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Goodness-of-fit testing is addressed in the stratified proportional hazards model for survival data. A test statistic based on within-strata cumulative sums of martingale residuals over covariates is proposed and its asymptotic distribution is derived under the null hypothesis of model adequacy. A Monte Carlo procedure is proposed to approximate the critical value of the test. Simulation studies are conducted to examine finite-sample performance of the proposed statistic.

Introduction

The stratified proportional hazards model (see for example [START_REF] Bagdonavičius | Accelerated life models: modeling and statistical analysis[END_REF][START_REF] Martinussen | Dynamic regression models for survival data[END_REF]) generalizes the usual Cox proportional hazards regression model (see [START_REF] Cox | Regression models and life-tables[END_REF]) for survival data by allowing different groups (called strata) of the population under study to have distinct baseline hazard functions. Precisely, in the stratified model, the strata divide the sample individuals into J disjoint groups, each having a distinct baseline hazard function α 0,j but a common value for the regression parameter. The hazard function of an individual in stratum j thus takes the form α j (t) = α 0,j (t)e β 0 Z , j = 1, . . . , J,

where Z is a p-vector of covariates, β 0 is a p-vector of unknown regression parameters of interest, denotes the transpose and {α 0,j (t) : t ≥ 0, j = 1, . . . , J} are J unknown baseline hazard functions. A consistent and asymptotically normal estimator of β 0 is obtained by maximizing the so-called partial likelihood function (see [START_REF] Cox | Partial likelihood[END_REF]). The partial likelihood for the stratified model [START_REF] Andersen | Statistical models based on counting processes[END_REF] is the product over strata of the within-stratum partial likelihoods (see [START_REF] Bagdonavičius | Accelerated life models: modeling and statistical analysis[END_REF]). Further discussion †Corresponding author: Jean-Francois.Dupuy@insa-rennes.fr of this model, including estimation of the cumulative baseline hazard functions A 0,j (t) = t 0 α 0,j (u) du, can be found in [START_REF] Andersen | Statistical models based on counting processes[END_REF] and [START_REF] Martinussen | Dynamic regression models for survival data[END_REF]. The stratified proportional hazards model recently began to be increasingly used in various fields, such as economy, marketing, medicine and public health. For example, in [START_REF] Kiefer | Counting processes for retail default modeling[END_REF], authors use this model to assess the relative performance of piggyback loans and insured loans with respect to residential mortgage lifetimes in USA. In [START_REF] Haenlein | Social interactions in customer churn decisions: The impact of relationship directionality[END_REF], the author uses a stratified proportional hazards model to identify risk factors of churn among customers of a mobile phone operator. In [START_REF] Scavonetto | Association between neuraxial analgesia, cancer progression, and mortality after radical prostatectomy: a large, retrospective matched cohort study[END_REF], a stratified proportional hazards model is used to evaluate mortality after radical prostatectomy. In [START_REF] Örtqvist | Antibiotics in fetal and early life and subsequent childhood asthma: nationwide population based study with sibling analysis[END_REF], association between exposure to antibiotics in fetal and early life and asthma in childhood is also investigated by using a stratified model.

Despite this recent interest, methodological developments for the stratified proportional hazards model are still a few. In [START_REF] Dupuy | A study of regression calibration in a partially observed stratified Cox model[END_REF] and [START_REF] Gorfine | Nonparametric correction for covariate measurement error in a stratified Cox model[END_REF], authors investigate estimation in the stratified model with covariate missing values and covariate measurement error respectively. The prognostic ability of the stratified model is assessed in [START_REF]Measures to assess the prognostic ability of the stratified Cox proportional hazards model[END_REF] and [START_REF] Natarajan | Predictive capability of stratified proportional hazards models[END_REF]. In [START_REF] Heinzl | A measure of dependence for the stratified Cox proportional hazards regression model[END_REF], authors propose a measure to quantify the partial dependence between a survival time and a covariate in the stratified model. Confidence intervals for the difference of median survival times in the stratified model are investigated in [START_REF] Kim | Confidence intervals for the difference of median survival times using the stratified Cox proportional hazards model[END_REF]. Finally, a stratified proportional hazards model with spatio-temporal heterogeneity is developed in [START_REF] Hanson | A Bayesian semiparametric temporallystratified proportional hazards model with spatial frailties[END_REF]. In the present paper, we consider goodness-of-fit testing for the stratified proportional hazards model.

Many goodness-of-fit tests have been proposed for the usual (unstratified) proportional hazards model. In particular, several authors discussed goodnessof-fit tests based on weighted sums of martingale residuals. A non-exhaustive list of references includes [START_REF] Gandy | Model checks for Cox-type regression models based on optimally weighted martingale residuals[END_REF][START_REF] Lin | Checking the Cox model with cumulative sums of martingale-based residuals[END_REF][START_REF] Marzec | Generalized martingale-residual processes for goodness-of-fit inference in Cox's type regression models[END_REF][START_REF] Verweij | A goodness-of-fit test for Cox's proportional hazards model based on martingale residuals[END_REF], see also [START_REF] Bagdonavičius | Accelerated life models: modeling and statistical analysis[END_REF] for a detailed account of this topic. However, to the best of our knowledge, no goodness-of-fit tests have been proposed yet for the stratified proportional hazards model [START_REF] Andersen | Statistical models based on counting processes[END_REF]. Our paper aims at filling this gap.

We propose a goodness-of-fit test statistic for model (1) based on withinstratum cumulative sums of residuals. We establish rigorously the asymptotic distribution of this statistic under the null hypothesis that model (1) is correct. A Monte Carlo procedure is proposed to approximate the critical value of the test for a given asymptotic level. Finite-sample performance of the test are investigated via simulations.

The rest of the paper is organized as follows. In Section 2, we construct our test statistic, we investigate its null asymptotic distribution and we discuss Monte Carlo approximation of the critical value. In Section 3, we conduct a simulation study to assess level and power properties of our test for various numbers of strata, sample sizes and proportions of censored observations. Section 4 concludes the paper with some perspectives. Proofs of some intermediate technical results are given in an appendix.

The proposed test statistic and decision rule

Preliminaries and notations

All random variables are defined on the same probability space (Ω, C, P). Let T be a random failure time whose distribution depends on a vector of covariates Z = (Z 1 , . . . , Z p ) ∈ R p and on a stratum indicator S ∈ {1, . . . , J}. We assume that conditionally on Z and S = j, the hazard function of T is given by model [START_REF] Andersen | Statistical models based on counting processes[END_REF]. We suppose that T is randomly right-censored by a positive random variable C and that T and C are independent conditionally on Z and S. The analysis is restricted to the time interval T := [0, τ ], where τ < ∞ denotes the end of the study. Therefore, we actually observe the duration X = min(T, min(C, τ )) and a censoring indicator ∆ = 1 {T ≤min(C,τ )} .

Available data consist of n independent and identically distributed copies (X i , ∆ i , Z i , S i ) of the random vector (X, ∆, Z, S). For every i = 1, . . . , n and t ∈ T , we denote by N i (t) = 1 {Xi≤t} ∆ i and Y i (t) = 1 {Xi≥t} the failure counting and at-risk processes of the i-th individual respectively. The process N i (t) has intensity Y i (t) J j=1 α 0,j (t)e β 0 Zi 1 {Si=j} with respect to the filtration (F t,i ) t≥0 defined by F t,i = σ{Z i , S i , N i (s), Y i (s): 0 ≤ s ≤ t}, so that processes

M i (t) = N i (t) - t 0 Y i (s) J j=1
α 0,j (s)e β 0 Zi 1 {Si=j} ds, i = 1, . . . , n are martingales.

As mentioned above, a consistent and asymptotically normal estimator β n of β 0 in model ( 1) is obtained by maximizing the partial likelihood

J j=1 n i=1 e β Zi n k=1 Y k (X i )e β Z k 1 {S k =j} ∆i1 {S i =j} ,
(see [START_REF] Bagdonavičius | Accelerated life models: modeling and statistical analysis[END_REF]) while cumulative baseline hazard functions A 0,j (t) = t 0 α 0,j (u) du can be estimated by Breslow-type estimators

A 0,j (t) = t 0 n i=1 1 {Si=j} dN i (s) n k=1 Y k (s)e β n Z k 1 {S k =j} , j = 1, . . . , J.
Martingale residuals in model ( 1) can be defined similarly as in the classical unstratified Cox model. Precisely, we define the residual martingale for the i-th individual as

M i (t, β n ) = N i (t) - J j=1 t 0 Y i (s)e β n Zi 1 {Si=j} S (0) j (s, β n ) d Nj (s), (2) 
where Nj (s) = n i=1 N i (s)1 {Si=j} and S (0)

j (s, β n ) = n i=1 Y i (s)e β n Zi 1 {Si=j} .
2.2. The proposed test statistic and its asymptotic distribution under H 0 We construct a test statistic for the null hypothesis that the stratified proportional hazards model ( 1) is true, that is, for H 0 : α j (t) = α 0,j (t)e β 0 Z , for j = 1, . . . , J.

Our test statistic is based on within-stratum partial cumulative sums of the martingale residuals [START_REF] Bagdonavičius | Accelerated life models: modeling and statistical analysis[END_REF]. So far, model-checking techniques based on cumulative sums of residuals have been developed for various models such as the generalized linear model (e.g., [START_REF] Stute | Model checks for generalized linear models[END_REF][START_REF] Su | A lack-of-fit test for the mean function in a generalized linear model[END_REF]), Cox's model (e.g., [START_REF] Bagdonavičius | Accelerated life models: modeling and statistical analysis[END_REF][START_REF] Gandy | Model checks for Cox-type regression models based on optimally weighted martingale residuals[END_REF][START_REF] Lin | Checking the Cox model with cumulative sums of martingale-based residuals[END_REF][START_REF] Marzec | Generalized martingale-residual processes for goodness-of-fit inference in Cox's type regression models[END_REF][START_REF] Verweij | A goodness-of-fit test for Cox's proportional hazards model based on martingale residuals[END_REF]) and Aalen's additive risk model ( [START_REF] Gandy | On goodness-of-fit tests for Aalen's additive risk model[END_REF]). For the stratified proportional hazards model [START_REF] Andersen | Statistical models based on counting processes[END_REF], we propose to consider the process

Q j n,z (t, β n ) := 1 √ n n i=1 M i (t, β n )1 {Si=j} 1 {Zi≤z} , (3) 
where z = (z 1 , . . . , z p ) ∈ R p and the event {Z i ≤ z} means that all components Z 1,i , . . . , Z p,i of Z i are less than or equal to the corresponding components of z.

Under model (1), we have

n i=1 M i (t, β n )1 {Si=j} = 0
for every j = 1, . . . , J. Under H 0 , one would thus expect that the partial-sum process Q j n,z (t, β n ) fluctuates around 0 and a large value of Q j n,z (t, β n ) should lead to the conclusion that model (1) is misspecified for the j-th stratum. Note that the function z → Q j n,z (t, β n ) has possible jumps at the distinct values of the Z i , i = 1, . . . , n. Therefore it is sufficient to consider a finite number Q of values for the vector z (this issue is discussed in Section 3). If z 1 , . . . , z Q are Q such values, we consider the within-stratum statistics max q∈Q |Q j n,zq (t, β n )| (for j = 1, . . . , J), where Q = {1, . . . , Q} and we combine all within-stratum statistics in the overall test statistic

max 1≤j≤J max q∈Q |Q j n,zq (t, β n )|.
We consider this statistic at t = τ in order to use the whole data information and finally, we define our goodness-of-fit test statistic as:

S n := max 1≤j≤J max q∈Q |Q j n,zq (τ, β n )|. ( 4 
)
We now establish the asymptotic distribution of S n under the null hypothesis H 0 . We first introduce some further notations and some regularity conditions. If u is a vector in R p , let u ⊗0 = 1 and u ⊗1 = u. For k = 0, 1, j = 1, . . . , J, s ∈ T and β ∈ R p , we define

S (k) j (s, β) = n i=1 Y i (s)Z ⊗ k i e β Zi 1 {Si=j} , S (k) j,z (s, β) = n i=1 Y i (s)Z ⊗ k i e β Zi 1 {Si=j} 1 {Zi≤z} , s (k) j (s, β) = E Y i (s)Z ⊗ k i e β Zi 1 {Si=j} , s (k) j,z (s, β) = E Y i (s)Z ⊗ k i e β Zi 1 {Si=j} 1 {Zi≤z} .
Finally, • T and • T ×B will denote uniform norms on T and T ×B respectively. The asymptotic distribution of our goodness-of-fit statistic S n will be established under the following conditions:

C1 β 0 belongs to the interior of a compact subset B of R p .
C2 The time τ is such that τ 0 α 0,j (u) du < ∞ for all j = 1, . . . , J. C3 The covariate Z is bounded.

C4 For j = 1, . . . , J and every z ∈ R p , the families {s

(k) j,z (s, •); s ∈ T } and {s (k) j (s, •); s ∈ T } (k = 0, 1) of functions of β are equicontinuous at β 0 . C5 For j = 1, . . . , J, there exists a constant c > 0 such that inf s∈T s (0) j (s, β 0 ) > c.
Our result is as follows:

Theorem 1. Let Q ∈ N and z 1 , . . . , z Q be Q vectors in R p . Let W be a (J • Q)-
dimensional Gaussian vector with components denoted by W := (W 1 , . . . , W J ) , where W j := (W j 1 , . . . , W j Q ) for j = 1, . . . , J. Assume that W has mean zero and variance-covariance matrix S, where S is the

(J • Q) × (J • Q) block-matrix    Σ 1 . . . 0 Q×Q . . . . . . . . . 0 Q×Q . . . Σ J    and Σ j = (Σ j k, ) 1≤k, ≤Q is the Q × Q matrix with components Σ j k, := E τ 0 α 0,j (s)Y i (s)e β 0 Zi 1 {Si=j} 1 {Zi≤z k } 1 {Zi≤z } ds - τ 0 α 0,j (s) s (0) j,z k (s, β 0 ) • s (0) j,z (s, β 0 ) s (0) j (s, β 0 )
ds and 0 Q×Q is a Q × Q matrix with all components zero. Assume that conditions C1-C5 hold. Then under H 0 , the test statistic S n converges in distribution, as n tends to infinity, to S := max 1≤j≤J max q∈Q |W j q |.

Proof. We need two intermediate lemmas. Their proofs are postponed to an appendix.

Lemma 1. Let z 1 , . . . , z Q be Q vectors in R p . Assume that conditions C1-C5 hold and for j = 1, . . . , J, let

Q j n (•, β) := (Q j n,z1 (•, β), . . . , Q j n,z Q (•, β)) . Then under H 0 , the process (Q 1 n (•, β 0 ) , . . . , Q J n (•, β 0 ) ) converges weakly in (D(T )) J•Q to a zero-mean Gaussian process (W 1 , . . . , W J ) (with W j := (W j 1 , . . . , W j Q ) ) with covariance function cov(W j k (t 1 ), W j (t 2 )) = E min(t1,t2) 0 α 0,j (s)Y i (s)e β 0 Zi 1 {Si=j} 1 {Zi≤z k } 1 {Zi≤z } ds - min(t1,t2) 0 α 0,j (s) s (0) j,z k (s, β 0 ) • s (0) j,z (s, β 0 ) s (0) j (s, β 0 ) ds and cov(W j k (t 1 ), W j (t 2 )) = 0 if j = j (with 1 ≤ k, ≤ Q and t 1 , t 2 ∈ T ). Lemma 2. Assume that conditions C1-C5 hold. Then under H 0 , Q j n (•, β n ) = Q j n (•, β 0 ) + o P (1)
where the o P (1) is uniform on T .

We now prove Theorem 1. It follows from Lemma 1 and Lemma 2 that under H 0 , the process (Q

1 n (•, β n ) , . . . , Q J n (•, β n ) )
converges weakly to a zero-mean Gaussian process on T J•Q , with covariance function as in Lemma 1. Hence (Q 1 n (τ, β n ) , . . . , Q J n (τ, β n ) ) converges in distribution to a Gaussian vector with mean zero and variance-covariance matrix given by S in Theorem 1 (this vector is denoted by W := (W 1 , . . . , W J ) , with W j := (W j 1 , . . . , W j Q ), j = 1, . . . , J). By the continuous mapping theorem, S n converges in distribution to max 1≤j≤J max q∈Q |W j q |.
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Based on Theorem 1, a natural decision rule is as follows: reject H 0 (at the asymptotic level α ∈ (0, 1)) if S n is greater than the quantile q 1-α (S) of order 1 -α of the distribution of S. However, this quantile -or critical value of the test -is unknown. In the next section, we propose to estimate it via Monte Carlo simulations.

Monte Carlo estimation of the critical value and decision rule

In order to estimate q 1-α (S), we propose to: i) simulate a large number (say M ) of realizations of W, ii) calculate the corresponding values s 1 , . . . , s M of S, iii) approximate q 1-α (S) by the empirical quantile of order 1 -α of (s 1 , . . . , s M ). However, the matrix S needed to simulate data from W ∼ N (J•Q) (0, S) is unknown. Under H 0 , this matrix can be estimated by replacing unknown terms in Σ j k, by their empirical counterparts. Precisely, we define:

Σ j k, := τ 0    S (0) j,z k, (s, β n ) S (0) j (s, β n ) - S (0) j,z k (s, β n ) • S (0) j,z l (s, β n ) (S (0) j (s, β n )) 2    d Nj (s) n ,
where zk, denotes the vector in R p whose j-th component (j = 1, . . . , p) is the minimum of the j-th components of z k and z . This estimator is consistent, as stated in Proposition 2.

Proposition 2. Assume that conditions C1-C5 hold. Then, under H 0 , Σ j k, converges in probability to Σ j k, as n tends to infinity. Proof. Let

V j k, (s, β) := S (0) j,z k, (s, β) S (0) j (s, β) - S (0) j,z k (s, β) • S (0) j,z (s, β) (S (0) j (s, β)) 2 and v j k, (s, β) := s (0) j,z k, (s, β) s (0) j (s, β) - s (0) j,z k (s, β) • s (0) j,z (s, β) (s (0) j (s, β)) 2 .
We have:

Σ j k, -Σ j k, = τ 0 V j k, (s, β n ) d Nj (s) n - τ 0 v j k, (s, β 0 )s (0) j (s, β 0 )α 0,j (s) ds ≤ τ 0 V j k, (s, β n ) -v j k, (s, β n ) d Nj (s) n + τ 0 v j k, (s, β n ) -v j k, (s, β 0 ) d Nj (s) n + τ 0 v j k, (s, β 0 ) d Nj (s) n - 1 n S (0) j (s, β 0 )α 0,j (s) ds + τ 0 v j k, (s, β 0 ) 1 n S (0) j (s, β 0 ) -s (0) j (s, β 0 ) α 0,j (s) ds (5) 
Under conditions C1-C5, V j k, -v j k, T ×B converges to zero in probability. Moreover, Nj (τ )/n tends to E[N (τ )1 {S=j} ] < ∞. Therefore, the first term in [START_REF] Cox | Partial likelihood[END_REF] converges to zero in probability. Condition C4 and the convergence of Nj (τ )/n to E[N (τ )1 {S=j} ] < ∞ imply that the second term in (5) also converges to zero. Consider the third term in [START_REF] Cox | Partial likelihood[END_REF]. Let δ > 0, η > 0. By Lenglart inequality (e.g., [START_REF] Andersen | Statistical models based on counting processes[END_REF]), we have

P τ 0 v j k, (s, β 0 ) 1 n d Mj (s) > η ≤ δ η 2 + P τ 0 (v j k, (s, β 0 )) 2 1 n S (0) 
j (s, β 0 )α 0,j (s) ds > nδ .

For any δ > 0, the probability on the right-hand side of this inequality converges to zero as n tends to infinity, and since δ is arbitrary, P(| τ 0 v j k, (s, β 0 ) 1 n d Mj (s)| > η) must converge to zero. Thus the third term in (5) converges to zero in probability. Finally,

τ 0 v j k, (s, β 0 ) 1 n S (0) j (s, β 0 ) -s (0) j (s, β 0 ) α 0,j (s) ds ≤ τ 0 v j k, (s, β 0 ) α 0,j (s) ds × 1 n S (0) j (•, β 0 ) -s (0) j (•, β 0 ) T .
The first term on the right-hand side of this inequality is bounded under conditions C1-C5 and the second term converges to zero in probability by Glivenko-Cantelli theorem. Thus the fourth term in (5) converges to zero and the proof is complete.
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In what follows, we denote by S the estimator of S obtained by replacing the Σ j k, by their estimators (j = 1, . . . , J; k, = 1, . . . , Q). We now apply a parametric bootstrap procedure: i) we simulate M vectors

W * 1 , . . . W * M from W * ∼ N (J•Q) (0, S), ii) we calculate the corresponding values s * i = max 1≤j≤J max q∈Q |W * j i,q |, i = 1, .
. . , M , iii) we estimate q 1-α (S) by the empirical quantile q * 1-α of order 1 -α of s * 1 , . . . , s * M . Our decision rule is finally: "reject H 0 at the asymptotic level α ∈ (0, 1) if S n ≥ q * 1-α ". In the next section, we investigate this decision rule via simulations. Several issues are discussed, such as the choice of Q and z 1 , . . . , z Q .

Simulation study

In this simulation study, we investigate the finite sample behaviour of our test statistic for various numbers of strata typically encountered in practice (J = 3, 5). Precisely, we assess level and power of our test against various alternatives, for several sample sizes and censoring fractions. Simulations are run using the statistical language R (see [START_REF] Core | R: A Language and Environment for Statistical Computing[END_REF]) under a Linux Ubuntu Server 14.04 LTS 64Bits with two processors Intel E5 2640v2 running at 1600MHZ, with 256Go RAM.

First, we simulate N = 10 5 samples of size n of observations from model (1) with J = 3. The sample sizes in the 3 strata are denoted by (n 1 , n 2 , n 3 ), with n = 3 j=1 n j . We consider several values for (n 1 , n 2 , n 3 ), namely (100, 110, 80), (150, 175, 120) and (200,225,190). The baseline hazard function in stratum j (j = 1, 2, 3) is α 0,j (t) = λ j α j t αj -1 with (α 1 , λ 1 ) = (2.1, 1), (α 2 , λ 2 ) = (1.2, 0.75), (α 3 , λ 3 ) = (1.8, 1.5). We consider a two-dimensional covariate Z = (Z 1 , Z 2 ) , where Z 1 and Z 2 are independent and distributed as a Gaussian N (0, 1) and a uniform U(1, 3) respectively. We take β 0 = (0.2, 0.7) . The model used for simulating data is thus α j (t) = λ j α j t αj -1 e 0.2Z1+0.7Z2 , j = 1, 2, 3. Censoring times are simulated from an exponential distribution with parameter µ > 0, where µ is chosen to yield some pre-specified proportion c of censored observations (we consider c = 0.1, 0.2, 0.4). As mentioned in Section 2.2, the function z → Q j n,z (t, β n ) has possible jumps at the distinct values of the Z i , i = 1, . . . , n. Therefore it is sufficient to consider a finite number Q of values for the vector z. One may consider all distinct Z i but our numerical experiments showed that no major change affects the outcome of the test when Q is smaller than n, provided that Q stays large enough. Thus in this simulation study, we take Q = 250 when (n 1 , n 2 , n 3 ) = (100, 110, 80), Q = 400 when (n 1 , n 2 , n 3 ) = (150, 175, 120), Q = 600 when (n 1 , n 2 , n 3 ) = (200,225,190) and we use a regular grid of values z q over the range of the Z i . Under the setting described above, the null hypothesis H 0 holds and we investigate level of our test. For each of the N simulated samples, we calculate the test statistic S n and approximate the critical value (for an asymptotic level α = 0.05) by using the Monte Carlo procedure described in Section 2.3 (with M = 5000). Finally, we apply the proposed decision rule. Table 1 provides empirical level of the test for the various configurations of the simulation design parameters (see the row labeled "H 0 ").

Next, we investigate power of our test. For J = 3, we consider the following alternatives (respectively denoted by H 1,a , H 1,b , H 1,c and H 1,d ):

• non-proportional hazards model : the hazard function in stratum j is chosen as α j (t) = α j e 1.2Z1+1.5Z2×t , j = 1, 2, 3. We take α 1 = 0.01, α 2 = 0.1, α 3 = 0.25. Hazard ratios are not constant in time and thus, the model is not a proportional hazards model.

• covariate thresold effect: the hazard function in stratum j is chosen as α j (t) = λ j α j t αj -1 e 1.7Z11 {Z 1 >ξ j } +0.5Z2 , j = 1, 2, 3. We take (α 1 , λ 1 , ξ 1 ) = (1.5, 1, 0.6), (α 2 , λ 2 , ξ 2 ) = (0.5, 0.75, 1) and (α 3 , λ 3 , ξ 3 ) = (1, 1.25, 0.8).

• distinct regression parameters across strata: the hazard function in stratum j is chosen as α j (t) = λ j α j t αj -1 e β1,j Z1+β2,j Z2 , j = 1, 2, 3. We take (α 1 , λ 1 , β 1,1 , β 2,1 ) = (2.1, 1, 0.2, 0.7), (α 2 , λ 2 , β 1,2 , β 2,2 ) = (1.2, 0.75, 1, 1) and (α 3 , λ 3 , β 1,3 , β 2,3 ) = (1.8, 1.5, 0.2, 0.2).

• omitted covariates: the hazard function in stratum j is taken as α j (t) = λ j α j t αj -1 e Z1-0.7Z2+0.75Z3 (j = 1, 2, 3) where the additional covariate Z 3 is distributed as a N (1, 0.25). We take (α 1 , λ 1 ) = (2.1, 1), (α 2 , λ 2 ) = (1.2, 0.75) and (α 3 , λ 3 ) = (1.8, 1.5).

We simulate N = 10 5 samples of observations under each of these alternatives.

The simulation design (within-stratum sample sizes, censoring proportion) is the same as for evaluating level. For each sample and each alternative hypothesis, we calculate S n (based on the fitted model α 0,j (t) exp( Then, we conduct a similar study as above, with J = 5. For investigating level, we simulate data from the stratified model α 0,j (t) = λ j α j t αj -1 e 0.2Z1+0.7Z2 (j = 1, . . . , 5) with the same (α i , λ i ), i = 1, 2, 3 as above and (α 4 , λ 4 ) = (1, 1), (α 5 , λ 5 ) = (1.2, 0.5). We consider following sample sizes: (100, 110, 80, 110, 70), (150, 175, 120, 80, 110) and (200,225,190,150,120). A similar procedure as for J = 3 yields results in Table 2 (see the row labeled "H 0 "). The power of the test is investigated under the same alternatives as above, with two additional strata. For conciseness, we postpone description of parameters values for strata j = 4, 5 to an appendix. Empirical powers of the test under each alternative are reported in From these results, the proposed test statistic performs well under a variety of conditions. The empirical level is close to the nominal level even when censoring is large (40%, say). As expected, power of the test increases when withinstrata sample sizes increase and decreases when censoring increases. However, when censoring is low to moderate (20%, say), the test maintains satisfactory power against every alternative provided that within-strata sample sizes are all sufficiently large (greater than 100, say). When censoring is heavy (40%, say), the test still maintains good power if all within-strata sample sizes are sufficiently large, say 200. Overall, our test appears to provide an efficient tool for assessing adequacy of the stratified proportional hazards model under usual conditions of sample size and censoring.

β 1 Z 1 + β 2 Z 2 ), j = 1, 2,

Conclusion

In this paper, we propose a goodness-of-fit test statistic for the stratified proportional hazards model and we establish its asymptotic distribution under the null hypothesis that a stratified model holds. Our simulation study suggests that the proposed test performs well under a wide range of conditions (sample size, censoring fraction, alternative hypothesis). Now, several issues deserve attention. First, in the stratified proportional hazards model, the variable used for stratifying the population under study is often discrete (e.g., gender, disease stage, socio-professional category. . . ). Sometimes, it may be relevant to stratify according to a continuous variable W (such as tumour size, level of salary. . . ). For example, in the case of two strata, the resulting model may be written as α 0,1 (t) exp(β Z)1 {W ≤w0} + α 0,2 (t) exp(β Z)1 {W >w0} , where w 0 is some unkown thresold. To the best of our knowledge, no procedure was proposed yet to estimate w 0 . Our test statistic may be used for that purpose. For example, one may test goodness of fit of the model α 0,1 (t) exp(β Z)1 {W ≤w} + α 0,2 (t) exp(β Z)1 {W >w} for several values of w (using our test statistic S n ) and retain the value ŵ yielding the less significant result. We are currently exploring this original application of our test statistic. Second, our test is feasible when the number of covariates stays moderate. A large number of covariates will raise some computational issues. For example, calculating (3) over a fine grid of a high-dimensional space will eventually be time-consuming. We are currently exploring some directions to reduce this computational burden. Nj (s) = n i=1 1 {Si=j} N i (s). From (3), we have:

Q j n,z (t, β 0 ) := 1 √ n n i=1 M i (t, β 0 )1 {Si=j} 1 {Zi≤z} , = n i=1 t 0 1 √ n 1 {Si=j} 1 {Zi≤z} dN i (s) - J =1 Y i (s)e β 0 Zi 1 {Si= } S (0) (s, β 0 ) d N (s) = n i=1 t 0 1 √ n 1 {Zi≤z} 1 {Si=j} dN i (s) - Y i (s)e β 0 Zi 1 {Si=j} S (0) j (s, β 0 ) d Nj (s) = n i=1 t 0 1 √ n 1 {Zi≤z} - S (0) j,z (s, β 0 ) S (0) j (s, β 0 ) 1 {Si=j} dN i (s). Now, recall that N i (t) = t 0 Y i (s)
J j=1 α 0,j (s)e β 0 Zi 1 {Si=j} ds + M i (t) and thus:

Q j n,z (t, β 0 ) = n i=1 t 0 1 √ n 1 {Zi≤z} - S (0) j,z (s, β 0 ) S (0) j (s, β 0 ) 1 {Si=j} Y i (s)α 0,j (s)e β 0 Zi ds + n i=1 t 0 1 √ n 1 {Zi≤z} - S (0) j,z (s, β 0 ) S (0) j (s, β 0 ) 1 {Si=j} dM i (s).
The first term in the right-hand side of this equality is 0 (straightforward calculations are omitted), which yields:

Q j n,z (t, β 0 ) := n i=1 t 0 1 √ n 1 {Zi≤z} - S (0) j,z (s, β 0 ) S (0) j (s, β 0 ) 1 {Si=j} dM i (s). (6) 
The process Q j n,z := (Q j n,z (•, β 0 )) is then a martingale with respect to the filtration i≤n F t,i . Let k, ∈ {1, . . . , Q} and t ∈ T . Using expression (6), we have:

Q j n,z k , Q j n,z (t) = n i=1 t 0 1 n 1 {Zi≤z k } - S (0) j,z k (s, β 0 ) S (0) j (s, β 0 ) × 1 {Zi≤z } - S (0) j,z (s, β 0 ) S (0) j (s, β 0 )
1 {Si=j} α 0,j (s)Y i (s)e β 0 Zi ds.

As n tends to infinity, Q j n,z k , Q j n,z (t) converges in probability to

C j z k ,z (t) := E t 0 1 {Z≤z k } 1 {Z≤z } 1 {S=j} α 0,j (s)Y (s)e β 0 Z ds -E t 0 1 {Z≤z k } s (0) j,z (s, β 0 ) s (0) j (s, β 0 ) 1 {S=j} α 0,j (s)Y (s)e β 0 Z ds -E t 0 1 {Z≤z } s (0) j,z k (s, β 0 ) s (0) j (s, β 0 ) 1 {S=j} α 0,j (s)Y (s)e β 0 Z ds +E t 0 s (0) j,z k (s, β 0 )s (0) j,z (s, β 0 ) (s (0) j (s, β 0 )) 2 1 {S=j} α 0,j (s)Y (s)e β 0 Z ds = E t 0 1 {Z≤z k } 1 {Z≤z } 1 {S=j} α 0,j (s)Y (s)e β 0 Z ds - t 0 s (0) j,z k (s, β 0 )s (0) j,z (s, β 0 ) s (0) j (s, β 0 ) α 0,j (s) ds.
Moreover, when j = j , we have: 

Q j n,z k , Q j n,z (t) = n i=1 t 0 1 n 1 {Zi≤z k } - S (0) j,z k (s, β 0 ) S (0) j (s, β 0 ) 1 {Zi≤z } - S (0) j ,z (s, β 0 ) S (0) j (s, β 0 ) ×1 {Si=j} 1 {Si=j } Y i (s) J m=1 α 0,m ( 
j,z k (s, β 0 ) := S (0) j,z k (s, β 0 )/S (0) 
j (s, β 0 ) and define the jump process Q

j n,z k , by Q j n,z k , (t, β 0 ) = n i=1 t 0 1 √ n 1 {Zi≤z k } -E (0) j,z k (s, β 0 ) 1 1 √ n 1 {Z i ≤z k } -E (0) j,z k (s,β0) > 1 {Si=j} dM i (s).
We have:

Q j n,z k , , Q j n,z k , (t) = n i=1 t 0 1 √ n 1 {Zi≤z k } -E (0) j,z k (s, β 0 ) 2 1 {Si=j} ×α 0,j (s)Y i (s)e β 0 Zi 1 1 √ n 1 {Z i ≤z k } -E (0) j,z k (s,β0) > ds.
By using the inequality |u -

v| 2 1 {|u-v|> } ≤ 4u 2 1 {|u|> /2} + 4v 2 1 {|v|> /2} , we obtain that Q j n,z k , , Q j n,z k , (t) is bounded above by 4 n n i=1 t 0 1 {Zi≤z k } 1 {1 {Z i ≤z k } > √ n/2} Y i (s)e β 0 Zi 1 {Si=j} α 0,j (s) ds + 4 n t 0 E (0) j,z k (s, β 0 ) 2 1 {|E (0) j,z k (s,β0)|> √ n/2} S (0) 
j (s, β 0 )α 0,j (s) ds.

When n is sufficiently large, 1

{1 {Z i ≤z k } >
√ n/2} = 0 for every i = 1, . . . , n and the first term is zero. The second term converges to zero in probability, as the event

|E (0) j,z k (s, β 0 )| > √
n/2 cannot be true for large n under conditions C1-C5. By Theorem 5.3.5 in [START_REF] Fleming | Counting Processes and Survival Analysis[END_REF], the process (Q

1 n (•, β 0 ) , . . . , Q J n (•, β 0 ) ) con- verges weakly in (D(T )) J•Q to a zero-mean Gaussian process (W 1 , . . . , W J ) (with W j := (W j 1 , . . . , W j Q ) ) with covariance function cov(W j k (t 1 ), W j (t 2 )) = C j z k ,z (min(t 1 , t 2 )) and cov(W j k (t 1 ), W j (t 2 )) = 0 if j = j , for k, = 1, . . . , Q. 2
Proof of Lemma 2 By a first-order Taylor expansion of β → Q j n,z (t, β) around β 0 , we have:

Q j n,z (t, β n ) -Q j n,z (t, β 0 ) = ( β n -β 0 ) ∂ ∂β Q j n,z (t, β n ),
where β n is on the line segment between β n and β 0 . The derivative ∂Q j n,z (t, β)/ ∂β is given by: Then, by Cauchy-Schwarz inequality,

∂ ∂β Q j n,z (t, β) = - 1 √ n t 0 H j,z ( 
Q j n,z (•, β n ) -Q j n,z (•, β 0 ) T ≤ β n -β 0 ∂ ∂β Q j n,z (•, β n ) T .
Under H 0 , β n converges in probability to β 0 as n tends to infinity and thus, β n -β 0 converges to zero. We prove that ∂ ∂β Q j n,z (•, β n )

T is bounded in probability. Let We prove that H j,z (•, β n ) -h j,z (•, β 0 ) T converges in probability to zero as n tends to infinity. We have:

H j,z (•, β n ) -h j,z (•, β 0 ) T ≤ n -1 S (1) j,z (•, β n ) n -1 S (0) j (•, β n ) - s (1) 
j,z (•, β 0 ) s We prove that U n,1 converges in probability to zero as n tends to infinity (arguments are similar for U n,2 and are thus omitted). Using the elementary equality un vn -u v = ( un v -uvn v 2 ) v vn , we obtain:

U n,1 = n -1 S (1) j,z (•, β n ) s (0) j (•, β 0 ) - s (1) 
j,z (•, β 0 )n -1 S (0)

j (•, β n ) (s (0) j (•, β 0 )) 2 s (0) j (•, β 0 ) n -1 S (0) j (•, β n ) T ≤ n -1 S (1) j,z (•, β n ) s (0) j (•, β 0 ) - s (1) 
j,z (•, β 0 )n -1 S (0)

j (•, β n ) (s (0) j (•, β 0 )) 2 T s (0) j (•, β 0 ) n -1 S (0) j (•, β n ) T ≤ 1 c 2 n -1 S (1) 
j,z (•, β n )s 

s)e β 0

 0 Zi 1 {Si=m} ds = 0 since 1 {Si=j} 1 {Si=j } = 0. Next, we verify Lindeberg condition (e.g., condition (3.18) of Theorem 5.3.5 in[START_REF] Fleming | Counting Processes and Survival Analysis[END_REF]). Let > 0, E

  s, β) d Mj (s), where Mj (s) = n i=1 1 {Si=j} M i (s) and H j,z (s, β) := S j (s, β)) 2.

  h j,z (s, β) := s

  j (s, β)) 2

.

  

2 T

 2 j (•, β n )) := U n,1 + U n,2 .

  j (•, β n ) Twhere the second to third line follows by condition C5. Now,n -1 S (1) j,z (•, β n )s (0) j (•, β 0 ) -s (1) j,z (•, β 0 )n -1 S (0) j (•, β n ) T ≤ n -1 S (1) j,z (•, β n )s (0) j (•, β 0 ) -s (1) j,z (•, β n )s (0) j (•, β 0 ) T + s (1) j,z (•, β n )s (0) j (•, β 0 ) -s (1) j,z (•, β 0 )s (0) j (•, β 0 ) T + s (1) j,z (•, β 0 )s (0) j (•, β 0 ) -s (1) j,z (•, β 0 )s (0) j (•, β n ) j,z (•, β 0 ) T s (0) j (•, β 0 ) -s (0) j (•, β n ) T + s (0) j -n -1 S (0) j T ×B.

Table 1 .

 1 3), we approximate the critical value (for an asymptotic level α = 0.05) by using the Monte Carlo procedure of Section 2.3 (with M = 5000) and finally, we apply the proposed decision rule. Empirical powers of the test under each alternative are reported in Table1(see rows labeled H 1,a , H 1,b , H 1,c , H 1,d ). Empirical size and power of the proposed test for various censoring proportions and sample sizes, with J = 3. All results are based on 10 5 simulated samples.

		(100, 110, 80)	(150, 175, 120)	(200, 225, 190)
	c	0.1	0.2	0.4	0.1	0.2	0.4	0.1	0.2	0.4
	H 0 0.0569 0.0679 0.0629 0.0436 0.0612 0.0629 0.0686 0.0505 0.0650
	H 1,a 0.6762 0.5408 0.4187 0.8177 0.6982 0.4683 0.9705 0.8443 0.5790
	H 1,b 0.6287 0.5320 0.4635 0.7577 0.7370 0.7216 0.9149 0.8600 0.8561
	H 1,c 0.7469 0.7239 0.6648 0.9178 0.9130 0.8563 0.9818 0.9779 0.9659
	H 1,d 0.6763 0.6483 0.4889 0.8423 0.8217 0.7897 0.9357 0.9191 0.8931

Table 2 (

 2 see rows labeled H 1,a , H 1,b , H 1,c , H 1,d ).

		(100, 110, 80, 110, 70) (150, 175, 120, 80, 110) (200, 225, 190, 150, 120)
	c	0.1	0.2	0.4	0.1	0.2	0.4	0.1	0.2	0.4
	H 0 0.0638 0.0612 0.0428 0.0401 0.0584 0.0502 0.0524 0.0624 0.0609
	H 1,a 0.7365 0.5967 0.2355 0.9341 0.8517 0.5581 0.9782 0.9263 0.6105
	H 1,b 0.4502 0.4335 0.3837 0.8079 0.7283 0.6823 0.8876 0.8794 0.8627
	H 1,c 0.8167 0.6616 0.5869 0.9195 0.9003 0.8830 0.9785 0.9718 0.9282
	H 1,d 0.5898 0.5233 0.5211 0.8018 0.7937 0.7955 0.9657 0.9541 0.9210

Table 2 .

 2 Empirical size and power of the proposed test for various censoring proportions and sample sizes, with J = 5. All results are based on 10 5 simulated samples.
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Appendix A. Proofs of Lemma 1 and Lemma 2.

Proof of Lemma 1 We use the martingale central limit theorem (e.g., Theorem 5.3.5 in [START_REF] Fleming | Counting Processes and Survival Analysis[END_REF]) to establish weak convergence of the process (Q 1 n (•, β 0 ) , . . . , Q J n (•, β 0 ) ). First, we provide an alternative expression for Q j n,z (t, β 0 ). For j = 1, . . . , J, let From Glivenko-Cantelli theorem, n -1 S

(1)

j,z (•, β 0 ) T are bounded by conditions C1 and C3. Thus, the quantity n -1 S (1)

to 1 and finally, U n,1 converges to zero. Convergence to zero of U n,1 and U n,2 implies that H j,z (•, β n )-h j,z (•, β 0 ) T converges in probability to zero. Now, we have:

where the o P (1) is uniform on T . This concludes the proof.
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Appendix B. Parameters values in the simulation study for J = 5.

For J = 5, we consider the following alternatives (respectively denoted by H 1,a , H 1,b , H 1,c and H 1,d in Table 2):

• non-proportional hazards model : the hazard function in stratum j is chosen as α j (t) = α j e 1.2Z1+1.5Z2×t , j = 1, . . . , 5. We take α 1 = 0.01, α 2 = 0.1, α 3 = 0.25, α 4 = 0.3, α 5 = 0.2.

• covariate thresold effect: the hazard function in stratum j is chosen as α j (t) = λ j α j t αj -1 e 1.7Z11 {Z 1 >ξ j } +0.5Z2 , j = 1, . . . , 5. We take (α 1 , λ 1 , ξ 1 ) = (1.5, 1, 0.6), (α 2 , λ 2 , ξ 2 ) = (0.5, 0.75, 1), (α 3 , λ 3 , ξ 3 ) = (1, 1.25, 0.8), (α 4 , λ 4 , ξ 4 ) = (0.75, 0.8, 1.2) and (α 5 , λ 5 , ξ 5 ) = (1, 0.8, 0.75).

• distinct regression parameters across strata: the hazard function in stratum j is chosen as α j (t) = λ j α j t αj -1 e β1,j Z1+β2,j Z2 , j = 1, . . . , 5. We take

and (α 5 , λ 5 , β 1,5 , β 2,5 ) = (1.5, 0.5, 0.15, 0.55).

• omitted covariates: the hazard function in stratum j is taken as α j (t) = λ j α j t αj -1 e Z1-0.7Z2+0.75Z3 (j = 1, . . . , 5) where the additional covariate Z 3 is distributed as a N (1, 0.25). We take (α 1 , λ 1 ) = (2.1, 1), (α 2 , λ 2 ) = (1.2, 0.75), (α 3 , λ 3 ) = (1.8, 1.5), (α 4 , λ 4 ) = (1.2, 1.25) and (α 5 , λ 5 ) = (0.5, 0.8).