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The present work deal with some spectral properties of the problem (P)

D α b,-and D α a,+ are the right-sided and left-sided Riemann-Liouville fractional derivatives of order α ∈ (0, 1), respectively. λ is a scalar parameter.

First, we prove, using the spectral theory of linear compact operators, that this problem has an infinite sequence of real eigenvalues and the corresponding eigenfunctions form a complete orthonormal system in the Hilbert space L 2 q [a, b]. Then, we investigate some asymptotic properties of the spectrum as α -→ < 1. We give, in particular, the asymptotic expansion of the first eigenvalue.

Introduction

The Sturm-Liouville theory has an important role in mathematics, physics and engineering. During the last few years, fractional Sturm-Liouville problems appear in the literature. They were introduced by M.Klimek and O.P.Agrawal in [START_REF] Klimek | Fractional Sturm-Liouville problem[END_REF][START_REF] Klimek | On a regular fractional Sturm-Liouville problem with derivatives of order in (0, 1)[END_REF]. Both Riemann-Liouville and Caputo derivatives were used. These authors proved that the eigenvalues are real and the eigenfunctions are orthogonal by using a Green-type formula as in the classical case. In [START_REF] Rivero | A fractional approach to the Sturm-Liouville problem[END_REF], more problems have been presented.

The purpose of this paper is to investigate some basic spectral properties of the fractional Sturm-Liouville problem (P) with Generalized Dirichlet conditions. By Generalized Dirichlet conditions, we mean lim

x-→a > (x -a) 1-α y(x) = 0 = y(b).

Note that this kind of conditions involves continuous functions at the point a, as well as noncontinuous ones. For example, lim

x-→a > ln (x -a) = -∞ but lim

x-→a > (x -a) 1-α ln (x -a) = 0.

Obviously, Dirichlet conditions are particular case of the Generalized ones and the limit in [START_REF] Dib | Generalized Variational Problems and Euler-Lagrange equations[END_REF] implies that y is in L 1 . We start by considering the problem (P) on the domain Dom where y ∈ Dom if and only if y verifies the following conditions with the aim of transform (P) into an integral equation problem, which can be analyzed by classical tools of operator theory. The condition (C1) is nothing but the generalized Dirichlet condition at x = a. The second one (C2) will appear naturally further in the calculation of the integral operator.

The number λ is said to be an eigenvalue for the problem (P) if there exists a function in Dom, not identically zero, which satisfies the fractional regular Sturm-Liouville equation and the Generalized Dirichlet conditions.

In what follows, we prove that the set of eigenvalues of (P) is real and infinite. This result answers partially a question in [START_REF] Rivero | A fractional approach to the Sturm-Liouville problem[END_REF] (Remark 1, p.9) where the situation is quite similar. However the simplicity of the eigenvalues is still an open problem.

The corresponding eigenfunctions form a complete orthonormal system in the Hilbert space L 2 q [a, b] endowed with the usual scalar product and the associated norm

u, v q = b a u(x) v(x) q(x) dx , u q = u, u q
This result follows from the theory of linear compact operators and the fractional Green's function properties following so, the approach in [START_REF] Klimek | Regular fractional Sturm-Liouville problem with discrete spectrum: Solutions and applications[END_REF] adapted to our generalized boundary conditions. The second result investigate the asymptotic behaviour of the first eigenvalue of (P) when α -→ < 1. This can be the starting point to put the classical and the fractional cases in the same theory.

Basic Concepts

In this section, we recall some definitions and properties of Riemann-Liouville fractional integrals and fractional derivatives used below. For more details see [START_REF] Kilbas | Theory and Applications of Fractional Differential Equations[END_REF][START_REF] Miller | An Introduction to the Fractional Calculus and Fractional Differential Equations[END_REF][START_REF] Podlubny | Fractional Differential Equations[END_REF][START_REF] Samko | Fractional Integrals and Derivatives -Theory and Applications[END_REF].

Definition 2.1 [9, 13] Let f ∈ C([a, b]
). The right-sided and left-sided Riemann-Liouville fractional integrals of order α > 0 are defined, respectively, by

(I α b,-f )(x) = 1 Γ(α) b x (t -x) α-1 f (t) dt (2) 
and

(I α a,+ f )(x) = 1 Γ(α) x a (x -t) α-1 f (t) dt ( 3 
)
where Γ is the Euler Gamma function.

Definition 2.2 [START_REF] Kilbas | Theory and Applications of Fractional Differential Equations[END_REF][START_REF] Podlubny | Fractional Differential Equations[END_REF] The right-sided and left-sided Riemann-Liouville fractional derivatives of order α ∈ (0, 1) are defined by

(D α b,-f )(x) = - d dx (I 1-α b,-f )(x) (4) 
and

(D α a,+ f )(x) = d dx (I 1-α a,+ f )(x) (5) 
respectively.

Proposition 2.1 [START_REF] Kilbas | Theory and Applications of Fractional Differential Equations[END_REF][START_REF] Podlubny | Fractional Differential Equations[END_REF][START_REF] Samko | Fractional Integrals and Derivatives -Theory and Applications[END_REF] Let

0 < α < 1 and f ∈ C((a, b)). 1. [(D α b,-o I α b,-) f ](x) = f (x). 2. If I 1-α b,-f ∈ AC([a, b]
), then we have

[(I α b,-o D α b,-) f ](x) = f (x) - (b -x) α-1 Γ(α) lim x-→b < (I 1-α b,-f )(x). 3. [(D α a,+ o I α a,+ ) f ](x) = f (x). 4. If I 1-α a,+ f ∈ AC([a, b]
), then we have (1) If there exists a limit lim

[(I α a,+ o D α a,+ ) f ](x) = f (x) - (x -a) α-1 Γ(α) lim x-→a > (I 1-α a,+ f )(x).
x-→a > (x -a) 1-α y(x) = c, c ∈ C then also the following limit exists

I 1-α a,+ y (a+) := lim x-→a > I 1-α a,+ y (x) = c Γ(α).
(2) Symmetrically, if there exists a limit

lim x-→b < (b -x) 1-α y(x) = d, d ∈ C
then also the following limit exists

I 1-α b,-y (b-) := lim x-→b < I 1-α b,-y (x) = d Γ(α).
Finally, we recall the following fractional integration by parts formula, proved in [START_REF] Samko | Fractional Integrals and Derivatives -Theory and Applications[END_REF] (Corollary 2 -p.46 with simple sufficient conditions)

Proposition 2.2 Let f, g, (D α a,+ f ), (D α b,-g) ∈ C([a, b]) then b a (D α a,+ f )(x) g(x) dx = b a f (x) (D α b,-g)(x) dx. ( 6 
)
3 Main Results

Spectral properties

In this subsection, we prove that the problem (P) admits an infinite sequence of eigenvalues, which are real and negative. Also, the normalized eigenfunctions form an orthonormal basis in L 2 q [a, b].

Proposition 3.1 Let α ∈ 1 2 , 1 then
1. ∀y ∈ Dom, the problem (P) is equivalent to

y(x) = λ (T α y)(x)
where T α is the linear operator defined by

T α : Dom -→ Dom y(•) -→ (T α y)(x) = b a G α (x, τ ) q(τ ) y(τ ) dτ G α (x, τ ) is the Fractional Green's Function defined by G α (x, τ ) =            φ(b, x) φ(b, τ ) φ(b, b) Γ(α) - φ(x, τ ) Γ(α) , if a ≤ τ ≤ x φ(b, x) φ(b, τ ) φ(b, b) Γ(α) - φ(τ, x) Γ(α) , if x ≤ τ ≤ b (7) 
and

φ(u, v) = I α a,+ (u -v) α-1 p(v) (v) = 1 Γ(α) v a (u -τ ) α-1 (v -τ ) α-1 dτ p(τ ) . ( 8 
)
2. T α extends to a compact, self-adjoint operator on L 2 q [a, b] and Ker(T α ) = {0} 3. All the eigenvalues of the problem (P) are negative.

Proof.

By applying

I α b,-to the equation D α b,-(p(x) D α a,+ y)(x) + λ q(x) y(x) = 0 we obtain (D α a,+ y)(x) = (b -x) α-1 Γ(α) p(x) lim x-→b < (I 1-α b,-p(x) D α a,+ y)(x) - λ p(x) (I α b,-q(x) y(x))(x).
Now, we apply the operator I α a,+ . Then

y(x) = (x -a) α-1 Γ(α) lim x-→a > (I 1-α a,+ y)(x) + C φ(b, x) Γ(α) -λ I α a,+ 1 p(x) (I α b,-q(x) y(x)) (x) (9)
where, according to Proposition 2.1 (property 2), we have

C = lim x-→b < (I 1-α b,-p(x) D α a,+ y)(x)
and φ(b, x) is defined in [START_REF] Klimek | Regular fractional Sturm-Liouville problem with discrete spectrum: Solutions and applications[END_REF].

• Note that the generalized Dirichlet condition lim

x-→a > (x -a) 1-α y(x) = 0 implies that lim x-→a > (I 1-α a,+ y)(x) = 0.
according to lemma 2.1.

• The application of the second boundary value condition y(b) = 0, gives

C = λ Γ(α) φ(b, b) lim x-→b < I α a,+ 1 p(x) (I α b,-q(x) y(x)) (x) where φ(b, b) = lim x-→b < φ(b, x) exists for 1 2 < α ≤ 1 since the integral b a (b -x) 2 α-2 dx p(x) (10) 
converges if and only if 2 α -1 > 0.

Let us compute the constant C. By using Fubini's theorem, we obtain

I α a,+ 1 p(x) (I α b,-q(x) y(x)) (x) = 1 Γ(α) x a φ(x, τ ) q(τ ) y(τ ) dτ + 1 Γ(α) b x φ(τ, x) q(τ ) y(τ ) dτ (11) 
Then we have

C = λ Γ(α) φ(b, b) lim x-→b < I α a,+ 1 p(x) (I α b,-q(x) y(x)) (x) = λ φ(b, b) b a φ(b, τ ) q(τ ) y(τ ) dτ .
So, by substituting the first boundary value condition, the constant C and the integral [START_REF] Mckiernan | On the nth derivative of composite functions[END_REF] in the equation ( 9) we get the first implication.

We can easily verify that ∀ y ∈ Dom, T α y ∈ Dom.

Then, the equivalence stated above follows immediately.

2.

We can get the results from the properties of the fractional Green's function. The operator T α defined on Dom can be continuously extended to L 2 q [a, b] because Dom is dense, since it contains the space of infinitely differentiable functions with compact support. The compactness of T α follows from the properties below. In fact,

i. ∀(x, τ ) ∈ [a, b] × [a, b], G α (x, τ ) is a continuous function because φ(x, τ ) is a continuous function in the domain a ≤ τ ≤ x ≤ b and lim τ -→x < G α (x, τ ) = lim τ -→x > G α (x, τ ), then the kernel G α ∈ L 2 q⊗q ([a, b] × [a, b]) therefore T α is a Hilbert-Schmidt operator, so compact. (see [3], [16]) ii. ∀(x, τ ) ∈ [a, b]×[a, b], G α (x, τ ) = G α (τ, x) then G is a symmetric function on [a, b]×[a, b] so the operator T α is self-adjoint in L 2 q [a, b].
iii. To prove that the kernel of T α is reduced to {0}, it suffice to solve the equation

(T α y)(x) = 0, ∀x ∈ [a, b]
By application of left-sided and right-sided Riemann-Liouville fractional derivatives, respectively, we get the result after some simple calculations.

3.

Let us consider the Fractional Sturm-Liouville equation λ n = -∞, which can be ordered as

D α b,-(p(x) D α a,+ y)(x) + λ q(x) y(x) = 0.
• • • ≤ λ n ≤ • • • ≤ λ 3 ≤ λ 2 ≤ λ 1 ≤ 0 
ii) The normalized eigenfunctions {φ n } n corresponding to the eigenvalues

{λ n } n are orthogonal in L 2 q [a, b] that is ∀ i = j, b a φ i (x) φ j (x) q(x) dx = 0
iii) Let {φ n,j } dn j=1 an orthonormal basis of E n , the eigenspace corresponding to λ n (d n = dim E n ). The eigenfunctions {φ n,j } n,j form an orthonormal basis of the Hilbert space

L 2 q [a, b] that is ∀ y ∈ L 2 q [a, b], y = lim N →∞ N n=1 dn j=1
< y, φ n,j > q φ n,j .

Proof.

Let λ be a non-zero eigenvalue of (P) and µ be a non-zero eigenvalue of T α , then according to Proposition 3.1, we have

(P) ⇐⇒ 1 λ y = T α y and µ y = T α y ⇐⇒          D α b,-(p(x) D α a,+ y)(x) + 1 µ q(x) y(x) = 0 lim x-→a > (x -a) 1-α y(x) = 0 = y(b)
The homogeneous problem has not a non-zero solution hence zero is neither eigenvalue of (P) nor eigenvalue of T α .

Then, the non-zero eigenvalues of (P) are exactly the inverses of those of T α . These last are real countable, negative, tend to zero when n -→ ∞ and they can be ordered as

|µ 1 | ≥ |µ 2 | ≥ |µ 3 | ≥ • • • ≥ |µ k | ≥ • • • → 0 because T α is self-adjoint and compact in L 2 q [a, b].
We can also conclude the properties of the eigenfunctions. Now, we prove the infinity of eigenvalues by absurd. Let us assume that T α has a finite sequence of non-zero eigenvalues. The spectral theorem of compact self-adjoint operators gives

L 2 q [a, b] = (Ker T α ) ⊕ N k=1 E n .
Since the corresponding eigenspaces E 1 , • • • , E n are finite dimensional and according to Proposition 3.1 we have Ker T α = {0}, then L 2 q [a, b] must be finite dimensional which is a contradiction.

Remark 3.1 The integral [START_REF] Lebedev | Special Functions and their applications[END_REF] converges if and only if α > 1 2

. So, the operator T α remains compact and self-adjoint even if α ≥ 1. But the corresponding fractional Sturm-Liouville problem must contain much more boundary conditions.

Recall the expression of the Hilbert-Schmidt norm of a compact integral operator on L 2 q [a, b], [START_REF] Weidmann | Linear Operators in Hilbert Spaces[END_REF].

If (Sy)(x) = b a K(x, t) y(t) q(t)dt then S 2 HS = b a b a |K(x, t)| 2 q(t)q(x) dt dx (12) 
Proposition 3.2 All the eigenvalues of the problem (P) verify

|λ| ≥ 1 T α HS
Proof. If λ is an eigenvalue then there exists y = 0 such that y = λ T α y so y q = |λ| . T α y q ≤ |λ| . T α . y q ≤ |λ| . T α HS . y q then |λ| ≥ 1 T α HS .

Remark 3.2

The optimal disc free from eigenvalues has 1 T α as radius. But the operator norm is more difficult to compute than the Hilbert-Schmidt one. In our case

T α 2 HS = b a b a
|G α (x, t)| 2 q(t)q(x) dt dx can be computed for explicit functions p and q.

Asymptotic behaviour

In this section, we prove that the first eigenvalue of T α is close to the first eigenvalue of the following problem

(P 1 )    -(p(x) y ) (x) + λ q(x) y(x) = 0, a < x < b y(a) = 0 = y(b) when α -→ < 1.
To prove this result we need some lemmas and propositions.

Lemma 3.1 The n th derivative of 1 Γ(α) and Γ(α) have the following properties

∀ n ≥ 0, ∃ M n > 0, ∀α ∈ 1 2 , 1 , 1 Γ(α) (n) ≤ M n and (Γ(α)) (n) ≤ M n (13) 
Proof.The functions 1 Γ(•)

, Γ(•) ∈ C ∞ (]0, +∞[), then they are bounded on a compact sets, as well as all their derivatives. Lemma 3.2 For a ≤ t ≤ x ≤ b, we have the following property

∀ ε > 0, ∀ 0 ≤ j ≤ k, ∃ C k,j (ε) > 0 1 2 + ε < α ≤ 1, t a (x -τ ) α-1 ln j (x -τ ) (t -τ ) α-1 ln k-j (t -τ ) dτ ≤ C k,j (ε). (14) 
Proof.

Let us consider the function

f m (ξ, β) = ξ β ln m (ξ) with m ∈ N and 0 < β < α - 1 2 . It is not hard to see that f m (ξ, β) is uniformly bounded in [0, c] × 0, α - 1 2 . t a (x -τ ) α-1 ln j (x -τ ) (t -τ ) α-1 ln k-j (t -τ ) dτ = t a (x -τ ) α-β-1 f j ((x -τ ), β) (t -τ ) α-β-1 f k-j ((t -τ ), β) dτ ≤ A k,j (ε) t a (x -τ ) α-β-1 (t -τ ) α-β-1 dτ ≤ A k,j (ε) (2α -2β -1) (x -a) 2α-2β-1 -(x -t) 2α-2β-1 . (t -a) 2α-2β-1 ≤ A k,j (ε) (2α -2β -1) (b -a) 2α-2β-1
where we used the Cauchy-Schwartz inequality. By choosing 2β = α -

1 2 , we get t a (x -τ ) α-1 ln j (x -τ ) (t -τ ) α-1 ln k-j (t -τ ) dτ ≤ A k,j (ε) ε d ε 1 2 = C k,j (ε)
where

d ε (γ) = (b -a) γ if b ≥ a + 1 (b -a) 2 γ ε if b < a + 1
Lemma 3.3 Let g be the function defined by

g(α) = b a (b -τ ) 2 α-2 dτ p(τ )
then g has the following properties

1. ∀ ε > 0, ∃ K min , K max > 0 1 2 + ε < α ≤ 1 ⇒ K min ≤ |g(α)| ≤ K max . 2. ∀ ε > 0, ∀ n ≥ 0, ∃ η n > 0 1 2 + ε < α ≤ 1 ⇒ g (n) (α) ≤ η n . 3. ∀ ε > 0, ∀ n ≥ 0, ∃ δ n > 0 1 2 + ε < α ≤ 1 ⇒ 1 g(α) (n) ≤ δ n .

Proof.

Let

g(α) = b a (b -τ ) 2 α-2 dτ p(τ ) .
Since p ∈ C([a, b]) and p(t) > 0, then

1 M = 1 max τ ∈[a,b] p(τ ) ≤ 1 p(τ ) ≤ 1 min τ ∈[a,b] p(τ ) = 1 m hence (b -a) 2 α-1 M (2 α -1) ≤ |g(α)| ≤ (b -a) 2 α-1 m (2 α -1) . Let ε > 0 1 2 + ε < α ≤ 1 , so we conclude that c ε M ≤ |g(α)| ≤ d ε (1) m (2 ε) where c ε = (b -a) 2 ε if b ≥ a + 1 b -a if b < a + 1
which gives the first property.

For g (n) (α), we have

g (n) (α) = b a 2 n ln n (b -τ ) (b -τ ) 2 α-2 dτ p(τ ) = b a 2 n f n (b -τ, β) (b -τ ) 2α-β-2 dτ p(τ ) and then g (n) (α) ≤ 2 n m A n (ε) (b -a) 2α-β-1 2α -β -1 Now, we choose β = α - 1 2 to get g (n) (α) ≤ 2 n m ε A n (ε) d ε 1 2 = η n (15) 
Finally, we can compute 1 g(α)

(n) by application of the n th derivative of composite functions (see [START_REF] Mckiernan | On the nth derivative of composite functions[END_REF]) to the following functions

f (α) = 1 α and g(α) = b a (b -τ ) 2 α-2 dτ p(τ ) . So (f • g) (n) (α) = n k=1 f (k) (g(α)) k l=0 (-1) k-l l! (k -l)! g k-l (α) g l (α) (n) (16) 
where

∀ k / 1 ≤ k ≤ n , f (k) (g(α)) = (-1) k k! g k+1 (α) (17) 
and ∀ l / 0 ≤ l ≤ n , j 0 = 0 and j l+1 = n we have

g l (α) (n) = j 1 j 0 =0 j 2 j 1 =0 j 3 j 2 =0 • • • j l+1 j l =0 l i=1 j i+1 j i (g(α)) (j i+1 -j i ) (18) 
which can be proved easily by induction. By substituting (17) and ( 18) in ( 16) we get

(f • g) (n) (α) = n k=1 k l=0 k l (-1) l g l+1 (α) j 1 j 0 =0 • • • j l+1 j l =0 l i=1 j i+1 j i (g(α)) (j i+1 -j i )
where ∀l/ 0 ≤ l ≤ n, j l+1 = n.

Using triangular inequality, the first property of g(α) and the property (15), we conclude that

∀ ε > 0, ∀ n ≥ 0, ∃ δ n > 0 1 2 + ε < α ≤ 1 =⇒ (f • g) (n) (α) ≤ δ n . ( 19 
) Proposition 3.3 For a ≤ t ≤ x ≤ b and φ(x, t) = 1 Γ(α) t a (t -τ ) α-1 (x -τ ) α-1 dτ p(τ )
we have

∀ ε > 0, ∀ n ≥ 0, ∃ K n > 0 1 2 + ε < α ≤ 1 ⇒ ∂ n ∂ α n φ(x, t) ≤ K n . ∀ ε > 0, ∀ n ≥ 0, ∃ B n > 0 1 2 + ε < α ≤ 1 ⇒ ∂ n ∂ α n 1 φ(b, b) ≤ B n .
Proof.

• ∂ n ∂ α n φ(x, t) = ∂ n ∂ α n 1 Γ(α) t a (t -τ ) α-1 (x -τ ) α-1 dτ
p(τ ) by application twice the Leibniz's formula, we obtain

= n k=0 n k 1 Γ(α) (n-k) t a (t -τ ) α-1 (x -τ ) α-1 dτ p(τ ) (k) = n k=0 k j=0 n k k j 1 Γ(α) (n-k) t a (x -τ ) α-1 ln j (x -τ ) (t -τ ) α-1 ln k-j (t -τ ) dτ p(τ ) .
Then, according to the triangular inequality we obtain

∂ n ∂ α n φ(x, t) ≤ n k=0 k j=0 n k k j 1 Γ(α) (n-k) t a (x -τ ) α-1 ln j (x -τ ) (t -τ ) α-1 ln k-j (t -τ ) dτ p(τ ) the fact that p ∈ C([a, b]) p(τ ) > 0 give 1 p(τ ) ≤ 1 min τ ∈[a,b] p(τ ) = 1 m .
So by Lemma 3.1 and Lemma 3.2, we obtain

∀ ε > 0, ∀ n ≥ 0, ∃ K n = 1 m n k=0 k j=0 n k k j M n-k C k,j > 0 1 2 + ε < α ≤ 1 =⇒ ∂ n ∂ α n φ(x, t) ≤ K n . • We have φ(b, b) = 1 Γ(α) b a (b -τ ) 2 α-2 dτ p(τ ) ⇐⇒ 1 φ(b, b) = Γ(α) g(α)
then by application of Leibniz's formula, we obtain

∂ n ∂ α n 1 φ(b, b) = n k=0 n k (Γ(α)) (n-k) 1 g(α) (k) . ( 20 
)
Hence, from the properties ( 13) and ( 19) we get the desired result.

Proposition 3.4 Consider once more the operator T α

(T α y)(x) = b a G α (x, τ ) q(τ ) y(τ ) dτ
where G α is defined in [START_REF] Klimek | Regular Sturm-Liouville Problem with Riemann-Liouville Derivatives of Order in (1,2)[END_REF].

Then T

(n) α = ∂ n ∂ α n T α is uniformly bounded for 1 2 + ε ≤ α ≤ 1, that is ∀ ε > 0, ∀ n ≥ 0, ∃ θ n > 0 1 2 + ε ≤ α ≤ 1 =⇒ T (n) α ≤ θ n . (21) 
Proof.We have

(T (n) α y)(x) = b a G (n) α (x, τ ) q(τ ) y(τ ) dτ and • for a ≤ τ ≤ x then G (n) α (x, τ ) = n m=0 n m 1 Γ(α) (n-m) . m l=0 m l φ (m-l) (b, x) l k=0 l k φ (l-k) (b, τ ) 1 φ(b, b) (k) -φ (m) (x, τ ) • and for x ≤ τ ≤ b then G (n) α (x, τ ) = n m=0 n m 1 Γ(α) (n-m) . m l=0 m l φ (m-l) (b, τ ) l k=0 l k φ (l-k) (b, x) 1 φ(b, b) (k) -φ (m) (τ, x) (22) 
obtained by Leibniz's formula.

Then by the Cauchy-Schwartz inequality, the fact that q ∈ C([a, b]) and q(τ ) > 0, we can easily prove that

T (n) α ≤ T (n) α H.S. ≤ sup τ ∈[a,b] q(τ ) b a b a G (n) α (x, τ ) 2 dτ dx.
So by of Lemma 3.1, the Proposition 3.3 and the formula (22) of G

(n) α , we obtain the result (21). Now, we can state the second main result.

Theorem 3.2 i) Let m ≥ 0 be a fixed integer. Then, T α is (m + 1) th differentiable operator with respect to α at α = 1 and we have the following expansion

T α y = m k=0 T (k) α y α=1 k! (α -1) k + R m (α)y (23)
where the Lagrange reminder is expressed by

R m (α)y = (α -1) m+1 (m + 1)! T (m+1) α y α=ξ (α < ξ < 1) (24) and R m (α) = o(|α -1| m ), α -→ < 1. ii) If µ - 1 (α) is the first negative eigenvalue of the operator T α , then lim α-→ < 1 µ - 1 (α) = µ - 1 (1). ( 25 
)
where µ - 1 (1) is the first negative eigenvalue of the operator T 1 . Proof.

i) From the expression (7) of the kernel G α (x, τ ), one can see that G α (x, τ ) is C ∞ in any small neighbourhood of α = 1. So we can write the Taylor formula with Lagrange reminder at this point

(T α y) (x) = m k=0 T (k) α y (x) α=1 k! (α -1) k + R m (α)
where

T (k) α y (x) α=1 = b a G (k) α (x, τ ) α=1 q(τ ) y(τ ) dτ
and R m (α) is the Lagrange reminder defined in (24). Then,

R m (α) ≤ T (m+1) ξ . |α -1| m+1 (m + 1)! , α < ξ < 1.
By applying the property (21), we obtain

∃ θ m+1 > 0/ R m (α) ≤ θ m+1 . |α -1| m+1 (m + 1)! which gives R m (α) = o(|α -1| m ), α -→ < 1.
ii) Let us take the previous expansion of T α (23) with m = 0, then

(T α y) (x) = (T 1 y) (x) + (α -1). T ξ y (x)
⇐⇒ T α y, y q -T 1 y, y q = |α -1| . T ξ y, y q .

However, T ξ y, y q ≤ T ξ . y q ≤ T ξ , ∀y/ y q = 1.

Hence,

T α y, y q -T 1 y, y q ≤ |α -1| . T ξ ⇒ -|α -1| . T ξ ≤ T α y, y q -T 1 y, y q ≤ |α -1| . T ξ ⇒ -|α -1| . T ξ + T 1 y, y q ≤ T α y, y q ≤ T 1 y, y q + |α -1| . T ξ ⇒ -|α -1| . T ξ + inf

y q =1 T 1 y, y q ≤ inf y q =1 T α y, y q ≤ inf y q =1 T 1 y, y q + |α -1| . T ξ ⇒ -|α -1| . T ξ + µ - 1 (1) ≤ µ - 1 (α) ≤ µ - 1 (1) + |α -1| . T ξ (26) 
from this and the fact that T ξ verifies (21), we get lim

α-→ < 1 µ - 1 (α) = µ - 1 (1) 
.

and consequently, lim

α-→ < 1 λ - 1 (α) = λ - 1 (1) 
Remark 3.3 We think that the previous expansion of T α can be of great importance in the expression of the next terms in asymptotic development of µ - 1 (α).

Illustrative example

Let us see a simple example with p ≡ 1, q ≡ 1 and where the fractional Green's function is

G α (x, τ ) =    (2 α -1) ϕ(1, x) ϕ(1, τ ) -ϕ(x, τ ), if 0 ≤ τ ≤ x (2 α -1) ϕ(1, x) ϕ(1, τ ) -ϕ(τ, x), if x ≤ τ ≤ 1 with ϕ(τ, x) = 1 Γ(α) x 0 (x -t) α-1 (τ -t) α-1 dt = x α τ α-1 Γ(1 + α) 2 F 1    1 -α , 1 ; x τ 1 + α   
where 2 F 1 is the Gauss-hypergeometric function which can be defined by its Euler representation (see [[10]]) where u(x) = x ln x and γ is the Euler constant. We remark that the linear operator associated to this Green's function which contains Logarithmic functions is not connected to any classical differential operator. Finally, we have lim

α-→ < 1 λ - 1 (α) = -π 2 .

(

  C1) y ∈ C(]a, b]) and lim x-→a > (x -a) 1-α y(x) = 0 (C2) D α a,+ y ∈ C([a, b[) and lim x-→b < (b -x) 1-α D α a,+ y(x) exists

Lemma 2 . 1 [ 9 ]

 219 (Lemma 3.2-p.151) Let 0 < α < 1 and y(x) be a Lebesgue measurable function on [a,b].

  By multiplying this equation by y(x) and integrate it on [a, b] we get b a D α b,-(p(x) D α a,+ y)(x) y(x) dx + λ b a q(x) y 2 (x) dx = 0 Now, by applying the property (6) of proposition 2.2, which is also satisfied with the generalized Dirichlet conditions (1), we obtain b a p(x) D α a,+ y 2 (x) dx + λ b a q(x) y 2 (x) dx = 0 hence λ must be negative. Theorem 3.1 Let us consider the Fractional Regular Sturm-Liouville problem (P) for 1 2 < α < 1, then i) The problem (P) has an infinite countable set {λ n } n≥1 of real negative eigenvalues such that lim n-→∞

1 0G

 1 [a, b] = [0, 1]. Then, our R.F.S.α y(x) = 0 = y(1)and the "inverse" compact operator defined inL 2 ([0, 1]) is (T α y)(x) = α (x, τ ) y(τ ) dτ

2 τ

 2 1 (1 -s) c-b-1 (1 -z s) -a ds.So, this problem has an infinite sequence of real negative eigenvalues. The Taylor expansion up to order 1 gives(T α y) (x) = (T α y) (x)| α=1 + T (1) α y (x) α=1 (α -1) + R 1 (α)where the kernel Gα (x, τ ) α=1 = x τ -min(x, τ ) is the classical Green's function of the (P 1 ) problem corresponding to our data. G[START_REF] Dib | Generalized Variational Problems and Euler-Lagrange equations[END_REF] α (x, τ ) α=1 can be computed by some integrations by partsG(1) α (x, τ ) + 2 (γ -1) x τ -u(x) -u(τ ) + u(x -τ ) +u(x τ ) -x u(1 -τ ) -τ u(1 -x), if 0 ≤ τ ≤ x 2 x + 2 (γ -1) τ x -u(τ ) -u(x) + u(τ -x) +u(τ x) -τ u(1 -x) -x u(1 -τ ), if x ≤ τ ≤ 1
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