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Abstract. Goodness-of-fit testing is addressed in the stratified proportional haz-
ards model for survival data. A test statistic based on within-strata cumulative
sums of martingale residuals over covariates is proposed and its asymptotic distri-
bution is derived under the null hypothesis of model adequacy. A Monte Carlo pro-
cedure is proposed to approximate the critical value of the test. Simulation studies
are conducted to examine finite-sample performance of the proposed statistic.
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1. Introduction

The stratified proportional hazards model (see for example [2, 17]) generalizes
the usual Cox proportional hazards regression model (see [4]) for survival data
by allowing different groups (called strata) of the population under study to
have distinct baseline hazard functions. Precisely, in the stratified model, the
strata divide the sample individuals into J disjoint groups, each having a distinct
baseline hazard function α0,j but a common value for the regression parameter.
The hazard function of an individual in stratum j thus takes the form

αj(t) = α0,j(t)e
β>0 Z, j = 1, . . . , J, (1)

where Z is a p-vector of covariates, β0 is a p-vector of unknown regression param-
eters of interest, > denotes the transpose and {α0,j(t) : t ≥ 0, j = 1, . . . , J} are
J unknown baseline hazard functions. A consistent and asymptotically normal
estimator of β0 is obtained by maximizing the so-called partial likelihood func-
tion (see [5]). The partial likelihood for the stratified model (1) is the product
over strata of the within-stratum partial likelihoods (see [2]). Further discussion

†Corresponding author: Jean-Francois.Dupuy@insa-rennes.fr



of this model, including estimation of the cumulative baseline hazard functions
A0,j(t) =

∫ t
0
α0,j(u) du, can be found in [1] and [17].

The stratified proportional hazards model recently began to be increasingly
used in various fields, such as economy, marketing, medicine and public health.
For example, in [14], authors use this model to assess the relative performance
of piggyback loans and insured loans with respect to residential mortgage life-
times in USA. In [11], the author uses a stratified proportional hazards model
to identify risk factors of churn among customers of a mobile phone operator.
In [22], a stratified proportional hazards model is used to evaluate mortality
after radical prostatectomy. In [20], association between exposure to antibiotics
in fetal and early life and asthma in childhood is also investigated by using a
stratified model.

Despite this recent interest, methodological developments for the stratified
proportional hazards model are still a few. In [6] and [10], authors investigate
estimation in the stratified model with covariate missing values and covariate
measurement error respectively. The prognostic ability of the stratified model
is assessed in [3] and [19]. In [13], authors propose a measure to quantify the
partial dependence between a survival time and a covariate in the stratified
model. Confidence intervals for the difference of median survival times in the
stratified model are investigated in [15]. Finally, a stratified proportional hazards
model with spatio-temporal heterogeneity is developed in [12]. In the present
paper, we consider goodness-of-fit testing for the stratified proportional hazards
model.

Many goodness-of-fit tests have been proposed for the usual (unstratified)
proportional hazards model. In particular, several authors discussed goodness-
of-fit tests based on weighted sums of martingale residuals. A non-exhaustive
list of references includes [9, 16, 18, 25], see also [2] for a detailed account of this
topic. However, to the best of our knowledge, no goodness-of-fit tests have been
proposed yet for the stratified proportional hazards model (1). Our paper aims
at filling this gap.

We propose a goodness-of-fit test statistic for model (1) based on within-
stratum cumulative sums of residuals. We establish rigorously the asymptotic
distribution of this statistic under the null hypothesis that model (1) is correct.
A Monte Carlo procedure is proposed to approximate the critical value of the
test for a given asymptotic level. Finite-sample performance of the test are
investigated via simulations.

The rest of the paper is organized as follows. In Section 2, we construct
our test statistic, we investigate its null asymptotic distribution and we discuss
Monte Carlo approximation of the critical value. In Section 3, we conduct a sim-
ulation study to assess level and power properties of our test for various numbers
of strata, sample sizes and proportions of censored observations. Section 4 con-
cludes the paper with some perspectives. Proofs of some intermediate technical
results are given in an appendix.
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2. The proposed test statistic and decision rule

2.1. Preliminaries and notations
All random variables are defined on the same probability space (Ω, C,P). Let T
be a random failure time whose distribution depends on a vector of covariates
Z = (Z1, . . . , Zp)

> ∈ Rp and on a stratum indicator S ∈ {1, . . . , J}. We assume
that conditionally on Z and S = j, the hazard function of T is given by model
(1). We suppose that T is randomly right-censored by a positive random variable
C and that T and C are independent conditionally on Z and S. The analysis is
restricted to the time interval T := [0, τ ], where τ < ∞ denotes the end of the
study. Therefore, we actually observe the duration X = min(T,min(C, τ)) and
a censoring indicator ∆ = 1{T≤min(C,τ)}.

Available data consist of n independent and identically distributed copies
(Xi,∆i,Zi, Si) of the random vector (X,∆,Z, S). For every i = 1, . . . , n and
t ∈ T , we denote by Ni(t) = 1{Xi≤t}∆i and Yi(t) = 1{Xi≥t} the failure counting
and at-risk processes of the i-th individual respectively. The process Ni(t) has

intensity Yi(t)
∑J
j=1 α0,j(t)e

β>0 Zi1{Si=j} with respect to the filtration (Ft,i)t≥0

defined by Ft,i = σ{Zi, Si, Ni(s), Yi(s): 0 ≤ s ≤ t}, so that processes

Mi(t) = Ni(t)−
∫ t

0

Yi(s)

J∑
j=1

α0,j(s)e
β>0 Zi1{Si=j} ds, i = 1, . . . , n

are martingales.
As mentioned above, a consistent and asymptotically normal estimator β̂n of

β0 in model (1) is obtained by maximizing the partial likelihood

J∏
j=1

n∏
i=1

(
eβ
>Zi∑n

k=1 Yk(Xi)eβ
>Zk1{Sk=j}

)∆i1{Si=j}

,

(see [2]) while cumulative baseline hazard functions A0,j(t) =
∫ t

0
α0,j(u) du can

be estimated by Breslow-type estimators

Â0,j(t) =

∫ t

0

∑n
i=1 1{Si=j}dNi(s)∑n

k=1 Yk(s)eβ̂
>
n Zk1{Sk=j}

, j = 1, . . . , J.

Martingale residuals in model (1) can be defined similarly as in the classical
unstratified Cox model. Precisely, we define the residual martingale for the i-th
individual as

M̂i(t, β̂n) = Ni(t)−
J∑
j=1

∫ t

0

Yi(s)e
β̂>n Zi1{Si=j}

S
(0)
j (s, β̂n)

dN̄j(s), (2)

where N̄j(s) =
∑n
i=1Ni(s)1{Si=j} and S

(0)
j (s, β̂n) =

∑n
i=1 Yi(s)e

β̂>n Zi1{Si=j}.

3



2.2. The proposed test statistic and its asymptotic distribution under H0

We construct a test statistic for the null hypothesis that the stratified propor-
tional hazards model (1) is true, that is, for

H0 : αj(t) = α0,j(t)e
β>0 Z, for j = 1, . . . , J.

Our test statistic is based on within-stratum partial cumulative sums of the
martingale residuals (2). So far, model-checking techniques based on cumulative
sums of residuals have been developed for various models such as the generalized
linear model (e.g., [23, 24]), Cox’s model (e.g., [2, 9, 16, 18, 25]) and Aalen’s
additive risk model ([8]). For the stratified proportional hazards model (1), we
propose to consider the process

Qjn,z(t, β̂n) :=
1√
n

n∑
i=1

M̂i(t, β̂n)1{Si=j}1{Zi≤z}, (3)

where z = (z1, . . . , zp)
> ∈ Rp and the event {Zi ≤ z} means that all components

Z1,i, . . . , Zp,i of Zi are less than or equal to the corresponding components of z.
Under model (1), we have

n∑
i=1

M̂i(t, β̂n)1{Si=j} = 0

for every j = 1, . . . , J . Under H0, one would thus expect that the partial-sum
process Qjn,z(t, β̂n) fluctuates around 0 and a large value of Qjn,z(t, β̂n) should
lead to the conclusion that model (1) is misspecified for the j-th stratum. Note

that the function z 7→ Qjn,z(t, β̂n) has possible jumps at the distinct values of
the Zi, i = 1, . . . , n. Therefore it is sufficient to consider a finite number Q of
values for the vector z (this issue is discussed in Section 3). If z1, . . . , zQ are

Q such values, we consider the within-stratum statistics maxq∈Q |Qjn,zq (t, β̂n)|
(for j = 1, . . . , J), where Q = {1, . . . , Q} and we combine all within-stratum
statistics in the overall test statistic

max
1≤j≤J

max
q∈Q
|Qjn,zq (t, β̂n)|.

We consider this statistic at t = τ in order to use the whole data information
and finally, we define our goodness-of-fit test statistic as:

Sn := max
1≤j≤J

max
q∈Q
|Qjn,zq (τ, β̂n)|. (4)

We now establish the asymptotic distribution of Sn under the null hypothesis
H0. We first introduce some further notations and some regularity conditions.
If u is a vector in Rp, let u⊗0 = 1 and u⊗1 = u. For k = 0, 1, j = 1, . . . , J , s ∈ T
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and β ∈ Rp, we define

S
(k)
j (s, β) =

n∑
i=1

Yi(s)Z
⊗k
i eβ

>Zi1{Si=j},

S
(k)
j,z (s, β) =

n∑
i=1

Yi(s)Z
⊗k
i eβ

>Zi1{Si=j}1{Zi≤z},

s
(k)
j (s, β) = E

(
Yi(s)Z

⊗k
i eβ

>Zi1{Si=j}

)
,

s
(k)
j,z (s, β) = E

(
Yi(s)Z

⊗k
i eβ

>Zi1{Si=j}1{Zi≤z}

)
.

Finally, ‖·‖T and ‖·‖T ×B will denote uniform norms on T and T ×B respectively.
The asymptotic distribution of our goodness-of-fit statistic Sn will be established
under the following conditions:

C1 β0 belongs to the interior of a compact subset B of Rp.

C2 The time τ is such that
∫ τ

0
α0,j(u) du <∞ for all j = 1, . . . , J .

C3 The covariate Z is bounded.

C4 For j = 1, . . . , J and every z ∈ Rp, the families {s(k)
j,z (s, ·); s ∈ T } and

{s(k)
j (s, ·); s ∈ T } (k = 0, 1) of functions of β are equicontinuous at β0.

C5 For j = 1, . . . , J , there exists a constant c > 0 such that inf
s∈T

s
(0)
j (s, β0) > c.

Our result is as follows:

Theorem 1. Let Q ∈ N and z1, . . . , zQ be Q vectors in Rp. Let W be a (J ·Q)-
dimensional Gaussian vector with components denoted by W := (W1>, . . . ,WJ>)>,
where Wj := (W j

1 , . . . ,W
j
Q)> for j = 1, . . . , J . Assume that W has mean zero

and variance-covariance matrix S, where S is the (J ·Q)× (J ·Q) block-matrix Σ1 . . . 0Q×Q
...

. . .
...

0Q×Q . . . ΣJ


and Σj = (Σjk,`)1≤k,`≤Q is the Q×Q matrix with components

Σjk,` := E
[∫ τ

0

α0,j(s)Yi(s)e
β>0 Zi1{Si=j}1{Zi≤zk}1{Zi≤z`} ds

]
−
∫ τ

0

α0,j(s)
s

(0)
j,zk

(s, β0) · s(0)
j,z`

(s, β0)

s
(0)
j (s, β0)

ds

and 0Q×Q is a Q×Q matrix with all components zero. Assume that conditions
C1-C5 hold. Then under H0, the test statistic Sn converges in distribution, as
n tends to infinity, to S := max1≤j≤J maxq∈Q |W j

q |.
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Proof. We need two intermediate lemmas. Their proofs are postponed to an
appendix.

Lemma 1. Let z1, . . . , zQ be Q vectors in Rp. Assume that conditions C1-
C5 hold and for j = 1, . . . , J , let Qjn(·, β) := (Qjn,z1

(·, β), . . . , Qjn,zQ(·, β))>.

Then under H0, the process (Q1
n(·, β0)>, . . . ,QJn(·, β0)>)> converges weakly in

(D(T ))J·Q to a zero-mean Gaussian process (W1>, . . . ,WJ>)> (with Wj :=
(W j

1 , . . . ,W
j
Q)>) with covariance function

cov(W j
k (t1),W j

` (t2)) = E

[∫ min(t1,t2)

0

α0,j(s)Yi(s)e
β>0 Zi1{Si=j}1{Zi≤zk}1{Zi≤z`} ds

]

−
∫ min(t1,t2)

0

α0,j(s)
s

(0)
j,zk

(s, β0) · s(0)
j,z`

(s, β0)

s
(0)
j (s, β0)

ds

and cov(W j
k (t1),W j′

` (t2)) = 0 if j 6= j′ (with 1 ≤ k, ` ≤ Q and t1, t2 ∈ T ).

Lemma 2. Assume that conditions C1-C5 hold. Then under H0, Qjn(·, β̂n) =
Qjn(·, β0) + oP(1) where the oP(1) is uniform on T .

We now prove Theorem 1. It follows from Lemma 1 and Lemma 2 that under
H0, the process (Q1

n(·, β̂n)>, . . . ,QJn(·, β̂n)>)> converges weakly to a zero-mean
Gaussian process on T J·Q, with covariance function as in Lemma 1. Hence
(Q1

n(τ, β̂n)>, . . . ,QJn(τ, β̂n)>)> converges in distribution to a Gaussian vector
with mean zero and variance-covariance matrix given by S in Theorem 1 (this
vector is denoted by W := (W1>, . . . ,WJ>)>, with Wj> := (W j

1 , . . . ,W
j
Q),

j = 1, . . . , J). By the continuous mapping theorem, Sn converges in distribution
to max1≤j≤J maxq∈Q |W j

q |.

2

Based on Theorem 1, a natural decision rule is as follows: reject H0 (at the
asymptotic level α ∈ (0, 1)) if Sn is greater than the quantile q1−α(S) of order
1 − α of the distribution of S. However, this quantile - or critical value of the
test - is unknown. In the next section, we propose to estimate it via Monte Carlo
simulations.

2.3. Monte Carlo estimation of the critical value and decision rule
In order to estimate q1−α(S), we propose to: i) simulate a large number (say M)
of realizations of W, ii) calculate the corresponding values s1, . . . , sM of S, iii)
approximate q1−α(S) by the empirical quantile of order 1 − α of (s1, . . . , sM ).
However, the matrix S needed to simulate data from W ∼ N(J·Q)(0,S) is un-
known. Under H0, this matrix can be estimated by replacing unknown terms in
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Σjk,` by their empirical counterparts. Precisely, we define:

Σ̂jk,` :=

∫ τ

0

S
(0)
j,z̆k,`

(s, β̂n)

S
(0)
j (s, β̂n)

−
S

(0)
j,zk

(s, β̂n) · S(0)
j,zl

(s, β̂n)

(S
(0)
j (s, β̂n))2

 dN̄j(s)

n
,

where z̆k,` denotes the vector in Rp whose j-th component (j = 1, . . . , p) is the
minimum of the j-th components of zk and z`. This estimator is consistent, as
stated in Proposition 2.

Proposition 2. Assume that conditions C1-C5 hold. Then, under H0, Σ̂jk,`
converges in probability to Σjk,` as n tends to infinity.

Proof. Let

V jk,`(s, β) :=
S

(0)
j,z̆k,`

(s, β)

S
(0)
j (s, β)

−
S

(0)
j,zk

(s, β) · S(0)
j,z`

(s, β)

(S
(0)
j (s, β))2

and

vjk,`(s, β) :=
s

(0)
j,z̆k,`

(s, β)

s
(0)
j (s, β)

−
s

(0)
j,zk

(s, β) · s(0)
j,z`

(s, β)

(s
(0)
j (s, β))2

.

We have:∣∣∣Σ̂jk,` − Σjk,`

∣∣∣ =

∣∣∣∣∫ τ

0

V jk,`(s, β̂n)
dN̄j(s)

n
−
∫ τ

0

vjk,`(s, β0)s
(0)
j (s, β0)α0,j(s) ds

∣∣∣∣
≤

∣∣∣∣∫ τ

0

{
V jk,`(s, β̂n)− vjk,`(s, β̂n)

} dN̄j(s)
n

∣∣∣∣
+

∣∣∣∣∫ τ

0

{
vjk,`(s, β̂n)− vjk,`(s, β0)

} dN̄j(s)
n

∣∣∣∣
+

∣∣∣∣∫ τ

0

vjk,`(s, β0)

{
dN̄j(s)

n
− 1

n
S

(0)
j (s, β0)α0,j(s) ds

}∣∣∣∣
+

∣∣∣∣∫ τ

0

vjk,`(s, β0)

{
1

n
S

(0)
j (s, β0)− s(0)

j (s, β0)

}
α0,j(s) ds

∣∣∣∣ (5)

Under conditions C1-C5, ‖V jk,`−v
j
k,`‖T ×B converges to zero in probability. More-

over, N̄j(τ)/n tends to E[N(τ)1{S=j}] < ∞. Therefore, the first term in (5)
converges to zero in probability. Condition C4 and the convergence of N̄j(τ)/n
to E[N(τ)1{S=j}] <∞ imply that the second term in (5) also converges to zero.
Consider the third term in (5). Let δ > 0, η > 0. By Lenglart inequality (e.g.,
[1]), we have

P
(∣∣∣∣∫ τ

0

vjk,`(s, β0)
1

n
dM̄j(s)

∣∣∣∣ > η

)
≤ δ

η2
+ P

(∫ τ

0

(vjk,`(s, β0))2 1

n
S

(0)
j (s, β0)α0,j(s) ds > nδ

)
.
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For any δ > 0, the probability on the right-hand side of this inequality converges
to zero as n tends to infinity, and since δ is arbitrary, P(|

∫ τ
0
vjk,`(s, β0) 1

ndM̄j(s)| >
η) must converge to zero. Thus the third term in (5) converges to zero in
probability. Finally,∣∣∣∣∫ τ

0

vjk,`(s, β0)

{
1

n
S

(0)
j (s, β0)− s(0)

j (s, β0)

}
α0,j(s) ds

∣∣∣∣
≤
∫ τ

0

∣∣∣vjk,`(s, β0)
∣∣∣α0,j(s) ds×

∥∥∥∥ 1

n
S

(0)
j (·, β0)− s(0)

j (·, β0)

∥∥∥∥
T
.

The first term on the right-hand side of this inequality is bounded under condi-
tions C1-C5 and the second term converges to zero in probability by Glivenko-
Cantelli theorem. Thus the fourth term in (5) converges to zero and the proof
is complete.

2

In what follows, we denote by Ŝ the estimator of S obtained by replacing the
Σjk,` by their estimators (j = 1, . . . , J ; k, ` = 1, . . . , Q).
We now apply a parametric bootstrap procedure: i) we simulate M vectors

W∗1, . . .W∗M from W∗ ∼ N(J·Q)(0, Ŝ), ii) we calculate the corresponding values

s∗i = max1≤j≤J maxq∈Q |W ∗ji,q|, i = 1, . . . ,M , iii) we estimate q1−α(S) by the
empirical quantile q∗1−α of order 1−α of s∗1, . . . , s

∗
M . Our decision rule is finally:

”reject H0 at the asymptotic level α ∈ (0, 1) if Sn ≥ q∗1−α”.
In the next section, we investigate this decision rule via simulations. Several

issues are discussed, such as the choice of Q and z1, . . . , zQ.

3. Simulation study

In this simulation study, we investigate the finite sample behaviour of our test
statistic for various numbers of strata typically encountered in practice (J =
3, 5). Precisely, we assess level and power of our test against various alternatives,
for several sample sizes and censoring fractions. Simulations are run using the
statistical language R (see [21]) under a Linux Ubuntu Server 14.04 LTS 64Bits
with two processors Intel E5 2640v2 running at 1600MHZ, with 256Go RAM.

First, we simulate N = 105 samples of size n of observations from model (1)
with J = 3. The sample sizes in the 3 strata are denoted by (n1, n2, n3), with

n =
∑3
j=1 nj . We consider several values for (n1, n2, n3), namely (100, 110, 80),

(150, 175, 120) and (200, 225, 190). The baseline hazard function in stratum j
(j = 1, 2, 3) is α0,j(t) = λjαjt

αj−1 with (α1, λ1) = (2.1, 1), (α2, λ2) = (1.2, 0.75),
(α3, λ3) = (1.8, 1.5). We consider a two-dimensional covariate Z = (Z1, Z2)>,
where Z1 and Z2 are independent and distributed as a Gaussian N (0, 1) and a
uniform U(1, 3) respectively. We take β0 = (0.2, 0.7)>. The model used for sim-
ulating data is thus αj(t) = λjαjt

αj−1e0.2Z1+0.7Z2 , j = 1, 2, 3. Censoring times
are simulated from an exponential distribution with parameter µ > 0, where µ
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is chosen to yield some pre-specified proportion c of censored observations (we
consider c = 0.1, 0.2, 0.4).

As mentioned in Section 2.2, the function z 7→ Qjn,z(t, β̂n) has possible jumps at
the distinct values of the Zi, i = 1, . . . , n. Therefore it is sufficient to consider a fi-
nite number Q of values for the vector z. One may consider all distinct Zi but our
numerical experiments showed that no major change affects the outcome of the
test when Q is smaller than n, provided that Q stays large enough. Thus in this
simulation study, we take Q = 250 when (n1, n2, n3) = (100, 110, 80), Q = 400
when (n1, n2, n3) = (150, 175, 120), Q = 600 when (n1, n2, n3) = (200, 225, 190)
and we use a regular grid of values zq over the range of the Zi.
Under the setting described above, the null hypothesis H0 holds and we investi-
gate level of our test. For each of the N simulated samples, we calculate the test
statistic Sn and approximate the critical value (for an asymptotic level α = 0.05)
by using the Monte Carlo procedure described in Section 2.3 (with M = 5000).
Finally, we apply the proposed decision rule. Table 1 provides empirical level of
the test for the various configurations of the simulation design parameters (see
the row labeled ”H0”).

Next, we investigate power of our test. For J = 3, we consider the following
alternatives (respectively denoted by H1,a, H1,b, H1,c and H1,d):

• non-proportional hazards model : the hazard function in stratum j is chosen
as αj(t) = αje

1.2Z1+1.5Z2×t, j = 1, 2, 3. We take α1 = 0.01, α2 = 0.1, α3 =
0.25. Hazard ratios are not constant in time and thus, the model is not a
proportional hazards model.

• covariate thresold effect : the hazard function in stratum j is chosen as
αj(t) = λjαjt

αj−1e1.7Z11{Z1>ξj}+0.5Z2 , j = 1, 2, 3. We take (α1, λ1, ξ1) =
(1.5, 1, 0.6), (α2, λ2, ξ2) = (0.5, 0.75, 1) and (α3, λ3, ξ3) = (1, 1.25, 0.8).

• distinct regression parameters across strata: the hazard function in stra-
tum j is chosen as αj(t) = λjαjt

αj−1eβ1,jZ1+β2,jZ2 , j = 1, 2, 3. We take
(α1, λ1, β1,1, β2,1) = (2.1, 1, 0.2, 0.7), (α2, λ2, β1,2, β2,2) = (1.2, 0.75, 1, 1)
and (α3, λ3, β1,3, β2,3) = (1.8, 1.5, 0.2, 0.2).

• omitted covariates: the hazard function in stratum j is taken as αj(t) =
λjαjt

αj−1eZ1−0.7Z2+0.75Z3 (j = 1, 2, 3) where the additional covariate Z3

is distributed as a N (1, 0.25). We take (α1, λ1) = (2.1, 1), (α2, λ2) =
(1.2, 0.75) and (α3, λ3) = (1.8, 1.5).

We simulate N = 105 samples of observations under each of these alternatives.
The simulation design (within-stratum sample sizes, censoring proportion) is the
same as for evaluating level. For each sample and each alternative hypothesis,
we calculate Sn (based on the fitted model α0,j(t) exp(β1Z1 +β2Z2), j = 1, 2, 3),
we approximate the critical value (for an asymptotic level α = 0.05) by using
the Monte Carlo procedure of Section 2.3 (with M = 5000) and finally, we apply
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the proposed decision rule. Empirical powers of the test under each alternative
are reported in Table 1 (see rows labeled H1,a, H1,b, H1,c, H1,d).

(100, 110, 80) (150, 175, 120) (200, 225, 190)

c 0.1 0.2 0.4 0.1 0.2 0.4 0.1 0.2 0.4

H0 0.0569 0.0679 0.0629 0.0436 0.0612 0.0629 0.0686 0.0505 0.0650

H1,a 0.6762 0.5408 0.4187 0.8177 0.6982 0.4683 0.9705 0.8443 0.5790
H1,b 0.6287 0.5320 0.4635 0.7577 0.7370 0.7216 0.9149 0.8600 0.8561
H1,c 0.7469 0.7239 0.6648 0.9178 0.9130 0.8563 0.9818 0.9779 0.9659
H1,d 0.6763 0.6483 0.4889 0.8423 0.8217 0.7897 0.9357 0.9191 0.8931

Table 1. Empirical size and power of the proposed test for various censoring propor-

tions and sample sizes, with J = 3. All results are based on 105 simulated samples.

Then, we conduct a similar study as above, with J = 5. For investigating
level, we simulate data from the stratified model α0,j(t) = λjαjt

αj−1e0.2Z1+0.7Z2

(j = 1, . . . , 5) with the same (αi, λi), i = 1, 2, 3 as above and (α4, λ4) = (1, 1),
(α5, λ5) = (1.2, 0.5). We consider following sample sizes: (100, 110, 80, 110, 70),
(150, 175, 120, 80, 110) and (200, 225, 190, 150, 120). A similar procedure as for
J = 3 yields results in Table 2 (see the row labeled ”H0”). The power of the
test is investigated under the same alternatives as above, with two additional
strata. For conciseness, we postpone description of parameters values for strata
j = 4, 5 to an appendix. Empirical powers of the test under each alternative are
reported in Table 2 (see rows labeled H1,a, H1,b, H1,c, H1,d).

(100, 110, 80, 110, 70) (150, 175, 120, 80, 110) (200, 225, 190, 150, 120)

c 0.1 0.2 0.4 0.1 0.2 0.4 0.1 0.2 0.4

H0 0.0638 0.0612 0.0428 0.0401 0.0584 0.0502 0.0524 0.0624 0.0609

H1,a 0.7365 0.5967 0.2355 0.9341 0.8517 0.5581 0.9782 0.9263 0.6105
H1,b 0.4502 0.4335 0.3837 0.8079 0.7283 0.6823 0.8876 0.8794 0.8627
H1,c 0.8167 0.6616 0.5869 0.9195 0.9003 0.8830 0.9785 0.9718 0.9282
H1,d 0.5898 0.5233 0.5211 0.8018 0.7937 0.7955 0.9657 0.9541 0.9210

Table 2. Empirical size and power of the proposed test for various censoring propor-

tions and sample sizes, with J = 5. All results are based on 105 simulated samples.

From these results, the proposed test statistic performs well under a variety of
conditions. The empirical level is close to the nominal level even when censoring
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is large (40%, say). As expected, power of the test increases when within-
strata sample sizes increase and decreases when censoring increases. However,
when censoring is low to moderate (20%, say), the test maintains satisfactory
power against every alternative provided that within-strata sample sizes are all
sufficiently large (greater than 100, say). When censoring is heavy (40%, say),
the test still maintains good power if all within-strata sample sizes are sufficiently
large, say 200. Overall, our test appears to provide an efficient tool for assessing
adequacy of the stratified proportional hazards model under usual conditions of
sample size and censoring.

4. Conclusion

In this paper, we propose a goodness-of-fit test statistic for the stratified propor-
tional hazards model and we establish its asymptotic distribution under the null
hypothesis that a stratified model holds. Our simulation study suggests that
the proposed test performs well under a wide range of conditions (sample size,
censoring fraction, alternative hypothesis).
Now, several issues deserve attention. First, in the stratified proportional haz-
ards model, the variable used for stratifying the population under study is often
discrete (e.g., gender, disease stage, socio-professional category. . . ). Sometimes,
it may be relevant to stratify according to a continuous variable W (such as tu-
mour size, level of salary. . . ). For example, in the case of two strata, the resulting
model may be written as α0,1(t) exp(β>Z)1{W≤w0}+α0,2(t) exp(β>Z)1{W>w0},
where w0 is some unkown thresold. To the best of our knowledge, no procedure
was proposed yet to estimate w0. Our test statistic may be used for that purpose.
For example, one may test goodness of fit of the model α0,1(t) exp(β>Z)1{W≤w}+

α0,2(t) exp(β>Z)1{W>w} for several values of w (using our test statistic Sn) and
retain the value ŵ yielding the less significant result. We are currently exploring
this original application of our test statistic.
Second, our test is feasible when the number of covariates stays moderate. A
large number of covariates will raise some computational issues. For example,
calculating (3) over a fine grid of a high-dimensional space will eventually be
time-consuming. We are currently exploring some directions to reduce this com-
putational burden.

Appendix A. Proofs of Lemma 1 and Lemma 2.

Proof of Lemma 1 We use the martingale central limit theorem (e.g., Theorem
5.3.5 in [7]) to establish weak convergence of the process (Q1

n(·, β0)>, . . . ,QJn(·, β0)>).
First, we provide an alternative expression for Qjn,z(t, β0). For j = 1, . . . , J , let
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N̄j(s) =
∑n
i=1 1{Si=j}Ni(s). From (3), we have:

Qjn,z(t, β0) :=
1√
n

n∑
i=1

M̂i(t, β0)1{Si=j}1{Zi≤z},

=

n∑
i=1

∫ t

0

1√
n

1{Si=j}1{Zi≤z}

{
dNi(s)−

J∑
`=1

Yi(s)e
β>0 Zi1{Si=`}

S
(0)
` (s, β0)

dN̄`(s)

}

=
n∑
i=1

∫ t

0

1√
n

1{Zi≤z}

{
1{Si=j}dNi(s)−

Yi(s)e
β>0 Zi1{Si=j}

S
(0)
j (s, β0)

dN̄j(s)

}

=

n∑
i=1

∫ t

0

1√
n

{
1{Zi≤z} −

S
(0)
j,z (s, β0)

S
(0)
j (s, β0)

}
1{Si=j} dNi(s).

Now, recall that Ni(t) =
∫ t

0
Yi(s)

∑J
j=1 α0,j(s)e

β>0 Zi1{Si=j} ds+Mi(t) and thus:

Qjn,z(t, β0) =

n∑
i=1

∫ t

0

1√
n

{
1{Zi≤z} −

S
(0)
j,z (s, β0)

S
(0)
j (s, β0)

}
1{Si=j}Yi(s)α0,j(s)e

β>0 Zids

+

n∑
i=1

∫ t

0

1√
n

{
1{Zi≤z} −

S
(0)
j,z (s, β0)

S
(0)
j (s, β0)

}
1{Si=j} dMi(s).

The first term in the right-hand side of this equality is 0 (straightforward calcu-
lations are omitted), which yields:

Qjn,z(t, β0) :=

n∑
i=1

∫ t

0

1√
n

{
1{Zi≤z} −

S
(0)
j,z (s, β0)

S
(0)
j (s, β0)

}
1{Si=j} dMi(s). (6)

The process Qjn,z := (Qjn,z(·, β0)) is then a martingale with respect to the fil-
tration

∨
i≤n Ft,i. Let k, ` ∈ {1, . . . , Q} and t ∈ T . Using expression (6), we

have:

〈Qjn,zk , Q
j
n,z`
〉(t) =

n∑
i=1

∫ t

0

1

n

{
1{Zi≤zk} −

S
(0)
j,zk

(s, β0)

S
(0)
j (s, β0)

}

×

{
1{Zi≤z`} −

S
(0)
j,z`

(s, β0)

S
(0)
j (s, β0)

}
1{Si=j}α0,j(s)Yi(s)e

β>0 Zi ds.
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As n tends to infinity, 〈Qjn,zk , Q
j
n,z`
〉(t) converges in probability to

Cjzk,z`(t) := E
[∫ t

0

1{Z≤zk}1{Z≤z`}1{S=j}α0,j(s)Y (s)eβ
>
0 Z ds

]
−E

[∫ t

0

1{Z≤zk}
s

(0)
j,z`

(s, β0)

s
(0)
j (s, β0)

1{S=j}α0,j(s)Y (s)eβ
>
0 Z ds

]

−E

[∫ t

0

1{Z≤z`}
s

(0)
j,zk

(s, β0)

s
(0)
j (s, β0)

1{S=j}α0,j(s)Y (s)eβ
>
0 Z ds

]

+E

[∫ t

0

s
(0)
j,zk

(s, β0)s
(0)
j,z`

(s, β0)

(s
(0)
j (s, β0))2

1{S=j}α0,j(s)Y (s)eβ
>
0 Z ds

]

= E
[∫ t

0

1{Z≤zk}1{Z≤z`}1{S=j}α0,j(s)Y (s)eβ
>
0 Z ds

]
−
∫ t

0

s
(0)
j,zk

(s, β0)s
(0)
j,z`

(s, β0)

s
(0)
j (s, β0)

α0,j(s) ds.

Moreover, when j 6= j′, we have:

〈Qjn,zk , Q
j′

n,z`
〉(t) =

n∑
i=1

∫ t

0

1

n

{
1{Zi≤zk} −

S
(0)
j,zk

(s, β0)

S
(0)
j (s, β0)

}{
1{Zi≤z`} −

S
(0)
j′,z`

(s, β0)

S
(0)
j′ (s, β0)

}

×1{Si=j}1{Si=j′}Yi(s)

J∑
m=1

α0,m(s)eβ
>
0 Zi1{Si=m} ds

= 0

since 1{Si=j}1{Si=j′} = 0. Next, we verify Lindeberg condition (e.g., condition

(3.18) of Theorem 5.3.5 in [7]). Let ε > 0, E
(0)
j,zk

(s, β0) := S
(0)
j,zk

(s, β0)/S
(0)
j (s, β0)

and define the jump process Qjn,zk,ε by Qjn,zk,ε(t, β0) =

n∑
i=1

∫ t

0

1√
n

{
1{Zi≤zk} − E

(0)
j,zk

(s, β0)
}

1{∣∣∣ 1√
n

(
1{Zi≤zk}−E

(0)
j,zk

(s,β0)
)∣∣∣>ε}1{Si=j} dMi(s).

We have:

〈Qjn,zk,ε, Q
j
n,zk,ε

〉(t) =

n∑
i=1

∫ t

0

{
1√
n

(
1{Zi≤zk} − E

(0)
j,zk

(s, β0)
)}2

1{Si=j}

×α0,j(s)Yi(s)e
β>0 Zi1{∣∣∣ 1√

n

(
1{Zi≤zk}−E

(0)
j,zk

(s,β0)
)∣∣∣>ε} ds.
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By using the inequality |u − v|21{|u−v|>ε} ≤ 4u21{|u|>ε/2} + 4v21{|v|>ε/2}, we
obtain that 〈Qjn,zk,ε, Q

j
n,zk,ε

〉(t) is bounded above by

4

n

n∑
i=1

∫ t

0

1{Zi≤zk}1{1{Zi≤zk}>ε
√
n/2}Yi(s)e

β>0 Zi1{Si=j}α0,j(s) ds

+
4

n

∫ t

0

(
E

(0)
j,zk

(s, β0)
)2

1{|E(0)
j,zk

(s,β0)|>ε
√
n/2}S

(0)
j (s, β0)α0,j(s) ds.

When n is sufficiently large, 1{1{Zi≤zk}>ε
√
n/2} = 0 for every i = 1, . . . , n and

the first term is zero. The second term converges to zero in probability, as

the event |E(0)
j,zk

(s, β0)| > ε
√
n/2 cannot be true for large n under conditions

C1-C5. By Theorem 5.3.5 in [7], the process (Q1
n(·, β0)>, . . . ,QJn(·, β0)>) con-

verges weakly in (D(T ))J·Q to a zero-mean Gaussian process (W1>, . . . ,WJ>)
(with Wj := (W j

1 , . . . ,W
j
Q)>) with covariance function cov(W j

k (t1),W j
` (t2)) =

Cjzk,z`(min(t1, t2)) and cov(W j
k (t1),W j′

` (t2)) = 0 if j 6= j′, for k, ` = 1, . . . , Q.

2

Proof of Lemma 2 By a first-order Taylor expansion of β 7→ Qjn,z(t, β) around
β0, we have:

Qjn,z(t, β̂n)−Qjn,z(t, β0) = (β̂n − β0)>
∂

∂β
Qjn,z(t, β̃n),

where β̃n is on the line segment between β̃n and β0. The derivative ∂Qjn,z(t, β)/
∂β is given by:

∂

∂β
Qjn,z(t, β) = − 1√

n

∫ t

0

Hj,z(s, β) dM̄j(s),

where M̄j(s) =
∑n
i=1 1{Si=j}Mi(s) and

Hj,z(s, β) :=
S

(1)
j,z (s, β)

S
(0)
j (s, β)

−
S

(0)
j,z (s, β)S

(1)
j (s, β)

(S
(0)
j (s, β))2

.

Then, by Cauchy-Schwarz inequality,∥∥∥Qjn,z(·, β̂n)−Qjn,z(·, β0)
∥∥∥
T
≤ ‖β̂n − β0‖

∥∥∥∥ ∂∂βQjn,z(·, β̃n)

∥∥∥∥
T
.

Under H0, β̂n converges in probability to β0 as n tends to infinity and thus,

‖β̂n − β0‖ converges to zero. We prove that
∥∥∥ ∂
∂βQ

j
n,z(·, β̃n)

∥∥∥
T

is bounded in

probability. Let

hj,z(s, β) :=
s

(1)
j,z(s, β)

s
(0)
j (s, β)

−
s

(0)
j,z(s, β)s

(1)
j (s, β)

(s
(0)
j (s, β))2

.
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We prove that ‖Hj,z(·, β̃n) − hj,z(·, β0)‖T converges in probability to zero as n
tends to infinity. We have:

‖Hj,z(·, β̃n)− hj,z(·, β0)‖T ≤

∥∥∥∥∥n−1S
(1)
j,z (·, β̃n)

n−1S
(0)
j (·, β̃n)

−
s

(1)
j,z(·, β0)

s
(0)
j (·, β0)

∥∥∥∥∥
T

+

∥∥∥∥∥s
(0)
j,z(·, β0)s

(1)
j (·, β0)

(s
(0)
j (·, β0))2

−
S

(0)
j,z (·, β̃n)S

(1)
j (·, β̃n)

(S
(0)
j (·, β̃n))2

∥∥∥∥∥
T

:= Un,1 + Un,2.

We prove that Un,1 converges in probability to zero as n tends to infinity (argu-
ments are similar for Un,2 and are thus omitted). Using the elementary equality
un
vn
− u

v = (unv −
uvn
v2 ) v

vn
, we obtain:

Un,1 =

∥∥∥∥∥
(
n−1S

(1)
j,z (·, β̃n)

s
(0)
j (·, β0)

−
s

(1)
j,z(·, β0)n−1S

(0)
j (·, β̃n)

(s
(0)
j (·, β0))2

)
s

(0)
j (·, β0)

n−1S
(0)
j (·, β̃n)

∥∥∥∥∥
T

≤

∥∥∥∥∥n−1S
(1)
j,z (·, β̃n)

s
(0)
j (·, β0)

−
s

(1)
j,z(·, β0)n−1S

(0)
j (·, β̃n)

(s
(0)
j (·, β0))2

∥∥∥∥∥
T

∥∥∥∥∥ s
(0)
j (·, β0)

n−1S
(0)
j (·, β̃n)

∥∥∥∥∥
T

≤ 1

c2

∥∥∥n−1S
(1)
j,z (·, β̃n)s

(0)
j (·, β0)− s(1)

j,z(·, β0)n−1S
(0)
j (·, β̃n)

∥∥∥
T

∥∥∥∥∥ s
(0)
j (·, β0)

n−1S
(0)
j (·, β̃n)

∥∥∥∥∥
T

where the second to third line follows by condition C5. Now,∥∥∥n−1S
(1)
j,z (·, β̃n)s

(0)
j (·, β0)− s(1)

j,z(·, β0)n−1S
(0)
j (·, β̃n)

∥∥∥
T

≤
∥∥∥n−1S

(1)
j,z (·, β̃n)s

(0)
j (·, β0)− s(1)

j,z(·, β̃n)s
(0)
j (·, β0)

∥∥∥
T

+
∥∥∥s(1)
j,z(·, β̃n)s

(0)
j (·, β0)− s(1)

j,z(·, β0)s
(0)
j (·, β0)

∥∥∥
T

+
∥∥∥s(1)
j,z(·, β0)s

(0)
j (·, β0)− s(1)

j,z(·, β0)s
(0)
j (·, β̃n)

∥∥∥
T

+
∥∥∥s(1)
j,z(·, β0)s

(0)
j (·, β̃n)− s(1)

j,z(·, β0)n−1S
(0)
j (·, β̃n)

∥∥∥
T

and thus∥∥∥n−1S
(1)
j,z (·, β̃n)s

(0)
j (·, β0)− s(1)

j,z(·, β0)n−1S
(0)
j (·, β̃n)

∥∥∥
T

≤
∥∥∥s(0)
j (·, β0)

∥∥∥
T

(∥∥∥n−1S
(1)
j,z − s

(1)
j,z

∥∥∥
T ×B

+
∥∥∥s(1)
j,z(·, β̃n)− s(1)

j,z(·, β0)
∥∥∥
T

)
+
∥∥∥s(1)
j,z(·, β0)

∥∥∥
T

(∥∥∥s(0)
j (·, β0)− s(0)

j (·, β̃n)
∥∥∥
T

+
∥∥∥s(0)
j − n

−1S
(0)
j

∥∥∥
T ×B

)
.
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From Glivenko-Cantelli theorem, ‖n−1S
(1)
j,z − s

(1)
j,z‖T ×B and ‖n−1S

(0)
j − s

(0)
j ‖T ×B

converge to zero. By condition C4, ‖s(1)
j,z(·, β̃n)− s(1)

j,z(·, β0)‖T and ‖s(0)
j (·, β0)−

s
(0)
j (·, β̃n)‖T converge to zero. Moreover, ‖s(0)

j (·, β0)‖T and ‖s(1)
j,z(·, β0)‖T are

bounded by conditions C1 and C3. Thus, the quantity ‖n−1S
(1)
j,z (·, β̃n)s

(0)
j (·, β0)−

s
(1)
j,z(·, β0)n−1S

(0)
j (·, β̃n)‖T tends to zero. Using similar arguments, one can show

that ‖s(0)
j (·, β0)/n−1S

(0)
j (·, β̃n)‖T converges to 1 and finally, Un,1 converges to

zero. Convergence to zero of Un,1 and Un,2 implies that ‖Hj,z(·, β̃n)−hj,z(·, β0)‖T
converges in probability to zero. Now, we have:

‖Hj,z(·, β̃n)‖T ≤ ‖Hj,z(·, β̃n)− hj,z(·, β0)‖T + ‖hj,z(·, β0)‖T .

Under conditions C1, C3, C5, ‖hj,z(·, β0)‖T is bounded and thus ‖Hj,z(·, β̃n)‖T
and then ‖ ∂∂βQ

j
n,z(·, β̃n)‖T are bounded in probability. Finally, Qjn,z(·, β̂n) =

Qjn,z(·, β0) + oP(1) where the oP(1) is uniform on T . This concludes the proof.

2

Appendix B. Parameters values in the simulation study for J = 5.

For J = 5, we consider the following alternatives (respectively denoted by
H1,a, H1,b, H1,c and H1,d in Table 2):

• non-proportional hazards model : the hazard function in stratum j is cho-
sen as αj(t) = αje

1.2Z1+1.5Z2×t, j = 1, . . . , 5. We take α1 = 0.01, α2 =
0.1, α3 = 0.25, α4 = 0.3, α5 = 0.2.

• covariate thresold effect : the hazard function in stratum j is chosen as
αj(t) = λjαjt

αj−1e1.7Z11{Z1>ξj}+0.5Z2 , j = 1, . . . , 5. We take (α1, λ1, ξ1) =
(1.5, 1, 0.6), (α2, λ2, ξ2) = (0.5, 0.75, 1), (α3, λ3, ξ3) = (1, 1.25, 0.8), (α4, λ4,
ξ4) = (0.75, 0.8, 1.2) and (α5, λ5, ξ5) = (1, 0.8, 0.75).

• distinct regression parameters across strata: the hazard function in stratum
j is chosen as αj(t) = λjαjt

αj−1eβ1,jZ1+β2,jZ2 , j = 1, . . . , 5. We take
(α1, λ1, β1,1, β2,1) = (2.1, 1, 0.2, 0.7), (α2, λ2, β1,2, β2,2) = (1.2, 0.75, 1, 1),
(α3, λ3, β1,3, β2,3) = (1.8, 1.5, 0.2, 0.2), (α4, λ4, β1,4, β2,4) = (1, 1, 1.3, 0.5)
and (α5, λ5, β1,5, β2,5) = (1.5, 0.5, 0.15, 0.55).

• omitted covariates: the hazard function in stratum j is taken as αj(t) =
λjαjt

αj−1eZ1−0.7Z2+0.75Z3 (j = 1, . . . , 5) where the additional covariate
Z3 is distributed as a N (1, 0.25). We take (α1, λ1) = (2.1, 1), (α2, λ2) =
(1.2, 0.75), (α3, λ3) = (1.8, 1.5), (α4, λ4) = (1.2, 1.25) and (α5, λ5) =
(0.5, 0.8).
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