outside the cell. The detailed network is Tet-Ondetailed = 〈I,R〉
where every molecule is internal except for Dox (i.e. I = Spec\Dox ), and R is
the set of reactions from Fig. 6, inspired by the Tet-On model from [15].

Dox ADox +Dox i ; kinxDox (1)
Dox i A∅ ; k1xDoxi (2)
rtTA+Dox i ArtTADox ; k2xrtTAxDoxi (3)
rtTADox ArtTA+Dox i ; k−2xrtTADox (4)

mRNAA∅ ; k3xmRNA (6)
mRNAAmRNA+GFP ; k4xmRNA(7)
GFP A∅ ; k5xGFP (8)
GFP AGFPa ; k6xGFP (9)
GFPa A∅ ; kxGFPa (10)

PTRE3G + rtTADox APTRE3G + rtTADox +mRNA ; V1xPTRE3G

xrtTADox

xrtTADox +K1
(5)

Fig. 6. Reactions of the detailed Tet-Ondetailed network.

In the network, the doxycycline Dox moves into the cell and becomes Dox i
by reaction (1). We assume here that the amount of Dox is controlled by the
environment (for instance by a microfluidics device [30]), and therefore the net-
work can not modify its concentration. Then Dox i is either degraded by reaction
(2), or binds to the artificial transcription factor rtTA by reaction (3). The com-
plex rtTADox either dissociates (4), or activates the transcription of the gene
PTRE3G , producing mRNA (5). mRNA either degrades (6) or is translated into



GFP (7). Finally, GFP needs to be activated into GFPa (9) in order to become
fluorescent and thus observable by a microscope. Both GFP and GFPa can also
be degraded (8, 10).

We are particularly interested by GFPa, since it is the only experimentally
observable molecule. Therefore we assume that all other molecules are at equi-
librium, i.e. E = {xX | X ∈ Spec\GFPa}. The simplification follows the axioms
from Fig. 2, Fig. 3 and Fig. 4, so that will prove that the two networks are
contextually equilibrium-equivalent for E. Note that in the following simplifica-
tion, for the sake of readability, some kinetic expressions were sometimes slightly
rewritten into equivalent expressions.

Let us first remark that the gene PTRE3G is only used as an activator, in
the reaction 5. So we apply the axiom (activator), removing PTRE3G from
this reaction, while replacing xPTRE3G

by x0PTRE3G
in its kinetic function. Then

rtTADox is an internal molecule at equilibrium, present in three reactions: one
that produces it (3), one that consumes it (4), and one that uses it as an acti-
vator (5). Then we use the axiom (intermediate) on it, followed directly by
(useless), and merge the three reactions into:

rtTA+Dox iArtTA+Dox i +mRNA ; x0PTRE3G
V1

xrtTAxDox i

xrtTAxDox i + k−2K1/k2
(11)

rtTA is only used as activator, so we apply (activator) and simplify (11) into:

Dox iADox i +mRNA ; x0PTRE3G
V1

xDox i

xDox i
+ k−2K1/x0rtTAk2

(12)

Apply axiom (cascade1) on GFP , replacing the reactions (7), (8) and (9) by:

mRNAAmRNA+GFPa ; (k4k6/(k5 + k6))xmRNA (13)

Also, apply (cascade2) on Dox i, and replace reactions (1), (2), and (12) by:

Dox ADox +mRNA ; x0PTRE3G
V1

xDox

xDox + k1k−2K1/(x0rtTAkink2)
(14)

Finally we use the axiom (intermediate) followed by (useless) on mRNA,
and merge the reactions (6), (13) and (14) into:

Dox ADox +GFPa ;
x0PTRE3G

V1k4k6

k3(k5 + k6)

xDox

xDox + k1k−2K1(x0rtTAkink2)
(15)

Defining two new parameters V = x0PTRE3G
V1k4k6/(k3(k5 + k6)) and K =

k1k−2K1/(x
0
rtTAkink2), we eventually obtain the following reaction network:

Dox ADox +GFPa ; V
xDox

xDox +K
GFPaA∅ ; kxGFPa

Notice that, aside from the kinetics, the simplified network is equal to the one
we obtained with our qualitative simplification in [20].



7 Conclusion

We presented a new structural simplification of reaction networks, that preserved
the deterministic semantics. The simplification is contextual, and is based on
equilibrium conditions on intermediate molecules. We shown the usefulness of
the simplification by applying it on two biological networks.

We are currently implementing the simplification algorithm, with a more
complete set of axioms and compatible with the SBML format. This axioms
include variants of the axioms presented here, for instance with different equilib-
rium conditions, but also other types of axioms, using for instance symmetries
in the network. We plan to apply the simplification more systematically to bi-
ological systems. It would also be interesting to compare in depth the power of
our structural simplification rules to that of the King-Altman method on ODE
system [17]. On the theoretical side, as future work, we want to investigate an
approximated equivalence, with approximated equilibrium conditions, and to
compute the maximal error of a simplification. A similar simplification method
with a stochastic semantics will also be considered.
Acknowledgment: The authors would like to thank Michel Petitot for its useful
discussions as well as members of the PalBioSys research network.
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