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ON THE REFLECTED RANDOM WALK ON R;.

JEAN-BAPTISTE BOYER

IMB, Université de Bordeauxr / MODAL’X, Université Paris-Ouest Nanterre

ABSTRACT. Let p be a borelian probability measure on R having a moment of order
1 and a drift A = [, ydp(y) < 0.
Consider the random walk on R, starting at z € Ry and defined for any n € N by

X() =X
Xn+1 = |Xn+Yn+1|

where (Y5) is an iid sequence of law p.
We note P the Markov operator associated to this random walk. This is the operator
defined for any borelian and bounded function f on Ry and any x € Ry by

Pf() = / £z + y)dp(y)

For a borelian bounded function f on Ry, we call Poisson’s equation the equation
f = g — Pg with unknown function g.

In this paper, we prove that under a regularity condition on p, for any directly
Riemann-integrable function, there is a solution to Poisson’s equation and using the
renewal theorem, we prove that this solution has a limit at infinity.

Then, we use this result to prove the law of large numbers, the large deviation
principle, the central limit theorem and the law of the iterated logarithm.
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INTRODUCTION

Let p be a borelian probability measure on R having a moment of order 1 and a drift

A= Jpydp(y) <O0.
Consider the random walk on R starting at € R, and defined for any n € N by

XQ =T
Xn+1 - ’Xn + Yn—i—l‘

where (Y},) is an iid sequence of law p.
We note P the Markov operator associated to this random walk. This is the operator
defined for any borelian and bounded function f on Ry and any = € Ry by

Pi(x) = / £(lz + y))dp(y)

The aim of this article is to study this Markov chain and to do so, we will use a
standard technique (known as Gordin’s method) which consists in finding a solution g
to the “Poisson equation” g — Pg = f for f in a certain Banach space.

Using results of Glynn and Meyn, we will prove that under a regularity assumption
on the measure p, there always is a solution to this equation if f is borelian and bounded
but this solution will not be bounded in general and this prevents us from studying the
large deviation principle and complicates the study of the central limit theorem and of
the law of the iterated logarithm.

However, we will see in section 1 that the solution to Poisson’s equation satisfies some
equations (see proposition 1.3) and using a “stopped” renewal theorem that we will state
in section 2 (see corollary 2.6) we will prove the following

Corollary (3.7). Let p be an absolutely continuous probability measure on R having a
moment of order 1, a negative drift X = [pydp(y) < 0 and such that p(R%.) > 0. Let
(Xp) be the reflected random walk on Ry defined by p.

Let v be the unique stationary probability measure on R (it exists according to [Leg89]
or [PW06] ).

Then, for any directly Riemann-integrable function f on Ry such that [ fdv = 0,
there is a bounded and a.e. continuous function g on Ry such that

f=g-Pgand lim g(x)=0
This will allow us to prove the following

Proposition (3.8 and 3.11). Let p be an absolutely continuous probability measure on R
having a moment of order 1, a negative drift A\ = [ ydp(y) < 0 and such that p(R%.) > 0.
Let (X,,) be the reflected random walk on Ry defined by p.
For any directly Riemann-integrable function f on Ry such that | fdv =0, there are
constants C1,Cy € R such that for any € €]0,1], any x € Ry and any n € N*,

_ 2

n—1

lZf(ch)
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In particular, for any x € Ry,

1 n—1
- Z f(X) = 0 Py-a.e. and in L'(P,)
k=0

Moreover, is p as a moment of order 2 + ¢ for some € € R, then, for any directly
Riemann-integrable function f on Ry with [ fdv =0 and any z € Ry,

n—1
— ) f(Xk) = N(0,6%(f))
\/ﬁ k=0
Where we noted N'(0,0) the Dirac mass at 0 and

20\ 2 24y
U(f)—/R+g (Pg)=d

with g the bounded function given by corollary 3.7 and such that f = g — Pg.
Moreover, if o2(f) # 0, then
Yo f(Xk)

Zz;é J(X) =1 a.e. and liminf = =—1la.e.
V2n0?(f)Inln(n) V2no?(f)Inln(n)

lim sup

1. INDUCED MARKOV CHAINS

The aim of this section is to study the process of induction of Markov
chains by stopping times and to link the induced chain to the original
one. We study it in a general case as it doesn’t use any particular
property of the reflected random walk.

1.1. Definitions. Let (X,,) be a Markov chain on a standard Borel space X. We define
a Markov operator on X setting, for a borelian function f and z € X,

Pf(x) =E[f(X1)[Xo = z]

Given a stopping time 7, we can study the Markov chain (X;n ),en where 7" is defined
by
((Xy)) =0
(X)) = TH(() + 7 (07 (X))

where 6 stands for the shift on XN,
We note @ the sub-Markov operator associated to (X;»), that is, for a borelian func-
tion g on X and = € X,

Qo)) = /{ . SR

If, for any =z € X, P,({T < +00}) =1, then Q is a Markov operator.
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Finally, we define two other operator on X setting, for a borelian non negative func-
tion f and z € X,

(1.1) Sf(x) = /{ | JOaR(Xa)

(1.2) Rf(x) = /{ o T SO ()

Definition 1.1 (§—compatible stopping times).
We say that a stopping time 7 is §—compatible if for all z € X, P,({7 = 0}) = 0 and
for P,—a.e. (X,) € XN, 7((X,)) = 2 implies that 7(0(X,,)) = 7((X,)) — 1.
Example 1.2. Let Y be a borelian subset of X and 7y the time of first return in Y:
7y ((Xp)) =inf{n e N*; X,, e Y}
Then, Ty is #—compatible.
Moreover, 73 as we defined it coresponds to the time of n-th return to Y.
For x € X, we set u(z) = E,7y and we call Y strongly Harris-recurrent if u is finite

on X. This imply in particular that for any x in X, 7y is P,—a.e. finite.
Indeed for any borelian non negative function f and any z € X, we have that

= E, T=n
Qf(x) /{ o Z F(Xn) 7oy
+oo
= Eof (Xn)lye(X1) .. Lye(Xpo1)1y (Xn)
1;01 —+00
= (Ply)" 'P(fly) = Y (Ply:)"P(fly)
n=1 n=0
Rf(x) = / F(Xo) 4+ F(Xy1)dB, = ZM L ronis)
{T<+oo}

+ZE$f 2)lye(X1) .. 1ye(X,)

—+00

- <f(x) + Z(myc)"(f)(x)) =Y (Plye)"(f)(@)
n=1

n=0
s = [ o= [ foaty (e, = p(riy)

Thus, we have that (R+ Q)f = (I + RP)f, RSf = Qf, (P —S)Qf = P(1y-Qf) =
Qf —Sfand (P—S)Rf=P(1y<Rf)=Rf— f.

Note that P,Q,R,S,P — 5,QQ — S and R — I; are positive operators and so the
computations we made make sense for any non negative borelian function f.

Next lemma generalizes those relations for any #—compatible stopping time.
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Proposition 1.3. Let 7 be a 0—compatible stopping time such that for any r € X, T is
P,.—a.e. finite.
For any non negative borelian function f on X, we have :

(R+Q)f = (I4+ RP)f
(I + PR)f = (I + S)Rf
(Ii+ 8)Qf = (S + PQ)f

RSf = Qf

Proof. Let f be a borelian non negative function on X and z € X.
Using the Markov property and 7 being a §—compatible stopping time, we have that
for any n € N*|

E:vf(Xn)l{TZn} = E:va(anl)]-{T>n}
And so,

“+o00
(R+Q)f () =Eaf(Xo) + -+ + f(X2)dP = Ey Y f(Xn) 17y
n=0

+o0
= f(@) + ) EoPf(Xn-1)1(rzny = f(x) + RPf(x)
n=1
Moreover, as 7 is §—compatible,

/ Rf(X1)dP,((X,))) = / FE0) 4 F(X ) dPL((X,)
{r>2} {r>2}
Thus,

@)+ PRE) = f(x) + /{ .

— f(z) + SRf(z) + / SO+ FX) AP (X))

{r>2}

R (X1)dPy((X,)) + /{ RCEATRER)

— SRf(x) + / F(Xo) 4+ F(X1)dP,((X,)) = SRF(x) + R(x)
Then, by definition of S, f{r:l} F(X)dP.((X,)) = f{r:l} f(X)dP.((Xy)), so,
Sf(x) + PQf(r) = / ey (F(X0) + QF(X1)) + 1gragy F(X)dPL((X,)
= 5Qf(z) + Qf )

Finally, for any n € N*,

EpSf(Xn-1)1{ron = / f(Xn41)
{r=n+1}
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therefore,
RSf(z) =E, ZSf nD)1{ron) —ZE SF(Xn-1)1{rony

Z Xp+1) r=ni1y = Qf (2)

And this finishes the proof of this proposition. O

Lemma 1.4. Let (X,,) be a Markov chain on a standard borelian space X.

Let v be a finite P—invariant measure on X and 7 a 0—compatible stopping time such
that for v-a.e x € X, limy, 00 Pr(T7 > n) = 0.

Then, for any non negative borelian function f on X, we have

/deu:/XSRfdy

Proof. According to proposition 1.3, f + PRf = Rf + SRf. So, if Rf € L}(X,v), as v
is P—invariant, we get the lemma.

If f ¢ LY(X,v), we will get the lemma by approximation.

First, we assume that f is bounded. In general, Rf & L'(X,v) so, we approximate it
with a sequence of integrable functions.

More precisely, for n € N*, we note R,, the operator defined like R but associated to
the stopping time min(n,7) (which is not §—compatible).

That is to say, for a borelian non negative function f and any z € X,

R f(x) = B, f(Xk)

As {min(7,n) = 1} = {7 = 1} for n > 2, the operator S associated to min(r,n) does
not depend on n for n > 2.

As min(7,n) is not §—compatible, we can’t use proposition 1.3, but we have for n > 2,
that

min(ro0,n)—1
PRuf(x) =B, > f(Xer1)
k=0
min(r7—1,n)—1
= SRJ)+ [ S f(Xe)dP,
{r>2} k=0
min(7,n+1)—1
— SRuf(x) + /{ Y KR = SRS+ Raaf — f
T>2

k=1
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And, as f is bounded, for any = € X, |R,f(z)| < n||f|lcc and so R, f is integrable
since p is a finite measure and,

/SRnf—fdu:/PRnf—Rn+1fdu:/Rnf—Rn+1fdu
— [ FE o P (X (o)

_ / Pf(Xn-1)1rondPu((X,))dv()
So,

'/SRnf—fdu

and using the monotone convergence theorem, we get the expected result for borelian
bounded functions.

If f is not bounded and non-negative, we take an increasing sequence (f;,) of bounded
positive functions which converges to f and we get the expected result by monotone
convergence. ]

< | fllso /X P,({T = n})dv(z) — 0 (by monotone convergence)

Example 1.5. If 7 is the return time to some strongly Harris-recurrent set Y, then
Sf(xz) = P(f1y)(x). Moreover for every P—invariant measure v and every f € L (X, v),
such that Rf is v—a.e. finite, fX SRfdv = fY Rfdv.

In particular, with f = 1, we have that, [y, Erdv = v(X). This is Kac’s lemma for
dynamical systems.

1.2. Application to the study of invariant measures. In this subsection, X is a
complete separable metric space endowed with it’s Borel tribe and “measure” stands for
“borelian measure”. We assume that there exist (at least) a P—invariant probability
measure on X.

We also fix a §—compatible stopping time 7 such that for any = in X, E,7 is finite.

Lemma 1.6. Let p be a finite non-zero P—invariant borelian measure on X. Then,
S*u is a finite non-zero QQ—invariant measure on X.
Moreover, R*S*u = p and S*u is absolutely continuous with respect to p.

Proof. First, for all non negative f € B(X) and all z € X, Sf(z) < Pf(x).

So, [Sfdu < [Pfdp = [ fdu since p is P—invariant and f is bounded. And this
proves that S*u is absolutely continuous with respect to pu. So, as Fubuni’s theorem
proves that it is o—additive, S*u is a finite measure on X.

Moreover, we saw in lemma 1.4 that for all non negative borelian function f on X,
J SRfdu = [ fdu and this proves that R*S*u = p.

Then, we need to prove that S*u(X) > 0. But, for all z € X
PFS(1)(x) = E.S1(Xy) > Po({r =k +1})
So, 02 PS(1) = Po({7 < n+1}). And, as p is P—invariant, taking the integral
on both sides, we get that,

nS*u(X) > / Bl <nduta)
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Finally, we use that for p-a.e. x € X, lim,, P,(7 < n) = 1 and the dominated convergence
theorem, tells us that 0 < u(X) < limnS*u(X), so S*u(X) > 0. O

Lemma 1.7. Let v be a non-zero Q—invariant borelian measure on X. Then, R*v is a
non zero P—invariant measure on X.

Moreover, S*R*v = v and v is absolutely continuous with respect to R*v.

Finally, if QR(1) is bounded on X, then R*v is a finite measure if and only if v is.

Remark 1.8. The technical assumption (QR1 bounded on X is reasonable.

More specifically, using the same notations as in remark 1.2, we call Y linearily
recurrent if sup,cy Ey7y is finite.

In this case, R1(x) = E;7y and QR1(r) = E;R1(X~,) < sup,cy Ey7y since for any
z e X, Py(Xry €Y) =1 be definition of Ty.

Proof. To prove that R*u is a measure, one just have to prove that it is c—additive.
Let (A,) be a sequence of pairwise disjoint borelian subsets of X and n € N. As R is
a linear operator, we have that [ R(1yp_ a,)dv = Soh_o [ R14,dv, thus, R*v is finitely
additive. But, according to the monotone convergence theorem, the left side of this
equation converges to [ R(1yua,)dr and this finishes the proof that R*v is c—additive.

Moreover, for all non negative f € B(X), f < Rf,sov(f) < v(Rf) and v is absolutely
continuous with respect to R*v and R*v(X) > 0.

Then, proposition 1.3 shows that for any positive borelian function f, Rf + Qf =
f+ RPf. Applying this to f = 14 for some borelian set A, and taking the integral over
v, we get that [ R14 4+ Q1ladv = [ 14+ RP14dv. But, v is Q—invariant so if v(A) is
finite, we get that [ R1adv = [ RP1adv. If v(A) is infinite, the result still holds since
in this case, [ R1adv = v(A) = Q*v(A) = [ RP14dv = +oo. Thus, for any borelian
set A, R*v(A) = P*R*v(A) that is to say, R*r is P—invariant.

As RS = @ and v is Q—invariant, we directly have that S*R*v = v.

For the last point, assume that QR(1) is a bounded function on X.

If R*v is finite, then so is v since v(X) < R*v(X).

Assume that v is finite. Then according to Chacon-Ornstein’s ergodic theorem (see
chapter 3 theorem 3.4 in [Kre85]), there exist a (Q—invariant non negative borelian
function ¢* such that [ ¢g*dv = [ R1dv and for v—almost every z € X,

n—1
LS QPRI = g ()
k=0

And, since QR is bounded on X and R1(z) = E,7 is finite, we get that ¢*(z) < ||QR||~
for v—a.e x € X. So, g € L™¥(X,v) C LY(X,v) since v(X) < +oo and [ Rldv <
[QR[oov(X) < +00. 0

We saw in the previous lemmas that R ans S act on invariant measure. As they
are linear operators and the set of invariant measures is convex, next proposition shows
that they also preserve the ergodic measures (in some sense since they do not preserve
probability measures).
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Corollary 1.9. Let (X,) be a Markov chain on a complete separable metric space X
and T a 0—compatible stopping time such that for any x € X, E,7 is finite. Define P,
Q, R and S as previously and assume that QR1 is bounded on X.

Then, S* and R* are reciproqual linear bijections between the P—invariant finite mea-
sures and the QQ—invariant ones which preserve ergodicity.

Proof. We already saw in lemma 1.6 and 1.7 that S* (resp R*) maps the P—invariant
(resp. Q—invariant) finite non zero measures onto the ()—invariant (resp. P—invariant)
ones and that they are reciproqual to each-other.

Thus, it remains to prove that the image by S* or R* of an ergodic measure still
is ergodic. To do so, we use the linearity of S* and R* and that ergodic probability
measures are extreme points of the set of invariant probability measures for a Markov
chain in a complete separable metric space.

Let 1 be a P—ergodic finite non zero measure. We assume without any loss of gener-
ality that u is a probability measure. We saw in lemma 1.6 that S*u is a Q—invariant
non zero finite measure.

Assume that S*u = S*u(X)(tvy + (1 — t)vz) where v and vy are two (Q—invariant
probability measures and t € [0, 1].

Then, we get that p = R*S*u = S*u(X)(tR*v1 + (1 — t)R*1»). But u is ergodic, so
ﬁ(X)R*ul = ﬁ(x)R*ug. And applyting S* again, we obtain that 1y = v, hence,
S*p is QQ—ergodic.

The same proof holds to show that if v is Q—ergodic, then R*v is P—ergodic. U

2. INDUCTION AND THE RENEWAL THEOREM
In this section, we use the renewal theorem on R to prove a “stopped
renewal theorem” in corollary 2.6.

Let p be a borelian probability measure on R and define a random walk on R starting
at x € R by

XQ = x
21) { Xny1 = Xpn+Yan
where (Y;,) has law p®N.
We assume that p has a moment of order 1 and a negative drift A = [ ydp(y) < 0.
In particular, for p®N—a.e (Y;,) € RY, S°1_ Y}, converges to —oo.
We note P the Markov operator associated to p. This is the operator defined for any
bounded borelian function f on R and any = € R by

Pf(z) = /]R f(z+y)dp(y)

We note 7 the time of first return to | — 00, 0] :
7((Xp)) = inf{n € N*, X, €] —00,0]}

This is a ¥—compatible stopping time and our assumption on p implies (see P1 in section
18 of [Spi64]) that for any x € R,
E,7 < 40



10 ON THE REFLECTED RANDOM WALK ON R.

In this section, we are interested in the operator R defined as in section 1 for any non
negative borelian function f on R and any x € R by

T—1
Rf(x) :=E; Y  f(X)
k=0

The study of the operator is very close from renewal theory : indeed, if p(Ry) = 0
and f is null on R* ;| then for any = € R,
“+o0o
Rf(x)=>_ P"f(x)
n=0

Therefore, we make the following definition that is usual in renewal theory :
Definition 2.1. Let f be a borelian function on R. We say that f is directly Riemann-
integrable if

lim A inf f(z)|= lim h sup fx)] < 400
h—0+ nezxe[nh7(n+1)h]| (@) h—0+ nezgge[nh,(n+1)h}| @)

In the sequel, we will use the following characterisation

Lemma 2.2 (Lebesgue’s criterion for Riemann-integrability). Let f be a bounded func-
tion on R.

Then, f is directly Riemann integrable if and only if it is a.e. continuous and for
some h € R |

sup  [f(z)] < 400
nel z€[nh,(n+1)h]

In the next three lemmas, we are going to prove that, noting R, .S the operators defined
as in section 1 and associated to 7, then for any directly Riemann-integrable function f,
SRf is also directly Riemann-integrable.

Lemma 2.3. Let p be a borelian probability measure on R having a moment of order 1
and a negative drift X = [ ydp(y) < 0.

Note T the time of first return to | — 00,0] and R the associated operator defined as in
section 1.

Then, for any directly Riemann-integrable function f on R, the function Rf is bounded
on R.

Proof. To prove this proposition, we are going to use the classical renewal theorem.
Indeed, for any « € R we have that

T—1 ~+00 +oo
IRf(2)] < RIf|(z) = Fa Y IF(X) SEx D> [f(X0)] =D P f|()
k=0 n=0 n=0

But, if the measure is non-lattice!, according to the renewal theorem (see [Fel71]), we
have that

oo =
R S S
JCEIPoonz;)p |f|(z) =0 and xEI—EOOnZ:OP |f[(z) = ) /R|f|d1/

IFor any o € R, p(aZ) < 1
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and this proves our lemma in the non-lattice case. The same kind of arguments holds in
the lattice case and allows us to conclude. 0

Lemma 2.4. Let p be a borelian probability measure on R having a moment of order 1
and a negative drift A = [pydp(y) < 0.

Then, for any directly-Riemann integrable function f on R that is null on R_, we
have that

sup  |SRf(z)| < +o0
= weln(n+1)

Proof. First, according to the lemma 2.3, Rf is bounded and for any x € R,
ISEf(2)] < [|Rf oo S1(z) = [[Rf[locp(] — 00, —2])
So, as the function (z +— p(] — oo, —z])) is decreasing, we have that
sup  |SRf(x)| < |Rflle > o0 —
neN Z€[n,(n+1)] neN

Moreover, using that

We have that

ZZ —(m+1),-m]) = > (m+1)p(] - (m+1),—m])

neNm=n meN

R_)+ Y mp(] = (m+1),—m])

meN

<1+ ) / lyldp(y)

meN (m+1)
<1+ /R wldp(y)

sup  |SRF(2)] < +oo
neN z€[n,n+1]

And this proves that

We now have to control the sum over Z_.
Since for any = € R_, f(z) = 0, we have, using Markov’s property, that for any = € R,

7—2—1 T271

SRf(x) =EBolpryy Y F(Xe) = Ealpoisenay 3 F(Xk) = Ealfroy r2u0y RF(X2)
k=1 k=2

So,

ISRf(2)] < Exlir—1jngresoy | Rf(X2)]

<
< NRf ||l ooPs(T = 1,72 > 2)
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But,
Pm(T = 1’7—2 > 2) = /]R? 1{$+y1<0,x+y1+y2>0}dp(y1)dp(yQ) < 10*2(] - T, +OOD

So, using the fact that the function (z + p*?(] — o, +oc[)) is non-decreasing, we have
that

0 +oo +oo
sup |SRf(x) HRfHooZ:P*2 (Jn,+00)) = |Rflloe _ > p™*(m,m +1])
n=—oo LEIN—1,n n=0m=n
+oo “+00
<Rl Ym0 mm 4 1) < RSl (14 [ waoto))
m=0
And this finishes the proof of the lemma. O

Lemma 2.5. Let p be a borelian probability measure that is the sum of an absolutely
continuous measure p1 and a discrete measure ps.

Then, for any bounded and a.e. continuous function f on R, Rf and Sf are also a.e.
continuous.

Proof. For any = € R, we have that
Sf(x) = / f+y) e iy<opdo(y)

/f T Yy ey + Y F@ + Y Lppycopp2(y)
YyESupp p2

Where we noted ¢ the density of p; and we used the fact that py is atomic.
But, z + f(z)1{,<0} is bounded and ¢ is integrable so the function

T /Rf(x +Y) L ppy<oyp(y)dy

is continuous on R (as a convolution product of an integrable and a bounded function).
And, as supp p2 is denumerable and f is a.e. continuous, the function

T Z @+ y) 1 pqy<oyp2(y)

yEsupp p2

still is a.e. continuous.
This proves that Sf is a.e. continuous.
To prove that Rf is a.e. continuous, note that for any « € R, we can write

Z Eaﬂf 1{T>n}
Moreover, we have that

‘Emf(Xn)l{T>n}| < [ fllooPa(T > m)
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so, using the fact that the function (z — P, (7 > n)) is non-decreasing, we have that for
any xg € R and any x €] — 00, x¢],

|E:Bf(Xn)1{T>n}‘ < HfHOOPJBO (7— > n)
So the convergence in the series is uniform on every compact subset of R since we already
saw that
pro(T >n)=E; T <400

Therefore, the set of continuity points of Rf contains the intersection of the sets of
continuity points of the functions (3: — Exf(Xn)l{T>n}) for n € N. Moreover, for any
z € R and any n € N,

Exf(Xn)l{T>n} = /R” f(.%' +y1 4+ + yn)l‘#se[l,n}, m+y1+---+yk>0dp®n((yi))

And we can see that this function is a.e. continuous by using the same kind of arguments
than in the proof of the a.e. continuity of Sf. 0

Corollary 2.6. Let p be a borelian probability measure on R having a moment of order
1 and a negative drift X = [y ydp(y) < 0. Assume that p is non lattice? and the sum of
an absolutely continuous measure and of a discrete one.
Note 7 the time of first return to | — 0o0,0] and note R and S the Markov operators
defined for any borelian bounded function f on R and any x € R by
7—1

RIG) =B 3 (00) and $5() = [ SOX0)dR(0)
k=0 =
Then, for any directly Riemann-integrable function f on R,
1 = (Ig —
Jm Rf() = / ¢~ SR)f(w)du

Proof. By definition of the operator R, we shall assume without any loss of generality
that f =0 on R_.

According to the previous lemmas (2.2, 2.3, 2.4 and 2.5) we have that f — SRf is
directly Riemann-integrable. Thus, we can apply the renewal theorem to get that

—+00

-1
i 3P SR = [ (2= 5R)f(u)au
But, for any n € N,
ZP’“ (I; — SR)f ZP’“ (Is — P)Rf(z) = Rf(x) — P"Rf(x)

k=0

and, as f is null on R_ and Rf is bounded accordlng to lemma 2.3, we have that

lim P"Rf(z) =

n—-+4o0o

2For any a € R, p(aZ) < 1
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Thus, for any =z € R,
+oo
Rf(z) =) P"(Is— SR)f(x)

n=0
Which is what we intended to prove. O

3. APPLICATION TO THE RELFECTED RANDOM WALK ON R

In this section, we use the previous results for the stopped renewal
theorem to study the regularity at infinity of the solution of Poisson’s
equation for the reflected random walk on R .

Let p be a probability measure on R such that [, [y[p(dy) is finite, [ yp(dy) <0 and
p(R%) # 0.

These last two asumptions means that for p®N—a.e (V;,) € RN, S°1_ Y} converges to
—o0 but for any fixed M € R, p®N({(V,,) € RY; In € N Y220 Vi = M}) > 0.

Let (Y )nen be an iid seqence of random variables of law p. We define the reflected
random walk starting at  on R by

X() =Z
foralln e N, X;,11 =|X,, + Y41

Defined like this, (X, Yn)nen is a Markov chain on Ry x R. As Peigné and Woess
in [PWO06], we define a stopping time which we call the time of first reflection by

(3.1) 7((Xn,Y,)) = inf{n € N*; X,_, +Y, < 0}

We see that 7 is #—compatible since it is the time of first return in R* for the unreflected
random walk on R driven by p.
Since [yp(y)dy < 0, Zz;é Y, —— —o0 a.e., and 7, is well defined (finite almost
n—o0

everywhere for all positive real number x).
We define the operator P, @), R and S as in section 1.

Remark 3.1. For a borelian non negative function f on Ry x R we defined P(f)(x,y) =
E(z4)f(X1,Y1). But, since X; and Y7 are independant of Yy, we have that P(f)(x,y) =
E.f(X1,Y1) = [p f(lz + y|,y)p(dy). In particular, if f itself does not depend of it’s
second argument, we have P(f)(z,y) = Eq ) f(X1) = E.f(X1) and we find the usual
Markov operator associated to (X5,).

The same argument applies to ), R and S (defined as in section 1)

Those considerations are just made to prove that 7 is §—compatible so we can ap-
ply the results of the previous sections, but we can anyway “forget” about the second
variable.

From now on, we identify functions on R, and functions on Ry x R which don’t
depend on their second variable and we make the abuse of notations that come with this
identification.

As we will need some regularity assumption on p, we make the following

Definition 3.2 (Spread-out probability measure on R). We say that a probability mea-
sure p on R is spread-out if there exist m € N* such that p* is not singular with respect
to Lebesgue’s measure on R.
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First, we have the following

Theorem 3.3 (Leguesdron [Leg89], Peigné-Woess [PWO06]). Let p be a spread-out prob-
ability measure on R having an moment of order 1 and a negative drift A = fR ydp(y).
Consider (X,,), the reflected random walk associated to p.

There exist a unique P—invariant probability measure v on Ry .. Moreover, if p(RY) =
0, then suppr = [0, M], else suppr = R4 where M = —infsupp (p) (which may be
infinite).

Finally, the reflected random walk is topologically irreducible on suppv.

To solve Poisson’s equation, we are going to use the theory of petite sets developed
by Glynn, Meyn and Tweedie (see [GM96] and [MT93]).

Definition 3.4. Let a be a probability measure on N. A set C' C X is called v—petite
where v is a non trivial measure on X if for any borelian subset A of X and any x € C,

S anP"(14) (@) > v(4)

neN

Proposition 3.5. Let p be a spread out probability measure on R having a moment of
order 1 and such that p(R%) > 0.

Then the reflected random walk on Ry defined by p is irreducible and every compact
set 1s petite.

Proof. As we already saw in theorem 3.3, if [ |y|p(dy) is finite, reflected random walk is
open-set irreducible on R .

Therefore, is we prove that (X,,) is a T-chain (see [MT93]), using the first point of
Theorem 6.0.1 in [MT93] we will get that the chain is m—irreducible and then, using
the second point of this theorem, we will get that every compact set is petite.

We need to find (a,) € [0,1]N such that > a, = 1 and a substochastic transition
kernel T such that Vo € X T'(1)(x) > 0, for any borelian set A, T'(14) is lower semicon-
tinuous and

Ve e X VA € B(X ZanP" 14)(z) = T(14)(x)

We assume without any loss of generahty that p is compactly supported and we note
M € R? such that suppp C [-M, +00])

Let m be such that p*™ is not singular with respect to Lebesgue’s measure. We note
1 it’s Radon-Nikodym’s derivative.

Let € € R% such that p([e, +00[) > 0 (such e exists since p(R%) > 0). We note p. the
measure defined by p.(A) = p(AN e, +o0]) X the random walk assoicated to p. and P
the submarkov operator associated to p. that is to say : Px( = Jp f(lz+y))dp(y) =
[ F@ 4+ y)dp(y).

The main idea of this proof is that, using p., we can “escape” any compact set, and
in particular, if we walk for a long enough time N with p. (N such that Ne > mM), we
can be sure that the time of first reflection for the walk starting at X% is greater than
m. And thus, we can use the hypothesis that p is spread out.

More precisely, if f is a non negative borelian function on Ry and N € N is such that
Ne > mM, then,
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PN f(z) > /me Fllz+ vl + -+ Ymen)dp2N @ dp®™((vi))
> / F@ 1+ o+ yman)do® @ Ao (1))
Rm+N
f@+v+u)dpN ) dp ™ (w) > [ fo+ v+ u)dp (o) (w)du
R2 R2

> [ fat ) [ v =0 e = [ 1+ wida

Where, for u € R, ¢ (u) = [ ¥(u —v)pzN (dv).

For n € N, let ¥ (u ) min(n, 1 (u)) € L'NL*®. By definition, ¥ is a non decreasing
sequence of positive functions and using the monotone convergence theorem, we have
that [ % (u)du —+—> [1du = p-(R)YN = p([e, +o0[)¥ €]0,1]. So there exist ng € N

such that [ ¢5°(u)du # 0.
We note 1)5° 1/12 and we resume our computations.
By construction,

P%w%7@)>/jW”Nﬂx+m¢2 /)f$+u+”Wﬂ)W(ﬁmm
R

> [t ([ vatu— vt ) au= [ s+ i

Where ¢3(u) = [ 1h2(u — v)ih2(v)dv

But, 13 is the convolution product is of an integrable and a bounded function so it is
continuous and f]R 3 (u)du = (fR Yo (u du)

Let 94 be a non zero non negative contlnuous function on R such that ¥4 < 13 and
supp ¥4 is compact.

We note T' the operator defined for any borelian bounded function f on R and any
x € R by

— [ fa+uppaudn
R
Using the dominated convergence theorem we have that for any borelian and bounded
function f, T'f is continuous. Moreover, for all z € Ry, 1 > T1(x) = [ 1hadX > 0.

And, we get that for every borelian non negative function f and every x in R4,
P f(2) > T f(x)
and this finishes the proof of the proposition. O

Proposition 3.6. Let p be a spread out probabilz'ty measure on R having a moment of
order 1 and such that 0 < fR ydp(y) < [p (-

Then, there is a constant C such that for any borelum and bounded fonction f on Ry,
there is a function g on Ry such that

f=g—Pg+/de
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o fl

Moreover, if p is the sum of an absolutely continuous measure and of a discrete one and
if f is a.e. continuous, then so is g.

And,

zeR 1 + |£C|

Proof. For any = € Ry, let u(z) = 1+ - where we noted A = [ ydp(y) < 0.
Then,

T +oo —r—
Pu(z) =1+ / %dp(y)Jr / : Yap(y)

—00 —T

=1+ 50— ooal) =) =) = 3 ([t [ ot

—x —00

= 1+%)(1—2p(] —oo,—x]))—l-i-%/:ydp(y)

T N
—u(w) ~ 142500~ o, =2} + 5 [ udo(y)
Moreover,

zp(] — oo, —x]) =/_$xdp(y) </_$ ly|dp(y)

—00 — 00

So, as p has a moment of order 1,

wll)gr_loo Pu(zx) —u(x) = —1
Thus, there are g € R and b € R such that
1
Pu < u — 5 + b1[0710]

Therefore, using proposition 3.5 we can apply the theorem 2.3 in [GM96] and get a
constant C' such that for any borelian bounded function f on Ry there is a borelian

function g such that
sup 9(x) H f— / fdl/

and
f:g—Pg—i-/fdy

The fact that g is a.e. continuous when f is a.e. continuous is also proved since we have
an explicit formula for the function ¢ given in [GM96] and using the same ideas as in
the proof of lemma 2.5. O

From now on, the assumption on p being only spread-out is not enough (since the
stopped renewal theorem we have in this case doesn’t hold for these probability measures)
so we are going to ask that it is absolutely continuous instead.
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Corollary 3.7. Let p be an absolutely continuous probability measure on R having a
moment of order 1, a negative drift X = [, ydp(y) <0 and that p(R%) # 0.

Then, for any directly Riemman-integrable function f on Ry such that [ fdv = 0,
there is a bounded and a.e. continuous function g on Ry such that

=g— P d i =
f=g9-Pgand lm g(x)=0
Proof. According to the previous lemma, there is an a.e. continuous function g on R
such that

lg(z)]
f=¢9g— Pgand sup
I€R+ 1 + |'I|

We note 7 the time of first reflection. This is the stopping time defined by
T((Xp)) =inf{n e N| X;,;1 = - X,, — Y.}

Moreover, we note R and S the Markov operators associated to 7 and defined as in
section 1.

Note that for > 0 and before the reflection, the walk is the same as the unreflected
random walk. Therefore, as in section 2 we have that for any x € R,

E,7 < 400

The stopping time 7 is ¥—compatible so, we can use the relations of proposition 1.3
to get that for any « € Ry,

Rf(x) = R(g — Pg)(x) = g(z) — Qg(x)
Moreover, we also have that
Qg(z) = RSg(x)
so, we get that
9(x) = R(f + Sg)(x)
Moreover,
|Qg(z)| = [Eg(X-)| < CE;1 + X-
But, using that 0 < X, < —Y,, we have that

R

So the function Qg is bounded on R} and as Rf is bounded on R, (according to
lemma 2.3 that we can use for z > 0 since the operator R for the reflected random walk
and for the unreflected one are the same), this proves that g is bounded on Ry.
Thus, using lemma 2.4 and lemma 2.5, we get that Sg is directly Riemann-integrable.
Therefore, we can apply corollary 2.6 to the function f+ Sg to get that g = R(f+Sg)
has a limit [ at infinity. Noting g1 = g — [ we have that g; is a.e. continuous, bounded,

g1 — Pg1 = f and xll)gloogl(l“) =0

And this is finally what we intended to prove. O



ON THE REFLECTED RANDOM WALK ON R;. 19

Proposition 3.8 (Large deviations inequality). Under the assumptions of corollary 3.7.
For any directly Riemann-integrable function f on Ry such that [ fdv =0, there are
constant C1,Cy € R such that for any e €]0,1], any x € Ry and any n € N¥,
=,
=3 f(Xp)| =

n
k=0
n—1

In particular, for any © € Ry,
1
— E f(Xk) = 0 Py-a.e.
n

k=0

Proof. To prove the result, we are going to use Asuma-Hoeffding’s inequality.
First, we write f = g — Pg where g is the function given by corollary 3.7. Write, for
any n € N,

n—1 n—1
I AR = 3 g(Xin) — PalXi) + + (9(X0) — 9(X,))
k=0 k=0

Thus,

Zf Xk)

and so, using Azuma-Hoeffding’s inequality, if ne > 2” 9|00, we have that
> (X

1 n—1
I(z) : =P, (E 6)
ne — QHQHoo>
( ne — 2|lglloc )’ >
2n(2]|gloc )?

k=0
-1
( > 9(Xky1) — Pg(Xp)| >
k=0
and this last inequality is what we intended to prove. The law of large numbers now
comes from Borel-Cantelli’s lemma. U

=1 9(Xiy1) — Pg(Xy) - —HgHoo

To prove the central limit theorem and the law of the iterated logarithm, we will need
a weaker version of the law of large numbers (to show that the variance converges). This
will be the following

Lemma 3.9. Let p be an absolutely continuous probability measure on R ham'ng an
moment of order 2+ ¢ for some € € R’ and such that 0 < fR ydp(y) < Jp (-
For any borelian and bounded functzon f on Ry and any x € Ry,

1 n—1
=Y f(Xg)— [ fdv P, — a.e.
P |

Remark 3.10. In this lemma, we don’t ask the function f to be directly Riemann-
integrable but the price we have to pay is a stronger moment hypothesis on p.
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Proof. Write f =g — Pg+ [ fdv with g the function given by 3.6 such that

o lg(@)]

Then,

1 n—1 1 1 n—1
S0 = [ vt S (o(X0) = g(60)) + 1 S 9(Xesr) - Po(Xi)
k=0 k=0

Moreover, for any s € [1, +o0],
E|g(Xk11) — Pg(Xp)|® < 2°P*H|g]°(z) < 2°C(g)° P*us(2)

with us(z) = (1 + x)*.
But, doing the same computations as in the proof of lemma 3.6, we see that if p has
a moment of order s + 1, then there are C, B € R such that

Us < C(us+1 — Pusi1 + B)

S0,

~+00 1 +00 1
Z —Es |9(Xp41) — Pg(Xp)|” < CC(g)°2° Z — P"(ugyy — Pugyy + B)
n=1 n n=1 n

“+oo

Pn+1 I, —
< 02°C(g)* (Z s = Pluss | g Z >
ns
n=1

+
1
< C2°C(g)° <u8+1 +B> F) < 400
n=1

and this proves, using the law of large numbers for martingales (see theorem 2.18
in [HH80]) that if p has a moment of order 2 + ¢ for some € € R, then for any x € R,

1
— Zg(Xk—H) — Pg(Xy) = 0 Pg-a.e. and in L'(P,)
n
Doing the same kind of computations, we also prove that %g(Xn) converges to 0 and

this proves the expected result. ]

Corollary 3.11. Let p be an absolutely continuous probability measure on R having an
moment of order 2+ ¢ for some € € R, and such that 0 < fR ydp(y) < fR

Then, for any directly Riemann-integrable function f on Ry with [ fdv =0 and any
x € R+7

i f(Xy) —>N(Oa(f))
k:

Where
a*(f) =/ g° — (Pg)*dv
Ry

with g the bounded function given by corollary 3.7 and such that f = g — Pg.
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Moreover, if o2(f) # 0, then

Sonzo F(XR) Sonzo F(XR)

lim su =1 a.e. and liminf =—1la.e.
P V2n02(f) Inln(n) V2no2(f)Inln(n)
Proof. First, we use that
n—1 n—1
> F(X) = 9(Xo) — 9(Xn) + > 9(Xit1) — Pg(Xy)
k=0 k=0

Let M,, = Zz;é 9(Xg11) — Pg(Xg). Then, M, is a martingale with bounded difference
sequence.
Moreover, noting (F,,) the filtration associated to this martingale, we have that

Em [(MnJrl - Mn)2|-7:n] = Em [Q(XnJrl)Q - g(XnJrl)Pg(Xn) + (Pg(Xn))2|]:n]
= P(g*)(Xn) — (Pg)*(Xn)

And so,
1 n—1 1 n—1 1 n—1
- D B [(Mig1 — M) Fe) = - > Pg*(Xi) + - > (Pg)*(Xx)

But, the function g is bounded on R, so, according to lemma 3.9,

. 1
lim —
n—+oo n

n—1
ZEJC [(Mgs1 — My)?|F] = /deu — /(Pg)Qdy P, — a.e. and in L(PP,)
k=0

Thus, using the central limit theorem and the law of the iterated logarithm for martin-
gales with bounded increments (cf. [Bro71] and theorem 4.8 and corollary 4.2 in [HH80]),
we get the expected result. O
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