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Fig. S1 - A) MEC in operation; B) Anionic membrane folded around an empty cylindrical
stainless steel 254SMO tube cathode; C) Folded graphite felt as anode and D) Empty MEC
designed and built by project partners at the Laboratoire de Génie Chimique, UMR 5503,
Toulouse and 6 T-MIC Ingénieries as described by (Rousseau et al. 2013).



1. CE-SSCP fingerprinting of electroactive biofilm samples after 100 days of operation
A Capillary electrophoresis single-strand conformation polymorphism (CE-SSCP) method
was used for PCR products fingerprinting. To perform CE-SSCP fingerprinting, one
microliter of the appropriate dilution of PCR products was mixed with 18.925 uL of
formamide and 0.075 pL of internal standard GeneScan ROX (Applied Biosystems). Samples
were heat-denatured at 95°C for 5 min and re-cooled directly in ice for 5 min. CE-SSCP
electrophoresis was performed in an ABI Prism 3130 genetic analyzer (Applied Biosystems)
in 50 cm capillary tubes filled with 10% glycerol, conformation analysis polymer and
corresponding buffer (Applied Biosystems). Samples were eluted at 12kV and 32°C for 30
min (see Fig. S2). CE-SSCP profiles were aligned with an internal standard, ROX, to consider
the inter-sample electrophoretic variability. The CE-SSCP profiles (Fig. S2) were normalized
using the Statfingerprints library (Michelland et al. 2009) in R software version 2.9.2 (R.
Develpment Core Team 2010), with a standard procedure as described elsewhere (Fromin et
al. 2002).

2. CE-SSCP profile description

Capillary electrophoresis single-strand conformation polymorphism (CE-SSCP), a
fingerprinting pattern analysis based on 16S rDNA sequences is a widely used technique
considered as an “image” of the whole microbial diversity given by discrete peaks that
emerge from the subpeak background (Loisel et al. 2006). Fig. S2 presents a representative
16S rRNA gene-based CE-SSCP fingerprint profile of multiple analyzed samples of the
sediment used as inoculum before the MEC start-up (Fig. S2A) and CE-SSCP profiles from
the enriched anodic electroactive biofilm collected at the end of Phase Ill (Fig. S2: B1-3).
While, the CE-SSCP profile obtained from the sediment depicted a complex community (Fig.
S2A), biofilm CE-SSCP profiles showed a slightly more defined structure regardless their
location on the electrode material (Fig. S2: B1, B2 and B3). In particular, the well-defined
prominent peak found at about 350 (arb. units) on the “x” axis clearly points out that a high
microbial selection occurred likely due to the constant experimental conditions used during
biofilm development (Phase 1) and MEC continuous operation (Phase Il and Il1): e.g., anode
potentiostically controlled, pH, temperature and single substrate feeding. A finding well in
agreement with other studies in which this type of high microbial selection in anodic biofilms
has been mainly (and almost exclusively) observed in systems inoculated with domestic
wastewater and fed with a single non-fermentable substrate such as acetate (Harnisch et al.
2011).
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Fig. S2 - CE-SSCP profiles based on 16S rRNA gene fragments retrieved from (A) the
sediments used as inoculum and (B1-3) the electroactive biofilm enriched during more than
100 days of MEC continuous operation.
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Fig. S3 - Phase 3: increasing acetate concentration test during chronoamperometric (at 200
mV vs. SCE) continuous operation of the liter scale up-flow MEC used throughout the present
study. With the same electroactive biofilm within the MEC two replicates were conducted. As
it can be seen, for the 2nd replicate sudden drops in current density production were observed.
This was due to the salt contained in the medium that blocked the tubing used to feed the

MEC as per our observations.



Table S1 - Selected &-proteobacterial sequences from the 16S rRNA-based phylogenetic tree
(The All-species Living Tree: http://www.arb-silva.de/projects/living-tree/).

Accession number Family Organism name Sequence
length/ bp
AF418174 Desulfarculaceae Desulfarculus baarsii 1522
AY464939 Desulfomicrobiaceae Desulfomicrobium thermophilum 1518
AF418176 Desulfobacteraceae Desulfotignum balticum 1505
U48243 Desulfovibrionaceae Desulfovibrio halophilus 1547
DQ365924 Desulfovibrionaceae Desulfovibrio marinus 1524
AAEW02000008 Desulfuromonadaceae Desulfuromonas acetoxidans 1558
AY835392 Desulfuromonadaceae Desulfuromusa ferrireducens 1491
DQ309326 Geobacteraceae Geoalkalibacter ferrihydriticus 1504
EU182247 Geobacteraceae Geoalkalibacter subterraneus 1555
U13928 Geobacteraceae Geobacter sulfurreducens 1408
AY187303 Geobacteraceae Geopsychrobacter electrodiphilus 1493
CP000758 Brucellaceae Ochrobactrum anthropi 1476
AB498815 Bradyrhizobiaceae Rhodopseudomonas palustris 1484
AY631277 Peptococcaceae Thermincola ferriacetica 1443
AF005251 Shewanellaceae Shewanella oneidensis 1389




Fig. S4 - Additional exemplary scanning electron microscopy pictures of the anodic
electroactive biofilm observed after more than 100 days of MEC continuous operation. Scale
bars (in um) are indicated in the bottom of the picture for left (300), middle (100) and right

(10) columns.
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Fig. S5 - Detailed gas volume and composition sampled at the cathode chamber during Phase
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Fig. S6 - Gas volume collected and composition sampled at the cathode chamber during

Phase I1l. The average and standard deviation of two daily measurements is shown.
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Table S2 - Substrate concentration fed to the MEC at each experimental Phase.

Acetate Acetate COD in fed acetate Phase | Phase Il Phase I1I

(mmol/L) (g/L) (g/L)

10 0.6 0.64 X X
15 0.9 0.96 X

20 1.2 1.28 X X X
30 1.8 1.93 X
40 2.4 2.57 X
50 3.0 3.21 X
60 3.6 3.85 X
70 4.2 4.49 X
80 4.8 5.14 X
90 5.4 5.78 X
100 6.0 6.42 X

3. Benefit of producing H; by poising the anode potential in comparison to other
strategies: i) use of a fixed cell voltage or ii) use of a poised cathode potential

With respect to the different operational conditions used in MEC studies, in the literature

three types can be found from the electrochemical perspective independently if the anode

and/or the cathode are mainly biologically or chemically catalyzed.

Type 1 or 2: the anode or the cathode potential is constantly controlled by a potentiostat. Such
potentiostatic method provides the certainty that at least one of the electrodes is constantly
fixed at a decided potential. Thus, the observed reactions occur thanks to that specific applied

potential.

On the other side, in type 3 the whole MEC potential is constantly controlled by a power
source without clearly being able to fix the potential at which available substrates in the
medium might be oxidized or reduced at the electrodes (Batlle-Vilanova et al. 2014, Nam et
al. 2011).

4. Abiotic cathode versus biotic cathode

Although the use of bio-cathodes (instead of abiotic-cathodes) in MECs shows considerable
potential (Batlle-Vilanova et al. 2014), the present study was part of a project aiming at
coupling two biotechnological processes: dark fermentation and microbial electrolysis. Thus,

we decided to use a configuration in which we could microbiologically oxidize certain
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substrate at the anode and chemically use those electrons at the cathode to produce H2. Such

configuration allowed us to well control the experimental conditions at the anode.
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Fig. S7 - Gas produced in the system either at the cathode or anode chamber was collected in
an inverted column. In between the MEC and the inverted column a sampling port was

installed to analyze gas composition by chromatography.

5. Use of cyclic voltammetry

Cyclic voltammetry (CV) was mainly used to i) know the possible electron transfer
mechanism (ETM) employed by the anodic biofilm and ii) demonstrate the formation of a
mature biofilm (data not shown in the first version of the manuscript). We have used a
previously applied approach to recognize the formation of a mature biofilm by comparing the
shape of the bare electrode CV and the one after three cycles of chronoamperometry (Fig. S8).
Additionally, we have plotted the 1st derivative of a CV of a mature biofilm to calculate the
formal potential (Ef) which indicates the potential at which the biofilm likely transfer
electrons to the electrode material (Carmona-Martinez et al. 2011, Carmona-Martinez et al.
2012, Carmona-Martinez et al. 2013).
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Fig. S8 - Cyclic voltammetry applied to the analysis of the anodic biofilm.

Table S3 - Recently published reports on scalable MECs treating real domestic wastewater.

Eqp. HRT MEC T H, CE COD j H, Reference
(V) (h) volume (°C) (%) (%) removal (A/m?) (m%md.d)
(L) (%)
33.7+
11 24 120 16-22 100 55 540 0.3 0.015 (Heidrich et al. 2013)
(Gil-Carrera et al.
1.0 96 2 20 N.R. 24 80 0.22 0.022
2013)
Below o
11 24 100 1-22 100 41 21.3 0.006 (Heidrich et al. 2014)
standards
0.7 42 19 80 238 92 0.36 0.015 (Escapa et al. 2015)
02 12 4 37 90 10 70 10.6 0.900 This study
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