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Abstract

We consider here the existence of rari-constant anisotropic layers, and
show that actually there are two distinct classes of such materials, mutually
exclusive. Also, we show that the correct condition for establishing that a
material is of the rari-constant type is that the number of independent linear
tensor invariants of the elastic tensors must reduce to one. We characterize
these materials and show that they can be designed using some basic rules
of homogenization.

1 Introduction

Within the standard paradigm of the hyper elastic continuum, we justify the
existence of classes of plane anisotropy admitting four invariants instead of
five. In particular, we show the existence of two mutually excluding cases.

Materials of this type have been widely studied in the past and their
existence has been the subject of one of the most famous diatribes in the
theory of elasticity: that between what Pearson [Todhunter and Pearson,
1886, p. 496] named multi-constant and rari-constant materials, [Benvenuto,
1991, v. 1, p. 227], [Dugas, 1950, p. 398], [Love, 1944, p. 6, p. 13].

The idea of rari-constant materials stems from the early works of Navier
[1827] and his model of matter, known as molecular theory, first presented
at Académie des Sciences on May 14, 1821. Basically, the model proposed
by Navier aims at explaining the behavior of elastic solids as that of a lattice
of particles (molecules) interacting together via central forces proportional
to their mutual distance. This is not a new idea: it has its last foundation
in the works of Newton [1687]. For what concerns the mechanics of solids,
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the true initiator of the molecular theory is considered to be Boscovich
[1743]; other works on this topic, before the mémoire of Navier, are those
of Poisson [1811, 1814] on the equilibrium of bent plates, while subsequent
fundamental contributions are due to Cauchy [1828a,b], still Poisson [1829]
and de Saint-Venant [1844].

The basic idea in the classical molecular approach of Navier and Cauchy,
the continuum as a limit of a discrete lattice of particles interacting together
via central forces, has a direct consequence, Stackgold [1950], Doyle and
Ericksen [1956]: 15 moduli describe the behavior of a completely anisotropic
body in 3D, and only one modulus suffices to determine it for an isotropic
material. These results was not confirmed by experimental tests, so doubts
existed about its validity, until the molecular approach was completely by-
passed by the theory proposed in 1837 by Green [1839]: no underlying
microscopic structure of the matter, considered as a continuum, is assumed,
and the basic property defining the elastic behavior is energetic: in non
dissipative processes the internal forces derive from a quadratic potential.

The consequences of such an assumption lead to the multi-constant
model: 21 independent moduli are necessary to describe the elastic re-
sponse of a completely anisotropic body in 3D, which reduce to only 2 for
an isotropic material. The results of the Green’s theory were confirmed by
experience which, together with its much simpler theoretical background,
ensured the success of the multi-constant theory. Nonetheless, the diatribe
between the molecular, rari-constant, and continuum, multi-constant, theo-
ries lasted a long period: which is the right number of elastic constants and
the correct model of elastic continuum?

The further developments of the molecular model by Voigt [1887] and
Poincaré [1892] are refined models that, enriching in different ways the origi-
nal model of Navier, obtain multi-constant theories starting from a molecular
model, see Ostoja-Starzewski [2007], Capecchi et al. [2011]. More recently,
ideas inspired by the Navier-Cauchy approach has produced molecular dy-
namics models or models for explicating the behavior of complex bodies,

As an effect of this diatribe, the two models are usually considered as op-
posing and somewhat irreconcilable, though different researchers has made
attempts to show that this is not the case, Born [1915], [Love, 1944, Note
B, p. 616], [Muskhelishvili, 1953, p. 55].

We consider here the planar case and, using a continuum approach and
the polar formalism, Verchery [1979], Vannucci [2005], we derive some sim-
ple conditions for the existence of rari-constant materials in terms of tensor
invariants. In particular, we show that there exist two dual types that
we name direct- and inverse- rari-constant materials and that the classical
Cauchy-Poisson conditions for a continuum to be rari-constant are not suffi-
cient to characterize such a material: the only true necessary and sufficient
condition is the number of independent linear tensor invariants, that must
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be of one. We give also a simple example of how anisotropic rari-constant
layers of both the types can be fabricated.

2 Basic equations

We consider the stiffness tensor E of an anisotropic elastic continuum; within
the classical paradigm of elasticity, E possesses some symmetries for the
indexes position (in the following named index symmetries):

• 45 minor symmetries, consequences of the symmetries of the stress and
strain tensors: σ = σ>, ε = ε> ⇒

Eijkl = Ejikl = Eijlk = Ejilk, (1)

that for the plane case reduce to only seven:

E1121 =E1112, E1221 = E1212, E2111 = E1211, E2112 = E1212,

E2121 = E2112, E2122 = E1222, E2221 = E2212;
(2)

• 15 major symmetries, consequences of the existence of an elastic po-
tential W = 1

2σ · ε: σij = ∂W
∂εij
⇒

Eijkl = Eklij , (3)

that for the plane case reduce to only three:

E1211 = E1112, E2211 = E1122, E2212 = E1222. (4)

When a tensor has only these index symmetries, it describes a so-called
multi-constant material: for the complete anisotropic case it depends upon
only 18 tensor invariants, plus 3 frame-dependent quantities, for a whole
of 21 independent components. In the plane case, there are 5 invariants
plus a quantity taking into account for the frame orientation. In both the
cases, the isotropic case reduces to two distinct invariants or some of their
functions, like the Young’s modulus and the Poisson’s coefficient, or the bulk
and shear moduli or the Lamé’s coefficients etc.

For the so-called rari-constant materials, the behavior is described by
only 12 tensor invariants plus 3 quantities fixing the frame, for a whole of
15 independent components. For the plane case, we have 5 independent
components, 4 of which are invariants, and isotropy is always described by
a unique invariant quantity.

A classical result, is that for rari-constant materials E has 6 supplemen-
tary index symmetries, the so-called Cauchy-Poisson symmetries:

Eijkl = Eikjl, (5)
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that for the plane case reduce to the only supplementary condition

E1122 = E1212, (6)

which gives, actually, the reduction of the independent components from 6
to 5.

In the following, we will identify rari-constant tensors with those satisfy-
ing the Cauchy-Poisson conditions, and concentrate exclusively on the plane
case. We will see that identifying rari-constant materials is not so simple,
because there are two possible and dual rari-constant materials, at least in
R2.

Let us before introduce the major results of the polar formalism for rep-
resenting tensors in R2 through invariants, Verchery [1979], Vannucci [2005].
Basically, then polar formalism introduces a complex variable transforma-
tion, the transformation of Verchery, that allows to obtain rotation matrices
in R2 that are diagonal and symmetry matrices that are anti-diagonal. This
fact renders the search of invariants and the analysis of elastic symmetries
particularly simple. In the end, the Cartesian components of E are expressed
as

E1111(θ)=T0+2T1+R0 cos 4 (Φ0−θ) +4R1 cos 2 (Φ1−θ),
E1112(θ)=R0 sin 4 (Φ0−θ) +2R1 sin 2 (Φ1−θ),
E1122(θ)=−T0+2T1−R0 cos 4 (Φ0−θ),
E1212(θ)=T0−R0 cos 4 (Φ0−θ),
E1222(θ)=−R0 sin 4 (Φ0−θ) +2R1 sin 2 (Φ1−θ),
E2222(θ)=T0+2T1+R0 cos 4 (Φ0−θ)−4R1 cos 2 (Φ1−θ).

(7)

The Cartesian components are hence functions of four moduli, T0, T1, R0

and R1, and of two angles, Φ0 and Φ1; the moduli and the angular difference
Φ0 − Φ1 constitute a complete set of independent invariants for E. Fixing
one of the two polar angles corresponds to fix a frame where the angle θ is
measured. The converse of eqs. (7) are

8T0 = E1111(θ)− 2E1122(θ) + 4E1212(θ) + E2222(θ),

8T1 = E1111(θ) + 2E1122(θ) + E2222(θ),

8R0e
4i(Φ0−θ) = E1111(θ)− 2E1122(θ)− 4E1212(θ) + E2222(θ)+

+ 4i [E1112(θ)− E1222(θ)] ,

8R1e
2i(Φ1−θ) = E1111(θ)− E2222(θ) + 2i [E1112(θ) + E1222(θ)] ,

(8)

It is apparent from the above equations that T0 and T1 are isotropy
invariants, while R0, R1 and Φ0 − Φ1 are anisotropy invariants. It can be
shown that T0 and T1 are the only linear invariants of E while R0 and
R1 are functions of quadratic invariants and Φ0 − Φ1 of a cubic invariant,
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Vannucci [2005]. A linear invariant is necessarily a polynomial composed by
the first powers of the Cartesian components of E, while a quadratic one is
a combination of the second powers and the cubic one of the third powers.
It is, however, interesting to note that in the polar formalism the direct use
of angles is possible just because the cubic invariant introduced is a function
of a cubic invariant but not a polynomial one.

Equation (7) shows that anisotropy is the sum of two isotropic con-
tributions, of course invariants, plus two anisotropic ones; these last are
sinusoidal functions whose amplitudes are proportional to the anisotropic
invariants R0 and R1 and that are shifted by an angle which is just equal
to the last invariant: Φ0 − Φ1.

It is also possible to express the components of the compliance tensor S,
the inverse of E: denoting the polar parameters of S by lower-case letters,
it is

S1111(θ)=t0+2t1+r0 cos 4 (ϕ0−θ) +4r1 cos 2 (ϕ1−θ),
S1112(θ)=r0 sin 4 (ϕ0−θ) +2r1 sin 2 (ϕ1−θ),
S1122(θ)=−t0+2t1−r0 cos 4 (ϕ0−θ),
S1212(θ)=t0−r0 cos 4 (ϕ0−θ),
S1222(θ)=−r0 sin 4 (ϕ0−θ) +2r1 sin 2 (ϕ1−θ),
S2222(θ)=t0+2t1+r0 cos 4 (ϕ0−θ)−4r1 cos 2 (ϕ1−θ).

(9)

with

t0 =
2

∆

(
T0T1 −R2

1

)
,

t1 =
1

2∆

(
T 2
0 −R2

0

)
,

r0e
4iϕ0 =

2

∆

(
R2

1e
4iΦ1 − T1R0e

4iΦ0
)
,

r1e
2iϕ1 = −R1e

2iΦ1

∆

[
T0 −R0e

4i(Φ0−Φ1)
]
.

(10)

where
∆ = 8T1

(
T 2
0 −R2

0

)
− 16R2

1 [T0 −R0 cos 4 (Φ0 − Φ1)] . (11)

3 Rari-constant elastic tensors

We can easily state now the algebraic conditions for the elastic tensor E in
R2 to be rari-constant:

Theorem 1. E is a rari-constant elastic tensor in R2 ⇐⇒ T0 = T1.

Proof. The proof is immediate: if E is a rari-constant tensor, then E1212(θ) =
E1122(θ) ∀θ, and eqs. (73,4) give T0 = T1. Conversely, if T0 = T1, then eqs.
(81,2) give E1212(θ) = E1122(θ) ∀θ.
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Let us consider all the consequences of such a result:

• the number of independent tensor invariants is linked to the number of
index symmetries, see also Vannucci [2010b]; in particular, a supple-
mentary index symmetry corresponds to the identity of two invariants,
so that the number of independent invariants is decreased by one;

• the rari-constant condition affects only the isotropic part of E, i.e.
only its linear invariants: the anisotropic part is not touched by the
Cauchy-Poisson conditions, so that multi- and rari-constant materials
share all the same types of elastic symmetries;

• the bounds on the polar parameters, see Vannucci and Desmorat [2015],
consequence of the positive definiteness of E,

T0 −R0 > 0,

T1(T
2
0 −R2

0)− 2R2
1 [T0 −R0 cos 4(Φ0 − Φ1)] > 0,

R0 ≥ 0,

R1 ≥ 0,

(12)

do not exclude the existence of the case T0 = T1: in the classical frame
of continuum elastic bodies, materials with a rari-constant tensor E
are possible;

• the existence of multi-constant materials with T0 = T1 is not allowed;
this point is essential: apparently, just because eqs. (12) do not ex-
clude the case T0 = T1 for multi-constant materials, then such materi-
als could exist; nevertheless, this is not possible, because of Theorem
1; physically, this means that whenever T0 = T1, then tensor E is nec-
essarily rari-constant: E1212(θ) = E1122(θ) ∀θ: a particular value of
the tensor invariants determine a change of the algebraic structure of
the elastic tensor;

A fundamental remark can now be done: all what has been said for E
is equally valid for S: we can define a dual class of rari-constant materials,
where the Cauchy-Poisson conditions are valid for the compliance tensor
S. We name in the following direct- and inverse- rari-constant materials
those for which the Cauchy-Poisson condition (6) holds respectively for E
or for S. These two classes are necessarily distinct, i.e. it cannot exist
a material being at the same time direct- and inverse- rari-constant: the
Cauchy-Poisson conditions cannot be satisfied at the same time by E and S.
That is why the name rari-constant has been used not only to denote a class
of materials, but also a type of elastic tensor: this distinction is necessary
in the following.

Let us consider why a material cannot be at the same time direct- and
rari-constant:

6



Theorem 2. The Cauchy-Poisson condition (6) cannot be satisfied at the
same time by E and S.

Proof. Be E rari-constant, i.e. E1122 = E1212; then T0 = T1 by Theorem 1.
The polar invariants of S can then be calculated through eqs. (10) and (11)
that in this case become:

t0 =
2

∆

(
T 2
0 −R2

1

)
,

t1 =
1

2∆

(
T 2
0 −R2

0

)
,

r0e
4iϕ0 =

2

∆

(
R2

1e
4iΦ1 − T0R0e

4iΦ0
)
,

r1e
2iϕ1 = −R1e

2iΦ1

∆

[
T0 −R0e

4i(Φ0−Φ1)
]
.

(13)

with
∆ = 8T0

(
T 2
0 −R2

0

)
− 16R2

1 [T0 −R0 cos 4 (Φ0 − Φ1)] . (14)

It is then apparent that

t0 = t1 ⇐⇒ T 2
0 =

4R2
1 −R2

0

3
. (15)

This value of T0 is incompatible with the elastic bounds (12), see Appendix,
and hence, t0 6= t1 when T0 = T1, so by Theorem 1 applied to S, S1212 6=
S1122.

The consequence is immediate: it is not correct to identify automatically
rari-constant materials in R2 with the Cauchy-Poisson condition, because
this concerns only one of the two elastic tensors of the material.

So, if E is rari-constant, it has only 5 distinct Cartesian components, but
its inverse, S has 6 different components. Conversely, if S is rari-constant,
it has 5 distinct Cartesian components, but they are 6 for E. Nevertheless,
in both the cases the number of independent tensor invariants is 4. In fact,
if E is rari-constant, then T0 = T1 and by eqs. (13) we get

t1 =
T 2
0 −R2

0

4(T 2
0 −R2

1)
t0. (16)

Hence, though t1 6= t0, it is proportional to t0. Of course, a similar relation
exists for the dual case of S rari-constant, it is sufficient to swap lower- and
upper-case letters.

Finally, there are two dual families of rari-constant materials:
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• the direct rari-constant materials:

E1212(θ) = E1122(θ) ∀θ,
T0 = T1,

S1212(θ) 6= S1122(θ),

t1 =
T 2
0 −R2

0

4(T 2
0 −R2

1)
t0,

(17)

and
E1111(θ)=3T0+R0 cos 4 (Φ0−θ) +4R1 cos 2 (Φ1−θ),
E1112(θ)=R0 sin 4 (Φ0−θ) +2R1 sin 2 (Φ1−θ),
E1122(θ)=E1212(θ) = T0−R0 cos 4 (Φ0−θ),
E1222(θ)=−R0 sin 4 (Φ0−θ) +2R1 sin 2 (Φ1−θ),
E2222(θ)=3T0+R0 cos 4 (Φ0−θ)−4R1 cos 2 (Φ1−θ).

(18)

• the inverse rari-constant materials:

S1212(θ) = S1122(θ) ∀θ,
t0 = t1,

E1212(θ) 6= E1122(θ) ∀θ,

T1 =
t20 − r20

4(t20 − r21)
T0,

(19)

and
S1111(θ)=3t0+r0 cos 4 (ϕ0−θ) +4r1 cos 2 (ϕ1−θ),
S1112(θ)=r0 sin 4 (ϕ0−θ) +2r1 sin 2 (ϕ1−θ),
S1122(θ)=S1212(θ)=t0−r0 cos 4 (ϕ0−θ),
S1222(θ)=−r0 sin 4 (ϕ0−θ) +2r1 sin 2 (ϕ1−θ),
S2222(θ)=3t0+r0 cos 4 (ϕ0−θ)−4r1 cos 2 (ϕ1−θ).

(20)

A further consideration concerns strain energy, V : a general result, Van-
nucci [2005], of the polar formalism is that

V =
1

2
ε · Eε = 4T1t

2 + 8R1 cos 2(Φ1 − ϕ)r t+

+ 2 [T0 +R0 cos 4(Φ0 − ϕ)] r2,
(21)

with t, r and ϕ the polar components of the strain tensor:

ε11 = t+ r cos 2ϕ, ε22 = t− r cos 2ϕ, ε12 = r sin 2ϕ. (22)

Hence, for direct- rari-constant materials it is

V = 4T0t
2 + 8R1 cos 2(Φ1 − ϕ)r t+ 2 [T0 +R0 cos 4(Φ0 − ϕ)] r2, (23)
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while for the inverse- ones

V = 4αT0t
2 + 8R1 cos 2(Φ1 − ϕ)r t+ 2 [T0 +R0 cos 4(Φ0 − ϕ)] r2, (24)

where

α =
t20 − r20

4(t20 − r21)
. (25)

Finally, if we consider that special orthotropies, Vannucci [2002, 2005],
are characterized by the vanishing of a tensor invariant, i.e. R0 = 0 for
the case of R0-orthotropy, while R1 = 0 for square-symmetry, or by being
an invariant a function of the other ones, for the case of r0-orthotropic
materials, Vannucci [2010a], then it is clear that the only necessary and
sufficient condition for identifying a rari-constant material, regardless of its
type, i.e. independently of the number of distinct Cartesian components for
E or S, is that the number of independent linear tensor invariants must be
one.

4 Rari-constant anisotropic layers

We show in this Section that it is actually possible to fabricate both the
cases of direct- and inverse- rari-constant layers. This can be done using
appropriate volume fractions of unidirectional fibers to reinforce an isotropic
matrix. Just as an example, rather simple and having the only purpose to
show that these materials can be designed, we use the classical technical
laws of homogenization, Jones [1999] (E indicates a Young’s modulus, G a
shear modulus and ν a Poisson’s coefficient):

E1 = vfEf + (1− vf )Em,

E2 =
EfEm

(1− vf )Ef + vfEm
,

G12 =
GfGm

(1− vf )Gf + vfGm
,

ν12 = vfνf + (1− vf )νm.

(26)

The above relations give the technical constants for an orthotropic layer
reinforced by unidirectional fibers; the subscript f denotes a constant of the
fibers andm of the matrix; vf is the volume fraction of the fibers, 0 ≤ vf ≤ 1.

We pose
Ef = m Em, νf = n νm, (27)

and remark that usually m � 1 while n ∼ 1. Then, remembering that for
the isotropic case (so are assumed to be the fibers and the matrix)

G =
E

2(1 + ν)
, (28)
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we obtain

E1 = [1 + (m− 1)vf ]Em,

E2 =
m Em

m+ vf (1−m)
,

G12 =
m Em

2[m(1− vf )(1 + νm) + vf (1 + n νm)]
,

ν12 = [1 + (n− 1)vf ]νm.

(29)

Then, a classical result for an orthotropic layer, Jones [1999], is that

E1111 =
E1

1− ν12ν21
,

E2222 =
E2

1− ν12ν21
,

E1122 =
ν12E2

1− ν12ν21
,

E1212 = G12,

E1112 = E1222 = 0,

(30)

and

ν21 = ν12
E2

E1
. (31)

Finally, one should remember eqs. (81,2):

8T0 = E1111 − 2E1122 + 4E1212 + E2222,

8T1 = E1111 + 2E1122 + E2222.
(32)

Then, let us now consider the direct- rari-constant case: the condition
to be satisfied is

T0 = T1, (33)

completely equivalent to the Cauchy-Poisson condition

E1212 = E1122. (34)

Injecting successively eq. (29) into eq. (30) and then into eq. (32), after
some standard passages condition (33) becomes

[1 + (m− 1)vf ][m+ vf (1−m)]−m ν2m[1 + (n− 1)vf ]2−
2νm[1 + (m− 1)vf ][1 + (n− 1)vf ][m(1− vf )(1 + νm) + vf (1 + n νm)] = 0.

(35)

The only material parameter entering the above condition is νm; this condi-
tion depends upon m, n and vf . The solution of such equation, for different
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Figure 1: Solutions for rari-constant layers: the direct- and inverse- cases.

values of νm, is plotted in the left diagram of Fig. 1. For a given cou-
ple of materials, fibers and matrix, m and n are fixed and eq. (35) allows
for finding a value of the volume fraction of fibers vf resulting in a direct-
rari-constant layer.

The inverse- rari-constant case is characterized by

t0 = t1, (36)

which gives, for the stiffness constant, the condition

T1 = αT0, (37)

with α given by eq. (25). The passage to the stiffness components is nec-
essary because the homogenization formulae (26) are given as functions of
these ones. Unlike the previous case of direct- rari-constant layers, now
condition (37) is not equivalent to the Cauchy-Poisson symmetry condition,
but to the following one, eq. (32),

(E1111 + E2222)(1− α) + 2E1122(1 + α)− 4αE1212 = 0, (38)

which becomes, after introducing eqs. (29), (30) and some standard pas-
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sages,

[1 + (m− 1)vf ]{[(m− 1)2v2f − (m− 1)2vf − 2m](α− 1)+

2m(α+ 1)[1 + vf (n− 1)]νm}[vf (1 + n νm) +m(1− vf )(1 + νm)]+

2mα{(vf − 1)vf +m2(vf − 1)vf+

m[[1 + vf (n− 1)]2ν2m]− 2v2f + 2vf − 1} = 0.

(39)

In this case, the solution depends also upon the parameter α, i.e. upon the
compliance invariants, those of S, of the final layer. These can be calculated
only inverting the stiffness tensor E, so the problem is nonlinear and the
computation can be done iterating. Anyway, like in the case of the direct-
rari-consant layers, also in this case it is possible to find from eq. (39) a value
of the volume fraction of the fibers vf to obtain an inverse- rari-constant
layer; eq. (39) is of the fourth degree in vf , hence a numerical procedure is
needed for the resolution. The solution of eq. (39) is plotted in the right
diagram of Fig. 1.

A question concerns α: can α take any value? Actually not, and this can
be seen in the following way: introduce the two dimensionless parameters

η0 =
r0
t0
, η1 =

r1
t0
. (40)

Then,

α =
1− η20

4(1− η21)
, (41)

and we can study its variation as a function of η0 and η1, considering that
the bounds (12) applied to an orthotropic S and for t0 = t1 give

0 ≤ η0 < 1,

0 ≤ η1 <
√

1 + (−1)kη0
2

.
(42)

Function α(η0, η1) is plotted in Fig. 2 and it is evident that 0 < α < 1.
Incidentally, the fact that for inverse- rari-constant layers it cannot be α = 1
confirms that a material cannot be at the same time direct- and inverse-
rari-constant.

5 The isotropic case

Two isotropic rari-constant materials can exist, the direct- and the inverse-
one. Let us briefly consider their properties.
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Figure 2: Function α(η0, η1).

The direct case first: isotropy is characterized by the vanishing of the
anisotropic part, i.e. by

R0 = R1 = 0⇒ r0 = r1 = 0. (43)

The stiffness behavior is uniquely determined by T0:

E1111(θ) = E2222(θ) = 3T0, E1122(θ) = T0, E1112(θ) = E1222(θ) = 0 ∀θ.
(44)

For S, it is

t0 =
1

4T0
, t1 =

1

16T0
⇒ t0 = 4t1 (45)

and, ∀θ,

S1111(θ) = S2222(θ) = t0 + 2t1 =
3

2
t0 =

3

8T0
,

S1122(θ) = −t0 + 2t1 = − t0
2

= − 1

8T0
,

S1212(θ) = t0 =
1

4T0
⇒ S1212(θ) = −2S1122(θ),

S1112(θ) = S1222(θ) = 0.

(46)

We can also introduce the classic technical constants:

E :=
1

S1111
=

8

3
T0, ν := −S1122

S1111
=

1

3
,

G :=
1

4S1212
= T0, κ :=

1

S1111 + 2S1122 + S2222
= 2T0.

(47)

It is then apparent the mechanical meaning of T0: it is equal to the shear
modulus G for the isotropic case; the result for the Poisson’s coefficient is
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also classical, but it is worth to remark that it is only a necessary but not
sufficient for a material to be direct- rari-constant: multi-constant materials
with ν = 1/3 do exist. Also, for these materials the bulk modulus κ is twice
the shear modulus: they have a stiffness to spherical stress states that is the
double of that to shear states. For the normal stiffness, this is 8/3 times the
shear one.

Finally, for what concerns the Lamé’s constants, it is

λ := κ−G = T0, µ := G = T0 ⇒ λ = µ, (48)

a classical result.
Let us now turn the attention to inverse- rari-constant materials; now,

t0 uniquely determines all the distinct components of S:

S1111(θ) = S2222(θ) = 3t0, S1122(θ) = t0, S1112(θ) = S1222(θ) = 0 ∀θ. (49)

For tensor E, we get

T0 =
1

4t0
, T1 =

1

16t0
⇒ T0 = 4T1 (50)

and, ∀θ,

E1111(θ) = E2222(θ) = T0 + 2T1 =
3

2
T0 =

3

8t0
,

E1122(θ) = −T0 + 2T1 = −T0
2

= − 1

8t0
,

E1212(θ) = T0 =
1

4t0
⇒ E1212(θ) = −2E1122(θ),

E1112(θ) = E1222(θ) = 0.

(51)

Now, the technical constants are

E =
4

3
T0, ν = −1

3
, G = T0, κ =

T0
2
. (52)

Inverse- rari-constant materials are hence necessarily materials with a neg-
ative Poisson’s coefficient, whose value is exactly the opposite of the direct
case; nevertheless, they can exist. Also, their normal stiffness is just half
and their bulk modulus a fourth of the corresponding direct case ones. Now,
the spherical stiffness is smaller than the shear one.

The Lamé’s constants now are

λ = −T0
2
, µ = T0 ⇒ λ = −µ

2
, (53)

i.e. λ is negative; nevertheless, thanks to eq. (12), the bounds on the values
of the Lamé’s constants in R2 are satisfied:

µ = T0 > 0, λ+ µ =
T0
2
> 0. (54)
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Concerning the strain energy, eq. (23) becomes

V = 2T0(2t
2 + r2), (55)

while eq. (24), being for the isotropic case α = 1/4, becomes

V = T0(t
2 + 2r2). (56)

It is interesting to notice, as easily seen from eq. (22), that, if we indicate
by Vsph and Vdev respectively the spherical and deviatoric part of V , then
Vsph is proportional to t2 and Vdev to r2, so that Vsph ∼ 2Vdev for the direct-
case while Vsph ∼ Vdev/2 for the inverse- one. In other words, direct- rari-
constant materials stock better the elastic energy under the form of energy
linked to volume changes than to shape changes, while for the inverse- ones
it is exactly the opposite.

6 Final considerations

An old question, the existence and properties of rari-constant materials, has
been approached in a new way, the polar method for plane anisotropy, in
the framework of continuum elasticity.

Some points have been clearly shown:

• there are exactly two dual classes of rari-constant materials, the direct-
and inverse- types;

• the classical Cauchy-Poisson relations (actually, only one in R2) char-
acterize only the algebraic properties of a tensor, not of a material;

• the necessary and sufficient condition for a material to be of the rari-
constant type in R2 is that the number of independent linear, i.e.
isotropic, invariants is one;

• rari-constant materials can actually exist, while multi-constant mate-
rials with T0 = T1 or t0 = t1 are not allowed;

• in the isotropic case, direct- rari-constant materials correspond to a
material with a shear modulus half the bulk one, G = κ/2, and a
Poisson’s coefficient ν = 1/3, while the inverse- ones to a material
with G = 2κ and to ν = −1/3.

A final remark: the condition T0 = T1 clearly indicates that the aniso-
tropic part of a plane elastic tensor is necessarily rari-constant; in other
words, in R2 only the isotropic part is responsible for the multi-constant
behavior.
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Appendix

We show that the value

T0 =
4R2

1 −R2
0

3
(57)

is incompatible with the elastic bounds (12) on the polar invariants for
direct- rari-constant materials, i.e. when T1 = T0.

Replacing eq. (57) into eq. (121) and taking into account for eqs. (123,4)
gives

R1 > R0 > 0. (58)

Now, injecting eq. (57) into eq. (122) we get, after posing

ρ =
R0

R1
, C = cos 4(Φ0 − Φ1), 0 ≤ ρ < 1, −1 ≤ C ≤ 1, (59)

√
4− ρ2

3
<

3ρ C

1 + 2ρ2
, (60)

a condition that is satisfied if and only if

4− ρ2

3
≥ 0,

3ρ C

1 + 2ρ2
≥ 0,

4− ρ2

3
<

9ρ2C2

(1 + 2ρ2)2
.

(61)

Condition (611) gives ρ ≤ 2, which is redundant because of eq. (593),
condition (612) limits eq. (594) to 0 ≤ C ≤ 1 while condition (613) can be
rewritten as

f =
(4− ρ2)(1 + 2ρ2)2

27ρ2
< C2, (62)

which is never satisfied because f > 1 = maxC2 for 0 ≤ ρ < 1, as it can be
easily recognized.

The isotropic case is trivial, for eq. (57) should give T0 = 0 which
corresponds to a material with a null stiffness, hence it is impossible.

The two cases of special orthotropies are also impossible; in fact, the
case of square symmetry, R1 = 0, should imply a negative value for T 2

0 , eq.
(57), while that of R0-orthotropy, Vannucci [2002], R0 = 0 ⇒ ρ = 0, gives
f →∞.
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R. Dugas. Histoire de la mécanique. Editions du Griffon, Neuchâtel, 1950.

G. Green. On the laws of refelxion and refraction of light at the common
surface of two non-crystallized media. Cambridge Philosophical Society
Transactions, 7, 1839.

R. M. Jones. Mechanics of composite materials - 2nd Edition. Taylor and
Francis, Philadelphia, 1999.

A. E. H. Love. A treatise on the mathematical theory of elasticity. Dover,
New York, 1944.

N. I. Muskhelishvili. Some basic problems of the mathematical theory of
elasticity. Noordhoff, Groningen, 1953.
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Mémoires de l’Académie Royale des Sciences de l’Institut National, 8:
357–570, 1829.

I. Stackgold. The cauchy relations in a molecular theory of elasticity. Quar-
terly of Applied Mathematics, 8:169–186, 1950.

I. Todhunter and K. Pearson. History of the theory of elasticity, vol. 1.
Cambridge University Press, Cambridge, 1886.

P. Vannucci. A special planar orthotropic material. Journal of Elasticity,
67:81–96, 2002.

P. Vannucci. Plane anisotropy by the polar method. Meccanica, 40:437–454,
2005.

P. Vannucci. On special orthotropy of paper. Journal of Elasticity, 99:75–83,
2010a. doi: 10.1007/s10659-009-9232-2.

P. Vannucci. Anisotropy of plane complex elastic bodies. International
Journal of Solids and Structures, 47:1154–1166, 2010b.

P. Vannucci and B. Desmorat. Analytical bounds for damage induced planar
anisotropy. International Journal of Solids and Structures, 2015. URL
http://dx.doi.org/10.1016/j.ijsolstr.2015.02.017.

G. Verchery. Les invariants des tenseurs d’ordre 4 du type de l’élasticité. In
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