
FMU software component orchestration strategies

for co-simulation of building energy systems

Abbass Raad, Vincent Reinbold, Benoit Delinchant and Frédéric Wurtz
Univ. Grenoble Alpes, CNRS, Grenoble INP, G2Elab, 38000 Grenoble, France

Email: firstname.name@g2elab.grenoble-inp.fr

Abstract:

This paper is about system simulation and co-

simulation issues such as interoperability. The

Functional Mock-up Interface (FMI1) which is

proposed as an interoperability standard has

been studied in the field of the building energy

systems to make an effective co-simulation of

different models with heterogeneous time

constants.

A chaining algorithm based on scalar value

exchanges is presented. Our experimental

building (PREDIS Smart Building) has been

modelled in different software environments

for the thermal behaviour of the skin and for

the heating and ventilation system. These

models are loosely coupled with a same or a

different temporal discretization.

The results are about coupling mechanisms

and their implementation using FMI standard.

Moreover, for advanced coupling strategies,

encountered difficulties and FMI specifications

lacks are highlights.

I. Introduction

Recently, complex systems have become an

important field of study, which attracts the

interest of the researchers from different

approaches. Energy systems associated to their

control strategies, are an example of such a

complex system which can benefit from holistic

approaches in order to take emerging effects into

account. Emerging effect is the case where the

global behaviour is greater than the sum of the

behaviour of their agents, and it strongly depends

on the interactions between these agents.

Simulation is an interesting approach for this

study because it allows us to study the dynamic

aspects of the system, while highlighting these

behaviours and interactions.

1 https://www.fmi-standard.org/

Nowadays, it is common to use different models

to simulate the behaviour of complex systems and

products. These models are rarely interoperable

with each other, and do not operate in an

aggregate environment that would allow multi-

physics simulation of the entire system.

The standard FMI (Functional Mock-up

Interface) allows modelling tools (Dassault

Dymola, LMS AMESim, ANSYS Simplorer, etc.)

to generate C or binary code which represents a

dynamic system model that can be fully integrated

with other environmental modelling and

simulations [1][2]. This is a standard "black box"

representation of dynamic models, regardless of

the tools or languages permitting their description.

Firstly, a general presentation of simulators

issues in the building field will be presented.

Then, the paper focuses on the FMI standards as a

solution to the interoperability problem. In the

fourth part, we will present tools and the chaining

algorithm in order to perform a simulation and a

co-simulation using FMUs through a python

interface. Finally, a simulation of a building,

including ventilation and heating system will be

presented as a use-case.

II. Issues related to simulators

• The multiplicity of simulation tools:

In the area of Intelligent Building,

simulation is becoming increasingly diverse and

heterogeneous involving multiple components

from different engineering fields. Hundreds of

simulation tools have been developed to help

architects, office designers of studies and

researchers across the world and follow in the

different phases of the project of a building. The

US Department of Energy has identified2 more

than 400 simulation tools related to the evaluation

of energy efficiency, renewable energy and

sustainable development in the building sector.

2 http://apps1.eere.energy.gov/buildings

A proliferation of tools implies a broader

coverage of diversity necessary models, but does

not necessarily mean greater modelling ease. On

the contrary, this variety represents a barrier at the

time of selection of tools. Indecision problems in

the selection can be discussed.

• The non-suitability of simulation tools to new

needs:

The building is a constantly evolving

area which may imply that tools widely used at a

given time, may be discharged later because of

their inability to follow developments in the

sector.

• The specialization of simulation tools:

Many simulation tools have been

developed in the building sector. However, there

is no tool that is able to do everything itself. Each

tool is generally dedicated to specific

applications.

• Needs interoperability between building

simulation tools:

We can summarize the issues related to

building simulators as:

- A sector in constant evolution imposes to

dynamically meet the requirements and needs

derived therefrom.

- Various capacities and at the same time limited

to specialties and data project phases.

To overcome the limitations of specialization

of existing simulation tools to meet the constantly

changing requirements of users, it becomes

necessary to use interoperability solutions to

improve the modularity of tools (for import and

export features) and / or to provide a collaborative

work covering the simulation needs of the

building system.

In the following, the paper focuses on the

standard Functional Mock-up Interface as an

interoperability solution.

III. The standard Functional

Mock-up Interface

Functional Mock-up Interface (FMI) is a tool

independent standard to support both model

exchange and co-simulation of dynamic models

using a combination of xml-files and compiled C-

code. The first version, FMI 1.0, was published in

2010, followed by FMI 2.0 in July 2014 [2].

From November 2011, several simulation

tools have supported the FMI component is in

import, export or both. An updated list of these

tools and details can be found in the web pages of

FMI3.

To make a system simulation, FMI creates

the virtual system assembled from a set of

models, each representing a sub part of the system

and each possessing its own behavioural laws.

FMU (Functional Mock-up Unit), a

component that implements the interface FMI, is

a compressed file (.fmu) that contains the XML

description (variable names, orientations, types,

etc.) of the model and its implementation in

binary code.

Note that the FMI standard is still in

development and this can lead to simulation bugs

depending on the software implementation of the

norm.

1. FMU Model Exchange (FMU ME)

This is a dynamic system model described by

algebraic differential equations, discrete time

equations, or state machines. These models can be

very complex and require significant computing

resources, but can also be used in real time in

embedded control systems for micro-processors.

The FMU ME uses the simulator solver to run the

simulation (c.f. Figure 1). It must be coupled with

this solver to integrate in time the model.

Figure 1 FMU-ME and FMU-CS

2. FMU Co-Simulation (FMU CS)

The FMU CS contains its own solver that will

be built when generating the tool (c.f. Figure 1).

The advantage of this model is to combine two or

more simulation tools in a co-simulation

environment. The exchange of data between the

subsystems is limited to "Communication Points".

Between two “Communication Points”, the

3 https://www.fmi-standard.org/tools

subsystems are solved independently from each

other by their individual solver.

In a master-slave concept, slaves simulate sub-

problems while the master is responsible for the

coordination of the overall simulation and data

transfer [3][5][6]. To unify the interface between

the master and slave, the FMU CS was developed.

The master algorithm controls the exchange of

data between subsystems and the synchronization

of all the slaves of simulation solvers [6].

IV. Python library and chaining

algorithm

1. Python library : PyFMI4

PyFMI is a python package dedicated to the

FMI. PyFMI is used to load and introspect

components of the FMU (ME and CS). A wrapper

for the JModelica.org simulation software allows

a simple simulation of these FMUs.

2. Implementation in Python

Two commands from the PyFMI package can

make the simulation of an FMU :

- The command "Model.simulate()" : This method

allows the simulation of the model, with the

default solver Assimulo, but can also be

connected to other simulation algorithms. The

simulation method for MODEL-EXCHANGE

models and CO-SIMULATION (FMUModelME /

FMUModelCS) has configuration parameters:

start_time, final_time, input, algorithm =

'AssimuloFMIAlg' and other options.

- The command "Model.do_step()" : This method

is specific for the co-simulation of several FMUs.

It has configuration parameters: current_t,

step_size, new_step. The "Model.set() " allows to

introduce the values of the inputs.

Main python commands for simulation:

#FMU library

from pyfmi import load_fmu #FMU command to

load fmu file into FMU Object Model

FMU loading

model = load_fmu(fmu_name)

Define input variable

4 http://www.jmodelica.org/page/4924

u_traj =

N.transpose(N.vstack((t_input,u_output)))
input_object = ('u', u_traj)

#Simulation of a ‘model’

res = model.simulate(final_time=t_end,

input=input_object)

Get ‘x1’ and ‘x2’ outputs of the model.

X1 = res['x1']

X2 = res['x2']

t = res['time']

Main python commands for co-simulation:

#FMU library

from pyfmi.fmi import FMUModelCS1 #FMU

CS Object Model

 # FMU loading

model_A =

FMUModelCS1('./models_CS/model_A_CS.fmu'

)

model_A.initialize()

Set input variable: FMU_CS allow only

constant input (no temporal)

model_A.set("x2", X2)

#Simulation of a ‘model’ (FMUModelCS1 class)

for a synchronisation step.

res =

model_A.do_step(current_t=t, step_size=hStep,

new_step=True)

Get ‘x1’ output of the model.

X1_A = model_A.get('x1')

Note that the model.simulate() method is only

used in a simulation context. Indeed, in a co-

simulation context, it can lead to an increase of

the computation time. As a result, for a co-

simulation, the model.doStep() method is

preferred .

We have made available a complete tutorial on

Dimocode platform5. Those methods are used in

the following.

5 http://www.v3.dimocode.fr > Composants

MUSE > FMU Components > "TUTORIAL for

using FMU-CS with Python"

3. Chaining algorithm for co-simulation

(loosely coupled)

Chaining algorithm ensures low coupling

between two subsystems, the entry of a model at a

given time is the output of another model at the

previous time [3][4]. The consistency of the

coupling is then never checked but convergence is

generally obtained with small enough steps.

Figure 2 shows the steps of a weak coupling

chaining two subsystems (SS).

At the first time step, the initial solution of

the sub-system 2 is exchanged to the sub-system 1

in order to simulate the first sub-system (step 2).

The solution of the sub-system 1 is then

exchanged to the sub-system 2 (step 3) for the

simulation of the sub-system 2 (step 4). In this

case, it simulates the subsystem 2 for 4 time-

steps.

Figure 2 : Chaining Algorithm

In the following, the chaining algorithm is used

for a co-simulation of building models.

V. Application to the building

simulation

1. Description of the PREDIS platform6

The platform PREDIS / MHI is dedicated to

teaching, research and industrial innovation in the

field of intelligent energy management of

buildings. Established on 2500 m2 of premises

INPG school ENSE3 France (School of energy,

water and environment), the platform fits within

PREDIS technological and scientific platform. Its

vocation is to make available to all players in the

energy of a training and research tool based on

technology demonstrators developed through a

strategy of alliances and partnerships with

industry and local authorities. This platform aims

at supporting work on the subject of energy

efficiency at the scale of a building or territory,

6http://predis.grenoble-inp.fr/smartbuilding

efficiency and safety of power distribution

networks, taking into account the diversity of

sources and the ability of users to sell their

electricity production.

2. Sample of Models used to export FMUs:

Several tools7 are compatible with the FMI

interface at Export/Import for both components

FMU, Model-Exchange (ME) and co-simulation

(CS).

Example: JModelica, Dymola, LMS AMESim,

EnergyPlus, CATIA, NI LabVIEW, Ptolemy II,

etc.

Here is some model PREDIS exported as FMU:

a. PREDIS Building (LMS AMESim)

It models the thermal and aeraulics parts of the

PREDIS envelope:

Inputs: External temperature (Text), solar

contributions (Psun), and internal gains (Pheating).

Outputs: internal temperature (Tinternal).

Note that the internal gain is only represented by

the heating power for simplicity.

b. HVAC (LMS AMESim)

It models the heating ventilation and air

conditioning (HVAC) of the platform (cf. Figure

3).

Inputs: Temperature of injected fresh air & return

air, air flows, heat exchanger rotation speed.

Outputs: temperature of fresh air blown & stale

air.

Figure 3 : HVAC modelling (LMS AMESim)

c. Heating System (Dymola)

This model represents a type of hysteresis heating

to regulate the temperature around 20°C.

Inputs: internal temperature (Tinternal).

Outputs: Heating power (Pheating).

7 https://www.fmi-standard.org/tools

3. Simulation of the HVAC

The HVAC model was simulated in LMS

AMESim to obtain the reference values.

The FMU generated from this model was

simulated using the package PyFMI.

The figures below show the validation of this

method of simulation. Indeed, the deviations of

the results from the simulation under AMESim

are almost zero (see Figure 4 and Figure 5).

Figure 4 : Comparison of Python _ PyFMI

simulation results with AMESim

Figure 5 : Deviation of simulation results in %

4. Co-Simulation of the building and the

heating system

An application of the co-simulation algorithm

(chaining) is applied on the FMUs models

"PREDIS Building" and "Heating" generated

from AMESim and Dymola. This will highlight

the interest of the co-simulation to couple models

from different tools (see Figure 6).

Figure 6 : Co-simulation of FMUs PREDIS Building

and Heating

The Figure 7 shows the results of this co-

simulation which are coherent and meet

expectations. The temperatures are well

controlled around 20 ° C.

Figure 7 : Results of co-simulation PREDIS

Building and Heating

The choice of the time step is the key point

for the FMU co-simulation in terms of time

consumption and accuracy.

VI. Conclusion and Perspectives

1. General conclusion

The standard interface FMI allows, using these

FMUs components, to perform co-simulations

between different environments and tools of

different kind (thermal, electrical, hydraulic ...),

which offers the possibility to benefit from the

expertise of every tool in its field and to couple

them together.

286
288
290
292
294
296
298
300
302
304

0 50000 100000150000200000250000300000

te
m

p
e

ra
tu

re
 (K

)

Time (s)

Temp_Out_AN_FMU Temp_Out_AR_FMU

Temp_Out_AN Temp_Out_AR

-0.10%

-0.05%

0.00%

0.05%

0.10%

0 100000 200000 300000

Time (s)

Ecart_Temp_Out_AN

Ecart_Temp_Out_AR

0

100

200

300

400

500

600

700

800

900

1000

19

20

21

0 100000 200000

H
e

at
in

g
p

o
w

e
r

(W
)

Te
m

p
e

ra
tu

re
 (°

C
)

Time (s)

0

200

400

600

800

1000

19

20

21

0 10000 20000 30000

H
e

at
in

g
p

o
w

e
r

(W
)

Te
m

p
é

ra
tu

re
 (°

C
)

Time (s)
T_info T_bureau

P_info P_bureau

The variety of tools and simulation environments

that integrate these components makes FMUs

more useful.

2. Perspectives for co-simulation algorithm

Co-simulation developed in the previous

algorithm is simple, smarter co-simulations will

be our goals in the following:

- Advanced orchestration strategies [7]:

In this approach, the concept of the event

will be taken into account, which refines the co-

simulation. The FMU specifications are currently

limited to simple strategies such as chaining.

Event-based strategies are confronted with the

available capacity in the components (via the

standard it may be insufficient, but mostly

because of the tools that generate FMU with the

bare minimum).

- Waveform Relaxation Method – WRM [8]:

 The idea is to combine several

heterogeneous systems (different dynamics), the

coupling being performed by an iterative method

on the waveforms (see Figure 8). Each system is

solved in time throughout the time domain

considered, and its solution, the entire waveform

source used for other systems.

Figure 8 : Wave Form Relaxation Method

VII. Acknowledgment

Alexandre LEBLOND, Engineer from LMS

Imagine for his help in modelling using AMESim

software. And the French National Agency : ANR

Precision. « VILLES ET BATIMENTS

DURABLES »

VIII. Bibliography

[1] Blochwitz T., Otter M., Arnold M., Bausch

C., Clauß C., Elmqvist H., Wolf S. The

functional mockup interface for tool

independent exchange of simulation models.

In 8th International Modelica Conference,

2011, Dresden (pp. 20-22).

[2] Blochwitz T., Otter M., Åkesson J., Arnold

M., Clauss C., Elmqvist H., Viel A.

Functional mockup interface 2.0: The

standard for tool independent exchange of

simulation models. In 9th International

Modelica Conference, 2012.

[3] Wetter, M. Co-simulation of building energy

and control systems with the Building

Controls Virtual Test Bed. Journal of

Building Performance Simulation, Taylor &

Francis, 2011, 4, 185-203.

[4] Sicklinger S., Belsky V., Engelmann B.,

Elmqvist H., Olsson H., Wüchner R., &

Bletzinger K. U. Interface Jacobian‐based

Co‐Simulation. International Journal for

Numerical Methods in Engineering, 98(6),

418-444, 2014.

[5] Broman D., Brooks C., Greenberg L.,

Edward A. L., Masin M., Tripakis S., Wetter

M. Determinate Composition of FMUs for

Co-Simulation, In Proceedings of the 13th

International Conference on Embedded

Software (EMSOFT), Montreal, Canada,

September 29 - October 4, 2013.

[6] Bastian J., Clauß C., Wolf S., Schneider P.

Master for co-simulation using FMI. In 8th

International Modelica Conference, Dresden,

2011.

[7] Gaaloul S., Le X. H. B., Delinchant B.,

Wurtz F., Ploix S. Architecture à composants

de co-simulation appliquée au couplage de la

thermique du bâtiment au comportement de

l'usager. In Journées AUGC et IBPSA 2012.

[8] Lelarasmee E., Ruehli A. E., Sangiovanni-

Vincentelli A. L. The waveform relaxation

method for time-domain analysis of large

scale integrated circuits. Computer-Aided

Design of Integrated Circuits and Systems,

IEEE Transactions on, 1(3), 131-145, 1982.

