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Abstract
The paper analyses multi-agent strategic dialogues
on possibly infinite argumentation frameworks. We
develop a formal model for representing such dia-
logues, and introduce FOA-ATL, a first-order ex-
tension of alternating-time logic, for expressing the
interplay of strategic and argumentation-theoretic
properties. This setting is investigated with respect
to the model checking problem, by means of a suit-
able notion of bisimulation. This notion of bisimu-
lation is also used to shed light on how static prop-
erties of argumentation frameworks influence their
dynamic behaviour.

1 Introduction
The dialectical and dynamic dimensions of argumentation
have been object of scrutiny since the inception of Dung’s ab-
stract argumentation theory (cf. [Dung, 1994; 1995]). How-
ever, while the definition and analysis of ‘static’ justifiability
criteria (i.e., argumentation semantics [Baroni et al., 2011])
has come to form the bulk of abstract argumentation the-
ory, comparatively little work within Dung’s framework has
been dedicated to a systematic study of forms of dynamic and
multi-agent interaction. Some research has focused on op-
erationalizations of argumentation semantics via two-player
games (see [Modgil and Caminada, 2009] for an overview),
while some other has attempted an analysis of strategic be-
havior in abstract forms of argumentation games (in partic-
ular [Procaccia and Rosenschein, 2005; Riveret et al., 2010;
Thimm and Garcia, 2010]). This paper pursues further the un-
derstanding of multi-agent argumentation over abstract argu-
mentation frameworks (AF) capitalizing on techniques from
logic and multi-agent verification.

Contribution of the paper. The paper focuses on the for-
mal analysis of multi-agent strategic interactions on possibly
infinite argumentation frameworks. Agents are assumed to
exchange arguments from possibly infinite AF. They hold pri-
vate argumentation frameworks representing their ‘views’ on
how arguments attack one another. They interact by taking
turns and attacking relevant arguments expanding the frame-
work underlying the interaction. This set up, which we call
dynamic argumentation systems (DAS), is general enough to

model a wide range of dialogue protocols and games on ab-
stract AF. We analyse this setting formally by introducing
FOA-ATL, a novel first-order extension of the (turn-based)
game logic ATL [Alur et al., 2002]. This logic allows us to
specify dynamic properties of strategic interactions in argu-
mentation. The objectives of the paper consist in: (i) the de-
velopment of techniques to tackle the model-checking prob-
lem of FOA-ATL; (ii) the development of techniques to anal-
yse how static properties of argumentation frameworks in-
fluence their dynamic behavior. In other words, we are in-
terested in isolating a class of AF for which their structure
allows us to predict their dynamic behaviours. We provide
preliminary positive results to both questions.

Technically, the paper models DAS as a special type
of infinite-state data-aware systems [Deutsch et al., 2009;
Hariri et al., 2013]. This allows us to capitalize on recent
results on the formal verification of artifact-centric systems
[Belardinelli et al., 2014], thus obtaining truth-preserving
bisimulations for FOA-ATL.

Related work. The paper contributes to several current
strands of research in abstract argumentation.

Dynamics of argumentation. How argumentation frame-
work may change by performing operations on their struc-
ture has been object of several recent works (e.g., [Bau-
mann, 2012; Bisquert et al., 2013; Booth et al., 2013;
Doutre et al., 2014]). However, all mentioned papers assume
finite AF, as they rely on the possibility of encoding them into
propositional formulas [Besnard and Doutre, 2004]. Neither
do they incorporate agency, as they analyse argumentation
dynamics from a belief revision paradigm. Our contribution
relaxes the finiteness assumption and models agents explicitly
as ‘protocols’ dinamically modifying the structure of AF.

Infinite argumentation frameworks. The bulk of known re-
sults in abstract argumentation typically pertain to finite AF.
However, infinite AF are gaining attention and have been ob-
ject of several recent contributions [Baroni et al., 2012; 2013;
Baumann and Spanring, 2015], which essentially focus on
how known results for the finite case generalize to the infinite.
Allowing an infinity of arguments is critical in applications
where upper bounds on the number of available arguments
cannot be established a priori. Our paper contributes to the
understanding of infinite AF.

Logics for abstract argumentation. Recently, several for-
malizations of argumentation theory have been put forward



(e.g., [Caminada and Gabbay, 2009; Grossi, 2010] for early
contributions). These works typically focus on finding logical
languages (from modal to many-valued logics) that are suffi-
ciently expressive to represent argumentation semantics. Our
focus here is rather to specify the strategic abilities of agents
engaging in a dialogue/dispute, such as: ‘the proponent is
able to respond to all attacks by maintaining a conflict-free
set of arguments’ or ‘the opponent has a strategy to force pro-
ponent to run out of arguments’. In this respect the paper is a
first contribution to the specification of multi-agent argumen-
tation frameworks by means of temporal logics, as well as to
their formal verification (cf. [Lomuscio et al., 2009]).

Outline of the paper. Section 2 introduces the dynamics
of (multi-agent) argumentation frameworks and the specifi-
cation language FOA-ATL; then we state the corresponding
model checking problem. Section 3 contains the main techni-
cal result, namely, bisimilar dynamic argumentation systems
(DAS) satisfy the same formulas in FOA-ATL. We also inves-
tigate the impact of static features of DAS on their dynamics.
We conclude in Section 4 and point to future work. For reason
of space all proofs are omitted.

2 The Dynamics of AF
In this section we introduce dynamic argumentation systems
(DAS). Then, we present FOA-ATL, a first-order version of
the alternating-time temporal logic ATL [Alur et al., 2002],
and state the corresponding model checking problem. We
first present the basic terminology to be used in the paper.

2.1 Abstract Argumentation
The theoretical setting is built on abstract argumentation, as
introduced in [Dung, 1994; 1995]. In what follows we as-
sume a finite set Ag = {a0, . . . , an} of names for agents.

Definition 1 (Argumentation Framework) Given a set Ag
of agent names, a (multi-agent) argumentation framework is
a tuple A = 〈A, {←a}a∈Ag〉 s.t. (i) A is a (possibly infinite)
set of arguments, and (ii) for every a ∈ Ag, ←a⊆ A2 is an
attack relation between arguments.

Notice that Def. 1 allows argumentation frameworks, or
AF, that include infinitely many arguments. This choice,
while providing greater modelling flexibility, also reflects the
fact that upper bounds on the number of arguments available
to each agent cannot be easily established in general.

We define F(A,Ag) as the set of all AF built on sets
A of arguments and Ag of agent names. Hereafter, we
simply write F(Ag) whenever A is clear. Also, given set
Ag = {p, o} containing the proponent p and opponent o,
F(p) (resp. F(o)) are shorthands for F({p}) (resp. F({o})),
i.e., the set of AF for proponent p (resp. opponent o). Finally,
we define the (unindexed) attack relation←=

⋃
a∈Ag ←a.

To express relevant properties of AF, we introduce FOA,
a first-order language geared towards expressing properties
of attack relations. Let Aa, for a ∈ Ag, be binary predi-
cate symbols, P0, P1, . . . unary predicate symbols, and Var
a countable set of individual variables. We define first-order
formulas ϕ and the set fr(ϕ) of free variables by mutual re-
cursion.

Definition 2 (FOA) The formulas ϕ and the set of free vari-
ables fr(ϕ) are defined as follows:

• if P is a predicate symbol and x ∈ Var a variable, then
P (x) is a formula with fr(P (x)) = {x};
• if ϕ is a formula, then also ¬ϕ is, and fr(¬ϕ) = fr(ϕ);

• if ϕ and ϕ′ are formulas with fr(ϕ) = fr(ϕ′), then also
ϕ→ ϕ′ is, and fr(ϕ→ ϕ′) = fr(ϕ) = fr(ϕ′);

• if ϕ is a formula with fr(ϕ) = {y}, then
also ∀y(Aa(y, x) → ϕ) and ∀yϕ are, with
fr(∀y(Aa(y, x)→ ϕ)) = {x} and fr(∀yϕ) = ∅.

In the following we use the standard abbreviations ∧, ∨,
and ∃. Specifically, ∃y(Aa(y, x) ∧ ϕ) (resp. ∃yϕ) is a short-
hand for ¬∀y(Aa(y, x) → ¬ϕ) (resp. ¬∀y¬ϕ). Notice that
every FOA formula ϕ has at most one free variable.

Finally, we extend argumentation frameworks with inter-
pretations π that assign a subset of A to each predicate sym-
bol P , i.e., π(P ) ⊆ A. An interpreted argumentation frame-
work is defined as a couple (A, π). We can now introduce the
semantics of our first-order language.

Definition 3 (Semantics of FOA) We define whether an ar-
gument u ∈ A satisfies an FOA-formula ϕ in an interpreted
AF (A, π), or (A, π, u) |= ϕ, as follows (clauses for propo-
sitional connectives are straightforward, thus omitted):

(A, π, u) |= P (x) iff u ∈ π(P )
(A, π, u) |= ∀y(Aa(y, x)→ ψ) iff for every v ∈ A,

u←a v implies (A, π, v) |= ψ
(A, π, u) |= ∀yψ iff for every v ∈ A, (A, π, v) |= ψ

An FOA-formula ϕ is true in an interpreted AF (A, π),
or (A, π) |= ϕ, iff (A, π, u) |= ϕ for every argument u ∈
A; ϕ is valid in A, or A |= ϕ, iff (A, π) |= ϕ for every
interpretation π.

From a technical point of view, the language FOA is the
dyadic fragment of first-order logic with one free variable.1
Table 1 shows how this simple logic suffices to formalize sev-
eral of the key notions from [Dung, 1995] (see also [Grossi,
2010]).

2.2 Dynamic Argumentation Frameworks
In this paper we are interested in analysing dialogues modeled
as multi-agent processes over argumentation frameworks. As
dialogues progress agents build a ‘shared’ (or ‘public’) argu-
mentation framework which is used to evaluate the available
arguments.

Agents and global states
To introduce the dynamics of argumentation frameworks we
start with the notion of agent.

Definition 4 (Agent) Given setsAg of agent names andA of
arguments, an agent is a tuple a = 〈A,Act,Pr〉 where

• A ∈ F(a) is the agent’s argumentation framework;

• the set Act of actions contains action attack(x, x′) to
attack argument x′ with argument x, and action skip;

1As such, it is equivalent to the multi-modal logic K with the
universal modality [Blackburn et al., 2001].



π(P ) is conflict-free in A iff (A, π) |= ∀x(P (x)→ ¬(∃y(A(y, x) ∧ P (y))) CFr(P )
π(P ) is acceptable in A iff (A, π) |= ∀x(P (x)→ ∀y(A(y, x)→ ∃zA(z, y) ∧ P (z))) CFree(P )
π(P ) is admissible in A iff π(P ) is conflict-free and acceptable Adm(P )
π(P ) is complete in A iff π(P ) is conflict-free and (A, π) |= ∀x(P (x)↔ ∀y(A(y, x)→ ∃zA(z, y) ∧ P (z))) Cmp(P )
π(P ) is a stable in A iff (A, π) |= ∀x(P (x)↔ ¬(∃y(A(y, x) ∧ P (y))) Stb(P )

Table 1: Some key notions of abstract argumentation theory and their formalization in FOA (A is interpreted over←).

• Pr :
⋃
A′⊆A F(A′, Ag) 7→ 2Act(A) is the local proto-

col function, where Act(A) is the set of ground actions
α(~u), and for every A′ ∈ F(A′, Ag), attack(u, u′) ∈
Pr(A′) only if u′ ∈ A′ and u′ ←a u holds in A; while
the skip action is always enabled.

By Def. 4 agent a’s local state is modelled as an argumenta-
tion framework A, and she is assumed to perform the actions
in Act according to protocol Pr. In particular, by definition
of Pr, attacks must be relevant, i.e., the attacked argument
u′ has to appear in the current argumentation framework A′,
and they must reflect actual attacks available in the agent’s AF
A ∈ F(a). These assumptions on protocols model the basic
requirements of relevance and truthfulness in dialogues.

To model agent interaction we need to define their compo-
sition, beginning with the notion of global state.

Definition 5 (Global State) Given a set Ag of agents ai =
〈Ai,Acti,Pri〉 defined on the same (possibly infinite) set A
of arguments, a global state is a couple (s, a) where (i) s ∈
F(A′, Ag) is an argumentation framework for someA′ ⊆ A;
and (ii) a ∈ Ag.

In Def. 5 all agents are defined on the same set of argu-
ments. However, some literature on agents and argumenta-
tion suppose that each agent is endowed with a distinct set
of arguments (e.g., [Rahwan and Larson, 2011]). We remark
that our requirement is not a limitation because, firstly we can
always consider the union of the sets of arguments for each
agent, and secondly the characterising feature of AF is really
the attack relation. Moreover, this assumption simplifies the
presentation hereafter. Also, in a state (s, a), a is the active
agent, i.e., the agent to act next; it will be omitted whenever
clear from the context. We write G to denote the set of all
global states. Finally, any set A′ ⊆ A can be seen as a global
state where, for every a ∈ Ag,←a is empty.

Argument Dynamics
We now introduce the dynamics of argumentation frame-
works. In the rest of the paper we suppose that the only two
agents are proponent p and opponent o. This assumption can
be lifted but it crucially simplifies the presentation of the key
(conceptual and technical) contributions of the paper.

Definition 6 (DAS) Given set Ag = {p, o} of agents defined
on the same (possibly infinite) set A of arguments, a dynamic
argumentation system is a tuple P = 〈Ag, I, τ, π〉 where

• I ⊆ A× {o} is the set of initial global states (s0, o);

• τ : G × (Actp(A) ∪ Acto(A)) 7→ G is the transi-
tion function, where τ((s, a), attacka′(~u)) is defined iff
a = a′ and attacka′(~u) ∈ Pra′(s). Moreover, (s′, a′) =
τ((s, a), attack(u, u′)) iff a′ 6= a and s′ = 〈A′,←′〉

for A′ = A ∪ {u} and ←′a=←′a ∪{(u′, u)}; while
(s′, a′) = τ((s, a), skip) iff a′ 6= a and s′ = s.

• π is an interpretation of predicate symbols P as above.

A DAS evolves from an initial state (s0, o) ∈ I as spec-
ified by the transition function τ , which returns a successor
state for the current state and selected action. DAS are turn-
based, with each agent taking one action at a time. Hereafter
we assume that the opponent always moves first, that is, I is
intuitively the set of arguments supported by the proponent.
One key feature of DAS is that, since the set A of arguments
is infinite in general, they are infinite-state systems normally.
Indeed, as the dialogue unfolds, agents can introduce an in-
finite number of arguments from A, thus going through in-
finitely many states during the system’s execution.

We now fix some notation. The transition relation →a

is defined so that s →a s′ iff for some action αa(~u) ∈
Acta(A), for a ∈ {o, p}, we have that s

αa(~u)−−−−→ s′, i.e.,
τ((s, a), αa(~u)) = (s′, a′) with a′ 6= a. A run λ from a state
(s, a), or (s, a)-run, is an infinite sequence s0 →a s

1 →a′

. . ., s.t. s0 = s. Notice that, since agents o and p take turns
in performing actions, the sequence of agents in an (s, a)-
run is uniquely determined by a, so we omit agents whenever
these are clear by the context. Hence, we will often denote
a state (s, a) simply as s, whenever agent a is understood.
For n,m ∈ N, with n ≤ m, we define λ(n) = sn and
λ[n,m] = sn, sn+1, . . . , sm. A state s′ is reachable from
s iff for some s-run λ and i ≥ 0, s′ = λ(i). Let S be the set
of states reachable from any initial state s0 ∈ I . Notice also
that the transition relation is serial, as each agent has a skip
action enabled at each local state.

DAS, dialogues and games
It is worth comparing DAS briefly with known structures in
the literature on dialogue games for abstract argumentation.
In the terminology of [Thimm and Garcia, 2010] DAS can
be viewed as defining a dialectical game protocol, where at
each step an active agent attacks some of the available argu-
ments. DAS can be seen as extensive game forms with infi-
nite horizon (though they are not games, as they do not spec-
ify payoffs). They also generalize the structures underpin-
ning the extensive-form argument games of [Procaccia and
Rosenschein, 2005] by allowing agents to hold an infinite ar-
gumentation framework and to attack any of the available ar-
guments, not only the last one uttered by some other agent.
We finally show how standard dialogue games (e.g., for the
grounded extension [Dung, 1994] or for credulous admis-
sibility [Vreeswijk and Prakken, 2000]) can be modeled as
DAS.

Example 1 In the game for the grounded extension two
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Figure 1: An infinite AF: each ui and ti+1 attack each ti.

agents o and p hold the same private argumentation frame-
work, i.e., Ao = Ap. These games are two-player zero-sum
perfect information games with possibly infinite horizon. We
can view them as DAS. Consider for instance the AF in Figure
1. The DAS corresponding to the game for grounded played
on this AF, starting at argument t1 can be defined as follows.
Fix I = {t1}. For both agents we can define the following
protocol: if the current framework contains ti then attack
ti with ui or ti+1, otherwise skip. This protocol encodes
the ‘legal’ moves of o and p according to the game for the
grounded extension. The possible runs of this DAS contain
all possible sub-graphs of the above AF generated from t1,
e.g.: ({t1}, ∅), ({t1, u1}, {(u1, t1)}), skip, . . .; or ({t1}, ∅),
({t1, t2}, {(t2, t1)}), . . . , ({t1, . . . , ti}, {(ti, ti−1)}), . . ..
These runs correspond to possible dialogues in the game for
the grounded extension. �

Given a DAS P on a (possibly infinite) setA of arguments,
we define the corresponding (joint) argumentation framework
AP = 〈A, {←a}a∈Ag〉 so that u←a u

′ holds inAP iff u←a

u′ holds in the AF Aa for agent a ∈ Ag. By the definition of
protocols (Def. 4) it is apparent that every reachable state in
P is a subgraph of AP , that is,

if u ←a v holds in some s ∈ S, for some a ∈ Ag,
then u←a v holds in AP . (∗)

Thus, states in P are truthful, yet partial, representations of
AP . However, the converse of (∗) does not hold in general,
i.e., P needs not to include all subgraphs of AP as states. To
appreciate this consider the following:
Example 2 [Example 1 continued] Now endow o with a
more restrictive protocol: if the current framework con-
tains ti then attack ti with ui, otherwise skip. This pro-
tocol makes o play more rationally, selecting arguments to
which p cannot reply. The only possible run of this DAS is:
({t1}, ∅), ({t1, u1}, {(u1, t1)}), skip, . . .. �

This asymmetry motivates the next definition. An agent
is naive if its protocol allows it to move any available attack
(cp. this to the more restrictive protocol of o in Example 1).
Definition 7 (Naive Agent) An agent a is naive iff for every
A′ ∈ F(A′, Ag), attack(u, u′) ∈ Pr(A′) iff u′ ∈ A′ and
u′ ←a u holds in Aa.

Intuitively, naive agents perform every possible attack
available to them, irrespectively of the strategic behaviour of
other agents. A DAS P is naive iff every agent inAg is naive.
Then, we remark that for naive DAS the converse of (∗) actu-
ally holds.

2.3 The Specification Language FOA-ATL
We now introduce a formal language to specify properties of
interest of DAS. Arguments in DAS call for the use of first-

order logic, whereas strategy operators are needed to account
for agents’ behaviour. To the best of our knowledge, no logic
combining these two features has ever been studied.

Definition 8 (FOA-ATL) The FOA-ATL formulas ϕ, with
free variables fr(ϕ), are defined as follows:

• if ψ is an FOA-formula, then it is an FOA-ATL formula;

• if ϕ is a formula and N ⊆ Ag, then ¬ϕ, 〈〈N〉〉Xϕ, and
〈〈N〉〉Gϕ are formulas with fr(¬ϕ) = fr(〈〈N〉〉Xϕ) =
fr(〈〈N〉〉Gϕ) = fr(ϕ);

• if ϕ and ϕ′ are formulas with fr(ϕ) = fr(ϕ′) and
N ⊆ Ag, then ϕ → ϕ′ and 〈〈N〉〉ϕUϕ′ are formulas
with fr(ϕ→ ϕ′) = fr(〈〈N〉〉ϕUϕ′) = fr(ϕ) = fr(ϕ′);

• if ϕ is a formula with fr(ϕ) = {y}, then ∀y(Aa(y, x)→
ϕ) and ∀yϕ are formulas with fr(∀y(Aa(y, x)→ ϕ)) =
{x} and fr(∀yϕ) = ∅.

The language FOA-ATL is a first-order extension of the
alternating-time temporal logic ATL [Alur et al., 2002].
The FOA-ATL formulas (i) 〈〈N〉〉Xϕ, (ii) 〈〈N〉〉Gϕ and (iii)
〈〈N〉〉ϕUϕ′ are read as “the agents in N have a strategy to...”
(i) “...enforce ϕ at the next state”, (ii) “...always enforce ϕ”,
and (iii) “...enforce ϕ until ϕ′”.

To intepret FOA-ATL formulas on DAS we need to intro-
duce the notion of a strategy for a set N of agents. An N -
strategy is a mapping fN : S+ 7→

⋃
a∈N Acta(A) s.t. fN (κ ·

(s, a)) ∈ Pra(s) for every κ ∈ S∗. Intuitively, a strategy
returns an enabled action in Acta(A) for every non-empty, fi-
nite sequence of states in S+. We remark that, according to
standard terminology in concurrent game models [Bulling et
al., 2010], the agents in DAS have perfect information and
perfect recall, that is, their strategies are determined by all in-
formation available at each global state, for all states visited
up to the current state. Further, the outcome of strategy fN at
state (s, a), or out((s, a), fN ), is the set of all (s, a)-runs λ
s.t. for every b ∈ N , (λ(i+1), b′) = τ((λ(i), b), fN (λ[0, i]))
for all i ≥ 0. As above, we assume that strategies re-
spect agents’ turns and simply write out(s, fN ), thus omitting
agents whenever the latter are clear by the context.

Definition 9 (Semantics of FOA-ATL) We define whether
an argument u satisfies a formula ϕ at state s in a DAS P ,
or (P, s, u) |= ϕ, as follows (clauses for propositional con-
nectives are straightforward and thus omitted):

(P, s, u) |= ψ iff (s, π, u) |= ψ, if ψ is an FOA-formula
(P, s, u) |= 〈〈N〉〉Xϕ iff for some N -strategy fN , for all

λ ∈ out(s, fN ), (P, λ(1), u) |= ϕ
(P, s, u) |= 〈〈N〉〉Gϕ iff for some N -strategy fN , for all

λ ∈ out(s, fN ), i ≥ 0, (P, λ(i), u) |= ϕ
(P, s, u) |= 〈〈N〉〉ϕUϕ′ iff for some N -strategy fN , for all

λ ∈ out(s, fN ), for some k ≥ 0,
(P, λ(k), u) |= ϕ′, and for all j,
0 ≤ j < k implies (P, λ(j), u) |= ϕ

(P, s, u) |= ∀y(Aa(y, x)→ ϕ) iff for every v ∈ s,
u←a v implies (P, s, v) |= ϕ

(P, s, u) |= ∀yϕ iff for every v ∈ s, (P, s, v) |= ϕ

A formula ϕ is true at s, or (P, s) |= ϕ, if (P, s, u) |= ϕ
for every arguments u ∈ s; ϕ is true in P , or P |= ϕ, if
(P, s0) |= ϕ for all s0 ∈ I .



We illustrate now the expressiveness of FOA-ATL
through some example properties that involve strategic and
argumentation-theoretic features.

Example 3 The following formula states that opponent o can
force proponent p to run out of moves in the next state:

〈〈o〉〉X∀x¬∃yAp(y, x) (1)

This formula is for instance true at argument t1 in the DAS of
Example 1. �

Example 4 The following formula states that proponent p
has a strategy enforcing the set of arguments in P , which in-
cludes the current argument, to be conflict-free (respectively,
acceptable, admissible, complete, stable):

P (x) ∧ 〈〈p〉〉G χ(P ) (2)

where χ ∈ {Cfr ,Acc,Adm,Cmp,Stb}.2 Let us focus for
instance on P (x) ∧ 〈〈p〉〉G Adm(P ). This is a desirable re-
quirement for proponent’s strategies in dialogue games for the
grounded extension (recall Example 1) or credulous admissi-
bility [Vreeswijk and Prakken, 2000]. This statement is false
of the DAS of Example 1 (at argument t1), where o, by mov-
ing attack(u1, t1), forces p to run out of moves, no matter
what interpretation π ofP is selected. In fact p has no strategy
to force any set of arguments containing t1 (the initial argu-
ment) to be admissible. That is: P (x) → 〈〈o〉〉G ¬Adm(P )
or, equivalently, P (x)→ ¬〈〈p〉〉G Adm(P ) for any P .3 �

3 Verifying Dynamic Argumentation Systems
In Section 2 we introduced DAS as a general model for
(abstract) argument-based multi-agent interaction. We tai-
lored an influential game logic in order to provide DAS
with the specification language FOA-ATL. We are then able
to define a model checking problem whereby strategic and
argumentation-theoretic properties, such as those expressed
in (1) and (2) above, can be checked against a given DAS.
Definition 10 (Model Checking Problem) Given a DAS P
and an FOA-ATL-formula ϕ, determine whether for every
s0 ∈ I , (P, s0, u0) |= ϕ for some argument u0.

In case that ϕ is a sentence with no free variable, the model
checking problem reduces to verify whether P |= ϕ.

Model checking general data-aware systems is known to
be undecidable [Deutsch et al., 2007]. In [Belardinelli et
al., 2012; 2014] the same problem is proved decidable for
bounded and uniform systems. Without going into details, we
remark that DAS do not normally satisfy these requirements.
Therefore new techniques need to be developed.

In this section we introduce a notion of bisimulation to ex-
plore under which circumstances two DAS satisfy the same
formulas. In particular, we show that bisimilar DAS satisfy
the same FOA-ATL formulas. Then, we investigate how the
static properties of AF impact on the dynamics of DAS. This
kind of results is key to tackle the model checking problem, as
they allow to verify a DAS P by model checking a bisimilar
DAS P ′.

2Recall the properties in Table 1.
3It is a known validity of turn-based asynchronous ATL that

〈〈N〉〉Gφ↔ 〈〈Ag\N〉〉¬φ [Alur et al., 2002].

3.1 Bisimulations for Argument Frameworks
A notion of bisimulation can naturally be defined on AF (cf.
[Grossi, 2010]).
Definition 11 (Static Bisimulation) Let (A, π) = 〈A, {←a

}a∈Ag, π〉 and (A′, π′) = 〈A′, {←′a}a∈Ag, π′〉 be interpreted
AF defined on a set Ag of agents. A static bisimulation is a
relation S ⊆ A×A′ s.t. for u ∈ A, u′ ∈ A′, S(u, u′) implies

(i) for every predicate symbol P , u ∈ π(P ) iff u′ ∈ π′(P );
(ii) for every v ∈ A, if u ←a v then for some v′ ∈ A′,

u′ ←′a v′ and S(v, v′);

(iii) for every v′ ∈ A′, if u′ ←′a v′ then for some v ∈ A,
u←a v and S(v, v′).

Two arguments u ∈ A, u′ ∈ A′ are bisimilar, or u ' u′,
iff S(u, u′) for some static bisimulation S. Finally, two AF
A and A′ are statically bisimilar (or simply bisimilar) iff (i)
for every u ∈ A, u ' u′ for some u′ ∈ A′; and (ii) for every
u′ ∈ A′, u′ ' u for some u ∈ A. We denote this as A ' A′.

We can now show that bisimilar states satisfy exactly the
same FOA-formulas.
Lemma 1 Given bisimilar interpreted AF (A, π) and
(A′, π′), and bisimilar arguments u ∈ A and u′ ∈ A′, then
for every FOA-formula ϕ,

(A, π, u) |= ϕ iff (A′, π′, u′) |= ϕ

As a result, bisimilar AF cannot be distinguished by FOA-
formulas. In the following we explore the conditions under
which this applies to DAS as well. In particular, we say that
DASP andP ′ are statically bisimilar iffAP ' AP′ for some
static bisimilation that maps initial states into initial states.

3.2 Bisimulations for DAS
We first introduce a notion of dynamic bisimulation, and then
explore its properties in the context of DAS. In the rest of the
section we let P = 〈Ag, I, τ, π〉 and P ′ = 〈Ag, I ′, τ ′, π′〉 be
two DAS defined on the same set Ag of agent names. Notice
that, albeit agents may have the same name, they might differ
as to their argumentation frameworks, actions, or protocols.
Definition 12 (Dynamic Simulation) Given DAS P and P ′,
a dynamic simulation is a relation R ⊆ S ×S ′ s.t. for s ∈ S,
s′ ∈ S ′, R(s, s′) implies:

1. s ' s′ for some static bisimulation S;

2. for every t ∈ S, if s −→a t then for some t′ ∈ S ′, s′ −→′a
t′, t ' t′ for some bisimulation S′ ⊇ S, and R(t, t′).

In Def. 12 we implicitly assume that the simulation rela-
tion relates states with turns for the same active agent in Ag.
Simulations can then be naturally extended to bisimulations.

Definition 13 (Dynamic Bisimulation) A relation D ⊆ S×
S ′ is a dynamic bisimulation iff both D and D−1 = {〈s′, s〉 |
D(s, s′)} are dynamic simulations.

Two states s ∈ S and s′ ∈ S ′ are dynamically bisimilar, or
s ≈ s′, iff D(s, s′) for some bisimulation relation D. It can
be shown that ≈ is the largest dynamic bisimulation, and an
equivalence relation, on S ∪ S ′. DAS P and P ′ are dynami-
cally bisimilar, or P ≈ P ′, iff (i) for every s0 ∈ I , s0 ≈ s′0



u0 u1

o

p '
u0 u1 u2 u3 . . .o

p
o

p

(a) the AF AP and AP′ are statically bisimilar.

u0 ' u0

⇓ ⇓

u0 u1

o

' u0 u1
o

⇓ ⇓

u0 u1

o

p 6'
u0 u1 u2

o
p

⇓ ⇓
...

...

Figure 2: the DAS P and P ′ are statically bisimilar, but not
dynamically bisimilar.

for some s′0 ∈ I ′, and (ii) for every s′0 ∈ I ′, s0 ≈ s′0 for some
s0 ∈ I . Notice that arguments u and u′ are or are not bisim-
ilar always w.r.t. some states s ∈ S and s ∈ S ′. We state
this explicitly by saying that u ' u′ w.r.t. s and s′. In par-
ticular, by Def. 13, if s ≈ s′ and u ' u′ w.r.t. s and s′, then
u and u′ are still bisimilar in all subsequent bisimilar states.
This is a key feature for proving preservation of satisfaction
for FOA-ATL formulas.

The first result we prove on bisimulations shows that being
statically bisimilar does not imply dynamic bisimilarity, not
even in the case of naive agents.

Lemma 2 Static bisimilarity does not imply dynamic bisim-
ilarity, that is, there exist naive, statically bisimilar DAS P
and P ′ such that P 6≈ P ′.

In Fig. 2 we report DAS P and P ′, whose underlying AF
are statically bisimilar, but that are not dynamically bisimilar.

We now show that dynamically bisimilar states satisfy the
same FOA-ATLformulas.

Theorem 3 Suppose that s ≈ s′, and u ' u′ w.r.t. s and s′.
Then for every FOA-ATL formula ϕ,

(P, s, u) |= ϕ iff (P ′, s′, u′) |= ϕ

As a result, dynamic bisimulations preserve the satisfac-
tion of FOA-ATL formulas. In particular, we can tackle the
problem of model checking a DAS P by verifying a bisimilar
DAS P ′, and then transfering the result by Theorem 3. In par-
ticular, DAS P ′ may exhibit nice structural properties (such
as being finite) that can make the verification task feasible.

3.3 From Static Properties to Dynamics
In this section we make use of bisimulations to explore how
the static properties of DAS determine their dynamic fea-
tures. In Lemma 2 we showed that this relationship is not
straightforward, not even in the case of naive DAS. However,
in some specific cases there is indeed a correspondence. The

first result reduces dynamic bisimulations to static bisimula-
tions, together with some constraints on temporal transitions.
As usual, we assume that turns are respected.

Theorem 4 Let P and P ′ be DAS. Suppose that P ′ is naive
and for every u ∈ s ∈ S , u′ ∈ s′ ∈ S ′, if s ' s′, u ' u′

w.r.t. s and s′, and u ←a v in AP for some v ∈ A, then
u′ ←′a v′ in AP′ for some v′ ∈ A′ and either

1. v ∈ s and either (i) v′ ∈ s′ and v ' v′ w.r.t. s and s′, or
(ii) v′ /∈ s′ and for no w ∈ s, v ←a w in s,

2. or v /∈ s and either (i) v′ /∈ s′, or (ii) v′ ∈ s′ and for no
w′ ∈ s′, v′ ←′a w′ in s′.

Then, D = {(s, s′) | s ' s′} is a dynamic simulation be-
tween P and P ′.

Notice that the assumptions in Theorem 4 imply that DAS
P and P ′ are statically bisimilar. However, they have also to
satisfy extra conditions (1) and (2).

The main contribution of Theorem 4 is to show that the no-
tion of dynamic bisimulation can be reduced to static bisimu-
lation, together with some assumptions on the structural prop-
erties of AF AP and AP′ , in case that we consider naive
DAS. Hence, in order to verify DAS we can simply model
check statically bisimilar systems, and then transfer the result
by using Theorem 4.

It is of interest to analyse DAS that actually satisfy the con-
ditions above. For example, it is easy to check that whenever
the underlying AF AP and AP′ of naive DAS P and P ′ are
directed acyclic graphs (DAG), where every argument is at-
tacked by some other argument, then the conditions in Theo-
rem 4 do indeed hold. So, for this class of naive DAS struc-
tural, static features do determine their dynamic properties.

Corollary 5 Suppose that DAS P and P ′ are naive and stat-
ically bisimilar, and that AP and AP′ are DAG where every
argument is attacked by some other argument. Then, P and
P ′ are dynamically bisimilar and therefore satisfy the same
FOA-ATL formulas.

4 Conclusions and Further Work
In many dialectical situations it is difficult to assume before-
hand a bound on the number of arguments that agents have at
their disposal. While some properties of such infinite argu-
mentation frameworks have recently been investigated, their
implication on debates amongst agents had not been anal-
ysed before. In this paper we set up and explored the frame-
work of dynamic argumentation systems through a logic lens.
We showed that in general static bisimilarity is not strong
enough to capture equivalence of DAS (in terms of FOA-ATL
formulas they satisfy), and introduced a novel notion of dy-
namic bisimilarity. For some specific structures (in particular
acyclic ones), the static notion remains powerful enough, at
least for the naive agents studied here. While in this paper
we have focused on such agents (unconstrained in their ar-
gumentative moves as long as they are relevant and truthful),
an interesting direction of research is to investigate how more
restricted protocols would also impact the dynamics of DAS.
Another noteworthy feature of our framework is that formulas
in FOA-ATL can express the ability for a group of agents to



ensure, for instance, that some arguments gets accepted–thus
paving the way for a logical analysis of multiparty protocols,
see e.g. [Bonzon and Maudet, 2011].
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