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Abstract:  

This paper is about system simulation and co-

simulation issues such as interoperability. The 

Functional Mock-up Interface (FMI1) which is 

proposed as an interoperability standard has 

been studied in the field of the building energy 

systems to make an effective co-simulation of 

different models with heterogeneous time 

constants.  

A chaining algorithm based on scalar value 

exchanges is presented. Our experimental 

building (PREDIS Smart Building) has been 

modelled in different software environments 

for the thermal behaviour of the skin and for 

the heating and ventilation system. These 

models are loosely coupled with a same or a 

different temporal discretization.  

The results are about coupling mechanisms 

and their implementation using FMI standard. 

Moreover, for advanced coupling strategies, 

encountered difficulties and FMI specifications 

lacks are highlights. 

I. Introduction 

Recently, complex systems have become an 

important field of study, which attracts the 

interest of the researchers from different 

approaches. Energy systems associated to their 

control strategies, are an example of such a 

complex system which can benefit from holistic 

approaches in order to take emerging effects into 

account. Emerging effect is the case where the 

global behaviour is greater than the sum of the 

behaviour of their agents, and it strongly depends 

on the interactions between these agents. 

Simulation is an interesting approach for this 

study because it allows us to study the dynamic 

aspects of the system, while highlighting these 

behaviours and interactions. 
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Nowadays, it is common to use different models 

to simulate the behaviour of complex systems and 

products. These models are rarely interoperable 

with each other, and do not operate in an 

aggregate environment that would allow multi-

physics simulation of the entire system. 

The standard FMI (Functional Mock-up 

Interface) allows modelling tools (Dassault 

Dymola, LMS AMESim, ANSYS Simplorer, etc.) 

to generate C or binary code which represents a 

dynamic system model that can be fully integrated 

with other environmental modelling and 

simulations [1][2]. This is a standard "black box" 

representation of dynamic models, regardless of 

the tools or languages permitting their description. 

Firstly, a general presentation of simulators 

issues in the building field will be presented. 

Then, the paper focuses on the FMI standards as a 

solution to the interoperability problem. In the 

fourth part, we will present tools and the chaining 

algorithm in order to perform a simulation and a 

co-simulation using FMUs through a python 

interface. Finally, a simulation of a building, 

including ventilation and heating system will be 

presented as a use-case. 

II. Issues related to simulators 

• The multiplicity of simulation tools: 

In the area of Intelligent Building, 

simulation is becoming increasingly diverse and 

heterogeneous involving multiple components 

from different engineering fields. Hundreds of 

simulation tools have been developed to help 

architects, office designers of studies and 

researchers across the world and follow in the 

different phases of the project of a building. The 

US Department of Energy has identified2 more 

than 400 simulation tools related to the evaluation 

of energy efficiency, renewable energy and 

sustainable development in the building sector. 
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A proliferation of tools implies a broader 

coverage of diversity necessary models, but does 

not necessarily mean greater modelling ease. On 

the contrary, this variety represents a barrier at the 

time of selection of tools. Indecision problems in 

the selection can be discussed.  

• The non-suitability of simulation tools to new 

needs: 

The building is a constantly evolving 

area which may imply that tools widely used at a 

given time, may be discharged later because of 

their inability to follow developments in the 

sector. 

• The specialization of simulation tools: 

Many simulation tools have been 

developed in the building sector. However, there 

is no tool that is able to do everything itself. Each 

tool is generally dedicated to specific 

applications. 

• Needs interoperability between building 

simulation tools: 

We can summarize the issues related to 

building simulators as: 

- A sector in constant evolution imposes to 

dynamically meet the requirements and needs 

derived therefrom. 

- Various capacities and at the same time limited 

to specialties and data project phases. 

To overcome the limitations of specialization 

of existing simulation tools to meet the constantly 

changing requirements of users, it becomes 

necessary to use interoperability solutions to 

improve the modularity of tools (for import and 

export features) and / or to provide a collaborative 

work covering the simulation needs of the 

building system. 

In the following, the paper focuses on the 

standard Functional Mock-up Interface as an 

interoperability solution.     

III. The standard Functional 

Mock-up Interface  

Functional Mock-up Interface (FMI) is a tool 

independent standard to support both model 

exchange and co-simulation of dynamic models 

using a combination of xml-files and compiled C-

code. The first version, FMI 1.0, was published in 

2010, followed by FMI 2.0 in July 2014 [2]. 

From November 2011, several simulation 

tools have supported the FMI component is in 

import, export or both. An updated list of these 

tools and details can be found in the web pages of 

FMI3. 

To make a system simulation, FMI creates 

the virtual system assembled from a set of 

models, each representing a sub part of the system 

and each possessing its own behavioural laws. 

FMU (Functional Mock-up Unit), a 

component that implements the interface FMI, is 

a compressed file (.fmu) that contains the XML 

description (variable names, orientations, types, 

etc.) of the model and its implementation in 

binary code. 

Note that the FMI standard is still in 

development and this can lead to simulation bugs 

depending on the software implementation of the 

norm.   

1. FMU Model Exchange (FMU ME) 

This is a dynamic system model described by 

algebraic differential equations, discrete time 

equations, or state machines. These models can be 

very complex and require significant computing 

resources, but can also be used in real time in 

embedded control systems for micro-processors.  

The FMU ME uses the simulator solver to run the 

simulation (c.f. Figure 1). It must be coupled with 

this solver to integrate in time the model. 

 

 

Figure 1 FMU-ME and FMU-CS 

2. FMU Co-Simulation (FMU CS) 

The FMU CS contains its own solver that will 

be built when generating the tool (c.f. Figure 1). 

The advantage of this model is to combine two or 

more simulation tools in a co-simulation 

environment. The exchange of data between the 

subsystems is limited to "Communication Points". 

Between two “Communication Points”, the 
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subsystems are solved independently from each 

other by their individual solver. 

In a master-slave concept, slaves simulate sub-

problems while the master is responsible for the 

coordination of the overall simulation and data 

transfer [3][5][6]. To unify the interface between 

the master and slave, the FMU CS was developed. 

The master algorithm controls the exchange of 

data between subsystems and the synchronization 

of all the slaves of simulation solvers [6]. 

IV. Python library and chaining 

algorithm 

1. Python library : PyFMI4 

PyFMI is a python package dedicated to the 

FMI. PyFMI is used to load and introspect 

components of the FMU (ME and CS). A wrapper 

for the JModelica.org simulation software allows 

a simple simulation of these FMUs.  

2. Implementation in Python 

Two commands from the PyFMI package can 

make the simulation of an FMU : 

- The command "Model.simulate()" : This method 

allows the simulation of the model, with the 

default solver Assimulo, but can also be 

connected to other simulation algorithms. The 

simulation method for MODEL-EXCHANGE 

models and CO-SIMULATION (FMUModelME / 

FMUModelCS) has configuration parameters: 

start_time, final_time, input, algorithm = 

'AssimuloFMIAlg' and other options. 

- The command "Model.do_step()" : This method 

is specific for the co-simulation of several FMUs. 

It has configuration parameters: current_t, 

step_size, new_step. The "Model.set() " allows to 

introduce the values of the inputs.  

Main python commands for simulation: 

#FMU library 

from pyfmi import load_fmu #FMU command to 

load fmu file into FMU Object Model 

 

# FMU loading 

model = load_fmu(fmu_name) 

 

# Define input variable 
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u_traj = 

N.transpose(N.vstack((t_input,u_output))) 
input_object = ('u', u_traj) 

 

#Simulation of a ‘model’ 

res = model.simulate(final_time=t_end, 

input=input_object) 

 

# Get ‘x1’ and ‘x2’ outputs of the model. 

X1 = res['x1'] 

X2 = res['x2'] 

t = res['time'] 

Main python commands for co-simulation: 

#FMU library 

from pyfmi.fmi import FMUModelCS1   #FMU 

CS Object Model 

 # FMU loading 

model_A = 

FMUModelCS1('./models_CS/model_A_CS.fmu'

) 

model_A.initialize()     

  

# Set input variable: FMU_CS allow only 

constant input (no temporal) 

model_A.set("x2", X2) 

  

#Simulation of a ‘model’ (FMUModelCS1 class) 

for a synchronisation step. 

res = 

model_A.do_step(current_t=t,  step_size=hStep, 

new_step=True) 

  

# Get ‘x1’ output of the model. 

X1_A = model_A.get('x1') 

Note that the model.simulate() method is only 

used in a simulation context. Indeed, in a co-

simulation context, it can lead to an increase of 

the computation time. As a result, for a co-

simulation, the model.doStep() method is 

preferred .  

We have made available a complete tutorial on 

Dimocode platform5. Those methods are used in 

the following. 
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3. Chaining algorithm for co-simulation 

(loosely coupled) 

Chaining algorithm ensures low coupling 

between two subsystems, the entry of a model at a 

given time is the output of another model at the 

previous time [3][4]. The consistency of the 

coupling is then never checked but convergence is 

generally obtained with small enough steps. 

Figure 2 shows the steps of a weak coupling 

chaining two subsystems (SS). 

At the first time step, the initial solution of 

the sub-system 2 is exchanged to the sub-system 1 

in order to simulate the first sub-system (step 2). 

The solution of the sub-system 1 is then 

exchanged to the sub-system 2 (step 3) for the 

simulation of the sub-system 2 (step 4). In this 

case, it simulates the subsystem 2 for 4 time-

steps. 

 
Figure 2 : Chaining Algorithm 

In the following, the chaining algorithm is used 

for a co-simulation of building models.   

V. Application to the building 

simulation 

1. Description of the PREDIS platform6 

The platform PREDIS / MHI is dedicated to 

teaching, research and industrial innovation in the 

field of intelligent energy management of 

buildings. Established on 2500 m2 of premises 

INPG school ENSE3 France (School of energy, 

water and environment), the platform fits within 

PREDIS technological and scientific platform. Its 

vocation is to make available to all players in the 

energy of a training and research tool based on 

technology demonstrators developed through a 

strategy of alliances and partnerships with 

industry and local authorities. This platform aims 

at supporting work on the subject of energy 

efficiency at the scale of a building or territory, 
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efficiency and safety of power distribution 

networks, taking into account the diversity of 

sources and the ability of users to sell their 

electricity production. 

2. Sample of Models used to export FMUs: 

Several tools7 are compatible with the FMI 

interface at Export/Import for both components 

FMU, Model-Exchange (ME) and co-simulation 

(CS). 

Example: JModelica, Dymola, LMS AMESim, 

EnergyPlus, CATIA, NI LabVIEW, Ptolemy II, 

etc. 

Here is some model PREDIS exported as FMU: 

a.  PREDIS Building (LMS AMESim) 

It models the thermal and aeraulics parts of the 

PREDIS envelope: 

Inputs: External temperature (Text), solar 

contributions (Psun), and internal gains (Pheating). 

Outputs: internal temperature (Tinternal). 

Note that the internal gain is only represented by 

the heating power for simplicity. 

b. HVAC (LMS AMESim) 

It models the heating ventilation and air 

conditioning (HVAC) of the platform (cf. Figure 

3). 

Inputs: Temperature of injected fresh air & return 

air, air flows, heat exchanger rotation speed. 

Outputs: temperature of fresh air blown & stale 

air. 

 
Figure 3 : HVAC modelling (LMS AMESim) 

c. Heating System (Dymola) 

This model represents a type of hysteresis heating 

to regulate the temperature around 20°C. 

Inputs: internal temperature (Tinternal). 

Outputs: Heating power (Pheating). 

                                                           
7 https://www.fmi-standard.org/tools 



3. Simulation of the HVAC  

The HVAC model was simulated in LMS 

AMESim to obtain the reference values.  

The FMU generated from this model was 

simulated using the package PyFMI. 

The figures below show the validation of this 

method of simulation. Indeed, the deviations of 

the results from the simulation under AMESim 

are almost zero (see Figure 4 and Figure 5). 

 
Figure 4 : Comparison of Python _ PyFMI 

simulation results with AMESim 

 
Figure 5 : Deviation of simulation results in % 

4. Co-Simulation of the building and the 

heating system 

An application of the co-simulation algorithm 

(chaining) is applied on the FMUs models 

"PREDIS Building" and "Heating" generated 

from AMESim and Dymola. This will highlight 

the interest of the co-simulation to couple models 

from different tools (see Figure 6). 

 
Figure 6 : Co-simulation of FMUs PREDIS Building 

and Heating 

The Figure 7 shows the results of this co-

simulation which are coherent and meet 

expectations. The temperatures are well 

controlled around 20 ° C. 

 
Figure 7 : Results of co-simulation PREDIS 

Building and Heating 

The choice of the time step is the key point 

for the FMU co-simulation in terms of time 

consumption and accuracy.  

VI. Conclusion and Perspectives 

1. General conclusion  

The standard interface FMI allows, using these 

FMUs components, to perform co-simulations 

between different environments and tools of 

different kind (thermal, electrical, hydraulic ...), 

which offers the possibility to benefit from the 

expertise of every tool in its field and to couple 

them together. 
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The variety of tools and simulation environments 

that integrate these components makes FMUs 

more useful. 

2. Perspectives for co-simulation algorithm 

Co-simulation developed in the previous 

algorithm is simple, smarter co-simulations will 

be our goals in the following: 

- Advanced orchestration strategies [7]: 

In this approach, the concept of the event 

will be taken into account, which refines the co-

simulation. The FMU specifications are currently 

limited to simple strategies such as chaining. 

Event-based strategies are confronted with the 

available capacity in the components (via the 

standard it may be insufficient, but mostly 

because of the tools that generate FMU with the 

bare minimum). 

-  Waveform Relaxation Method – WRM [8]: 

 The idea is to combine several 

heterogeneous systems (different dynamics), the 

coupling being performed by an iterative method 

on the waveforms (see Figure 8). Each system is 

solved in time throughout the time domain 

considered, and its solution, the entire waveform 

source used for other systems.  

 

Figure 8 : Wave Form Relaxation Method 
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