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Vincent Miele
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Abstract. Statistical node clustering in discrete time dynamic networks is an emerging field

that raises many challenges. Here, we explore statistical properties and deterministic inference

in a model that combines a stochastic block model (SBM) for its static part with independent

Markov chains for the evolution of the nodes groups through time. We model binary data as

well as weighted dynamic random graphs (with discrete or continuous edges values). Our

approach particularly focuses on the control for label switching issues across the different time

steps. We study identifiability of the model parameters, propose an inference procedure based

on a variational expectation maximization algorithm as well as a model selection criterion to

select for the number of groups. We carefully discuss our initialization strategy which plays

an important role in the method and compare our procedure with existing ones on synthetic

datasets. We also illustrate our approach on a real data set of encounters among high school

students and provide an implementation of the method into a R package called dynsbm.
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1. Introduction

Statistical network analysis has become a major field of research, with applications as diverse
as sociology, ecology, biology, internet, etc. General references on statistical modeling of
random graphs include the recent book by Kolaczyk (2009) and the reviews (Goldenberg
et al., 2010; Snijders, 2011). While static approaches have been developed as early as in the
60’s (mostly in the field of sociology), the literature concerning dynamic models is much
more recent. Modeling discrete time dynamic networks is an emerging field that raises many
challenges.

An important part of the literature on static network analysis is dedicated to clustering
methods, with both aims of taking into account the intrinsic heterogeneity of the data and
summarizing this data through node classification. Among clustering approaches, commu-
nity detection methods form a smaller class of methods that aim at finding groups of highly
connected nodes. Our focus here is not only on community detection but more generally on
node classification based on connectivity behaviours, with a particular interest on model-
based approaches. We refer to Matias and Robin (2014) for an overview of recent results on
statistical model-based clustering methods for random graphs. When considering a sequence
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of snapshots of a network at different time steps, these static clustering approaches will give
rise to classifications that are difficult to compare through time and thus difficult to inter-
pret. An important thing to note is that label switching between two successive time steps
may not be solved without an extra assumption e.g. that most of the nodes do not change
group across two different time steps. However to our knowledge, this kind of assumption
has never been discussed in the literature. In this work, we are interested in statistical
models for discrete time dynamic random graphs, with the aim of providing a node classifi-
cation across time, while controlling for label switching issues across the different time steps.

Stochastic block models (SBM) form a widely used class of statistical (and static) ran-
dom graphs models that provide a clustering of the nodes. SBM introduces latent (i.e.
unobserved) random variables on the nodes of the graph, taking values in a finite set.
These latent variables represent the nodes groups and interaction between two nodes is
governed by these corresponding groups. The model includes (but is not restricted to) the
specific case of community detection, where the probability of connection between two nodes
is higher when they belong to the same group. Combining SBM with a Markov structure
on the latent part of the process (the nodes classification) is a natural way of ensuring a
smooth evolution of the groups across time. This has been considered by many authors, in
different ways as we discuss now. In Yang et al. (2011), the authors consider undirected,
either binary or finitely valued, discrete time dynamic random graphs with no self-loops.
As already said, the static aspect of the data is handled through SBM, so that at each time
point, nodes belong to (a finite number of) unobserved groups, whose values determine their
probability of connection. Now the dynamic aspect of the model is as follows. For each
node, its group membership forms a Markov chain, independent of the values of the other
nodes memberships. In this work, only the group membership is allowed to vary across time
while connectivity parameters among groups stay constant through time. The authors pro-
pose a probabilistic simulated annealing algorithm to infer these parameters (either online
or offline), based on a combination of Gibbs sampling and simulated annealing. For binary
random graphs, Xu and Hero (2014) propose to introduce a state-space model through time
on (the logit transform of) the probability of connection between groups. Contrarily to the
previous work, both group membership and connectivity parameters per groups pairs may
vary through time. Their (online) iterative estimation procedure is based on alternating
two steps: a label-switching method to explore the space of node groups configuration, and
the (extended) Kalman filter that optimizes the likelihood when the group memberships
are known. Note that neither Yang et al. (2011) nor Xu and Hero (2014) propose to infer
the number of clusters. Bayesian variants of these dynamic SB models may be found for
instance in Ishiguro et al. (2010); Herlau et al. (2013).

Surprisingly, we noticed that the above mentioned methods were evaluated on synthetic
datasets in terms of mean value over the time steps of a clustering quality index computed
at fixed time step. Naturally, those indexes do not penalize for label switching and two
classifications that are identical up to a permutation have the highest quality index value.
Computing an index for each time step, the label switching issue between different time
steps disappears and the classification task becomes easier. Indeed, such criteria do not
control for a smoothed recovery of groups along different time points. It should also be
noted that the synthetic experiments from these works were performed under the particular
binary affiliation case (where only two connectivity parameters - intra and inter groups - are
allowed), while we explain below that those dynamic versions of the affiliation SB model do
not have identifiable parameters. In particular, the label switching issue between different
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time steps may not be easily removed in this particular case.

Other approaches for model-based clustering of dynamic random graphs do not rely di-
rectly on SBM but rather on variants of SBM. When there is an already known partition on
the set of graphs and clustering is to be stack on this partition, some authors advocate for
the use of the so-called random subgraph model (RSM, see Jernite et al., 2014). The model
combines SBM with the known partition by authorizing the groups proportions to differ in
the different subgraphs. A dynamic version of RSM that builds upon the approach of Xu
and Hero (2014) appears in Zreik et al. (2015). Detection of persistent communities has
been proposed in Liu et al. (2014) for directed and dynamic graphs of call counts between
individuals. Here the static underlying model is a (time and) degree-corrected SBM (Kar-
rer and Newman, 2011) with Poisson distribution on the call counts. Group memberships
are independent through time instead of Markov, but smoothness in the classification is
obtained by imposing that intra groups expected call volumes (that represent part of the
parameter specifying the distribution of intra groups counts) are constant through time. In-
ference is performed through a heuristic greedy search in the space of group memberships,
as proposed in Karrer and Newman (2011). Note that only real datasets and no synthetic
experiments have been explored in this latter work.

Another very popular statistical method for analyzing static networks is based on latent
space models. Each node is associated to a point in a latent space and probability of
connection is higher for nodes whose latent points are closer (Hoff et al., 2002). In Sarkar
and Moore (2005), a dynamic version of the latent space model is proposed, where the
latent points follow a (continuous state space) Markov chain, with transition kernel given
by a Gaussian perturbation on current position with zero mean and small variance. Latent
position inference is performed in two steps: a first initial guess is obtained through multi
dimensional scaling. Then, nonlinear optimization is used to maximise the model likelihood.
The work by Xu and Zheng (2009) is very similar, adding a clustering step on the nodes.
The clustering uses both latent position and a link factor between individuals. Finally,
Heaukulani and Ghahramani (2013) rely on Monte Carlo Markov Chain methods to perform
a Bayesian inference in a more complicate setup where the latent positions of the nodes are
not independent.

Mixed membership models (Airoldi et al., 2008) are also explored in a dynamic context.
The work by Xing et al. (2010) relies on a state space model for the evolution of the pa-
rameters of the priors of both the mixed membership vector of a node and the connectivity
behaviour. Inference is carried out through a variational Bayes expectation maximisation
(VBEM) algorithm (e.g. Jordan et al., 1999). This concludes our non exhaustive bibliography
on model-based clustering methods for dynamic random graphs.

In the present work, we explore statistical properties and deterministic inference in
a model that combines SBM for its static part with independent Markov chains for the
evolution of the nodes groups through time. Thus our setup is very close to the ones
of Yang et al. (2011); Xu and Hero (2014), the main difference being that we allow for both
groups and parameters to vary through time and discuss identifiability conditions for valid
statistical inference. Moreover, we model binary data as well as weighted random graphs
(with discrete or continuous edges) and propose a model selection criterion to choose the
number of clusters. For simplicity of notation, we develop our model for undirected random
graphs with no self-loops but easy generalizations could be obtained to cover for directed
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datasets and/or including self-loops.

Section 2.1 describes the model and sets notation. In Section 2.2, we study parameters
identifiability (up to label switching). We first highlight the fact that both groups and
parameters values may not freely vary across time without identifiability problems. Then
we exhibit a very natural constraint on our parameters and establish that it suffices to obtain
identifiability of our parameterization. We note that to our knowledge, it is the first dynamic
random graph model where parameters identifiability (up to label switching) is discussed
and established. Moreover, we stress that dynamic affiliation SBM does not have identifiable
parameters and groups may not be recovered consistently across time (Section 2.3). This
is an important point as previous authors have tried to recover groups from this type of
synthetic datasets and evaluated their estimated classification in a non natural way. Then,
Section 3 describes a variational expectation maximization (VEM) procedure for inferring the
model parameters and clustering the nodes. The VEM procedure works with a fixed number
of groups and an Integrated Classification Likelihood (ICL, Biernacki et al., 2000) criterion
is proposed for estimating the number of groups. We provide explicit formula in many
classical (binary or weighted) examples for the conditional distribution of the edges, given
the nodes groups (Section 3.2). We also discuss initialization of the algorithm - an important
but rarely discussed step, in Section 3.3. Synthetic experiments are presented in Section 4.
There, we discuss classification performances without neglecting the label switching issue
that may occur between time steps. We also illustrate our method through the analysis of
a real dataset of encounters among high school students in Section 5. Finally, an extension
of this work to the case where some nodes are not present at every time point is sketched
in Section 6. We mention that the methods are implemented into a R package available at
http://lbbe.univ-lyon1.fr/dynsbm and will soon be available on the CRAN.

2. Setup and notation

2.1. Model description

We consider weighted interactions between N individuals recorded through time in a set
of data matrices Y = (Y t)1≤t≤T . Here T is the number of time points and for each value
t ∈ {1, . . . , T }, the adjacency matrix Y t = (Y t

ij)1≤i6=j≤N contains real values measuring

interactions between individuals i, j ∈ {1, . . . , N}2. Without loss of generality, we consider
undirected random graphs without self-loops, so that Y t is a symmetric matrix with no
diagonal elements.

We assume that the N individuals are split into Q latent (unobserved) groups that
may vary through time, as encoded by the random variables Z = (Zt

i )1≤t≤T,1≤i≤N with
values in QNT := {1, . . . , Q}NT . This process is modeled as follows. Across individuals,
random variables (Zi)1≤i≤N are independent and identically distributed (iid). Now, for
each individual i ∈ {1, . . . , N}, the process Zi = (Zt

i )1≤t≤T is an irreducible, aperiodic
stationary Markov chain with transition matrix π = (πqq′ )1≤q,q′≤Q and initial stationary
distribution α = (α1, . . . , αQ). When no confusion occurs, we may alternatively consider
Zt
i as a value in Q or as a random vector Zt

i = (Zt
i1, . . . , Z

t
iQ) ∈ {0, 1}Q constrained to

∑

q Z
t
iq = 1.

Given latent groups Z, the time varying random graphsY = (Y t)1≤t≤T are independent,
the conditional distribution of each Y t depending only on Zt. Then, for fixed 1 ≤ t ≤
T , random graph Y t follows a stochastic block model. In other words, for each time t,
conditional on Zt, random variables (Y t

ij)1≤i<j≤N are independent and the distribution of
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each Y t
ij only depends on Zt

i , Z
t
j . For now, we assume a very general parametric form for

this distribution on R. Following Ambroise and Matias (2012), in order to take into account
possible sparse weighted graphs, we explicitly introduce a Dirac mass at 0, denoted by δ0,
as a component of this distribution. More precisely, we assume

Y t
ij |{Zt

iqZ
t
jl = 1} ∼ (1− βt

ql)δ0(·) + βt
qlF (·, γtql), (1)

where {F (·, γ), γ ∈ Γ} is a parametric family of distributions with no point mass at 0 and
densities (with respect to Lebesgue or counting measure) denoted by f(·, γ). This could
be the Gaussian family with unknown mean and variance, the truncated Poisson family on
N\{0} (leading to a 0-inflated or 0-deflated distribution on the edges of the graph), etc. Note
that the binary case is encompassed in this setup with F (·, γ) = δ1(·), namely the parametric
family of laws is reduced to a single point, the Dirac mass at 1 and conditional distribution of
Y t
ij is simply a Bernoulli B(βt

ql). In the following and by opposition to the ’binary case’, we
will call ’weighted case’ any setup where the set of distributions F is parametrized and not
reduced to a single point. Here, the sparsity parameters βt = (βt

ql)1≤q,l≤Q satisfy βt
ql ∈ [0, 1],

with βt ≡ 1 corresponding to the particular case of a complete weighted graph. As a result
of considering undirected graphs, the parameters βt

ql, γ
t
ql moreover satisfy βt

ql = βt
lq and

γtql = γtlq for all 1 ≤ q, l ≤ Q. Note that for the moment, SBM parameters may be different
across time points. We will go back to this point in the next section. The model is thus
parameterised by

θ = (π,β,γ) = (π, {βt, γt}1≤t≤T ) = ({πqq′}1≤q,q′≤Q, {βt
ql, γ

t
ql}1≤t≤T,1≤q≤l≤Q) ∈ Θ,

and we let Pθ denote the probability distribution on the whole space QN ×RN. We also let
φ(·;β, γ) denote the density of the distribution given by (1), namely

∀y ∈ R, φ(y;β, γ) = (1− β)1{y = 0}+ βf(y, γ)1{y 6= 0},

where 1{A} is the indicator function of set A. With some abuse of notation and when
no confusion occurs, we shorten φ(·;βt

ql, γ
t
ql) to φtql(·) or φtql(·; θ). Directed acyclic graphs

(DAGs) describing the dependency structure of the variables in the model, with different
levels of detail, are given in Figure 1.

2.2. Parameters identifiability (general case)

Let us recall that with discrete latent random variables, identifiability can only be obtained
up to a label switching on the node groups Q. For any permutation σ in SQ (the set of
permutations on Q) and any θ ∈ Θ, we define

σ(θ) := ({πσ(q)σ(q′)}1≤q,q′≤Q, {βt
σ(q)σ(l), γ

t
σ(q)σ(l)}1≤t≤T,1≤q≤l≤Q).

It should be noted that here, the permutation σ acts globally, meaning that it is the same
at each time point t. Now, if we let PY

θ denote the marginal of Pθ on the set of observations
Y, identifiability of the parameterisation, up to label switching means

∀θ, θ̃ ∈ Θ, PY
θ = PY

θ̃
=⇒ ∃σ ∈ SQ, θ = σ(θ̃).

Without additional constraints on the transition matrix π or on the parameters (β,γ), the
parameters may not be recovered up to label switching. However, it could be that the static
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Figure 1. Dependency structures of the model. Top: general view corresponding to hidden Markov

model (HMM) structure; Middle: details on latent structure organisation corresponding to N different

iid Markov chains Zi = (Zt
i )1≤t≤T across individuals; Bottom: details for fixed time point t corre-

sponding to SBM structure.
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SBM part of the parameter is recovered up to a local label switching. Local label switching
on SBM part of the parameter is the weaker following property

∀θ, θ̃ ∈ Θ, PY
θ = PY

θ̃
=⇒ ∃σ1, . . . , σT ∈ S

T
Q, ∀t, (βt, γt) = σt(β̃

t, γ̃t).

This property is not satisfactory since clustering in models that only satisfy a local identi-
fiability of SBM part of the parameter prevents from obtaining a picture of the evolution
of the groups across time. We illustrate through a simple example the fact that if both Zt

and (βt, γt) may vary through time, then the parameter can not be identified up to label
switching, without additional constraints.

Example 1 (Non identifiability). Let us consider the case of Q = 2 groups and
(for simplicity of notation) 2T time points. We fix a first parameter value θ = (π,β,γ)
defined by π = Id the size-two identity matrix and (βt, γt) = (β, γ) are chosen constant
with t. In the following, we let φql(·) denote the constant (with time) conditional density
distribution of any Y t

ij given Zt
iqZ

t
jl = 1, under parameter value θ. The latent process has

stationary distribution α = (1/2, 1/2) and since the latent configuration is drawn at the first
time point and stays constant (π is the identity), it can be seen that the distribution on the
set of observations Y is given by

Pθ(Y) =
1

2N

∑

q1...qN∈QN

∏

1≤i<j≤N

2T
∏

t=1

φ(Y t
ij ;β

t
qiqj , γ

t
qiqj )

=
1

2N

∑

q1...qN∈QN

∏

1≤i<j≤N

2T
∏

t=1

φqiqj (Y
t
ij).

Now we consider a second parameter value θ̃ = (π̃, β̃, γ̃) such that

π̃ =

(

0 1
1 0

)

,

which corresponds to the same latent stationary distribution α = (1/2, 1/2) but now the
latent configuration is drawn at the first time point and then each node switches group at
each following time point. For any q ∈ {1, 2}, we let q̄ denote the unique value such that
{q, q̄} = {1, 2}. Moreover, for any q ∈ {1, 2}, we set the intra group parameter at time
t = 1 to (β̃1

qq, γ̃
1
qq) = (βqq, γqq), or equivalently, we set the conditional distribution φ̃1qq of Y 1

ij

given Z1
iqZ

1
jq = 1, under parameter value θ̃, equal to previous value φqq. Then, we switch

the intra group parameters values at each time point by setting

∀t ≥ 1, φ̃t+1
11 = φ̃t22 and φ̃t+1

22 = φ̃t11.

Finally, the inter group parameter is not modified through time and we set φ̃t12 = φ12. Now,
we can write the distribution of Y under parameter value θ̃

Pθ̃(Y) =
1

2N

∑

q1...qN∈QN

∏

1≤i<j≤N

φ̃1qiqj (Y
1
ij)φ̃

2
q̄i q̄j (Y

2
ij) . . . φ̃

2T−1
qiqj (Y 2T−1

ij )φ̃2Tq̄i q̄j (Y
2T
ij )

=
1

2N

∑

q1...qN∈QN

∏

1≤i<j≤N

φqiqj (Y
1
ij)φqiqj (Y

2
ij) . . . φqiqj (Y

2T
ij ),
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so that PY
θ = PY

θ̃
. To conclude, it suffices to show that there is no global permutation

σ ∈ SQ such that θ̃ = σ(θ). This can be seen from the fact that for any σ ∈ SQ, we have

σ(π̃) = π̃ 6= π. Thus the two parameters θ, θ̃ are not equal up to label switching while
they produce the same distribution on the observations. It follows that the parameter θ is
not identifiable up to label switching. Note that the SBM part of the parameter is recovered
up to local label switching as choosing the permutations σ2t = Id and σ2t−1 = (1, 2) (the
transposition in S2) for any 1 ≤ t ≤ T , we obtain that σt(β

t, γt) = (β̃t, γ̃t).

The main problem with the previous example comes from the possibility of arbitrarily
relabeling the groups between two time steps. As a consequence, we choose to impose the
following constraints on the parameter θ

∀q ∈ Q, ∀t, t′ ∈ {1, . . . , T },
{

Binary case: βt
qq = βt′

qq ,

Weighted case: γtqq = γt
′

qq .
(2)

In the following and when constrained to be constant (depending on binary or weighted
case), these intra group parameters will be simply denoted by βqq and γqq, respectively. We
prove below that these constraints are sufficient to ensure identifiability of the parametriza-
tion under natural assumptions.

Assumption 1 (Weighted case). We assume that

i) For any t ≥ 1, the Q(Q+ 1)/2 values {γtql, 1 ≤ q ≤ l ≤ Q} are distinct,

ii) The family of distributions F = {f(·, γ), γ ∈ Γ} is such that all elements f(·, γ) have
no point mass at 0 and the parameters of finite mixtures of distributions in F are
identifiable, up to label switching.

Note that Assumption 1 does not impose any constraint on the sparsity parameters βt
ql in

the weighted case. In particular and for parsimony reasons, these may be chosen identical
(to some βt or some constant β) or set to two different values, e.g. βt

qq = βt
in and βt

ql = βt
out

whenever q 6= l at each time point (or even constant with time).

Proposition 1. Considering the distribution PY
θ on the set of observations and assum-

ing the constraint (2), the parameter θ = (π,β,γ) satisfies the following:

• Binary case: θ is generically identified from PY
θ , up to label switching, as soon as

N is not too small with respect to Q,

• Weighted case: Under additional Assumption 1, the parameter θ is identified from
PY
θ , up to label switching, as soon as N ≥ 3.

Generic identifiability means ’up to excluding a subset of zero Lebesgue measure of the
parameter set’. We refer to Allman et al. (2009, 2011) for more details. In particular,
assuming that the Bernoulli parameters βql are distinct in the binary case is a generic
constraint (meaning that it removes a subset of zero Lebesgue measure of the parameter
set). As we do not specify the whole generic constraint that is needed here, we do not
stress that one either. But the reader should have it in mind in the binary setup. Finally,
note that the condition on the number of nodes N being not too small in the binary case
is given precisely in Theorem 2 from Allman et al. (2011). The particular affiliation case is
not covered by these results and discussed in the next section.
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Proof. The proof combines the approaches of Leroux (1992) for proving identifiabil-
ity of hidden Markov models (HMM) parameters and Allman et al. (2011) that studies
identifiability for (static) SBM.

First, we fix a time point t ≥ 1 and consider the marginal distribution Pθ(Y
t). According

to Theorems 1,2 (binary case with Q = 2 and Q ≥ 3, respectively) and Theorem 12
(weighted case) in Allman et al. (2011) on parameters identifiability in static SBM, there
exists a permutation σt on the group labels Q such that we can identify (βt, γt) as well as
the marginal distribution α, up to this permutation. This result stands generically in the
binary case only.

Now, for two different time points t, t′, we use the constraint (2) and the assumption
of distinct parameter values in order to identify the parameters {(βt, γt), t ≥ 1} up to a
(common) permutation σ on Q. Indeed, in the binary case, assuming that the intra groups
Bernoulli parameters satisfy βt

qq = βt′

qq and that the set {βt
qq; 1 ≤ q ≤ Q} contains Q distinct

values (a generic constraint) suffices to obtain a global permutation σ, not depending on
time t, up to which {(βt, γt), t ≥ 1} are identified. The same applies in the weighted case,
by assuming equality between the parameter γtqq = γt

′

qq for any t, t′.

It remains to identify the transition matrix π (up to the same permutation σ). We fix
an edge (i, j) and following Leroux (1992), consider the bivariate distribution Pθ(Y

t
ij , Y

t+1
ij ).

This is given by

Pθ(Y
t
ij , Y

t+1
ij ) =

∑

q1,q2,l1,l2∈Q

αq1αl1πq1q2πl1l2φ
t
q1l1(Y

t
ij)φ

t+1
q2l2

(Y t+1
ij ). (3)

Note that Teicher (1967) has proved the equivalence between parameters identifiability of
the mixtures of a family of distributions and parameters identifiability of the mixtures of
finite products from this same family. For the sake of clarity, we develop his proof adapted
to our context. We thus write

Pθ(Y
t
ij , Y

t+1
ij ) =

∑

q2,l2∈Q

(

∑

q1,l1∈Q

αq1αl1πq1q2πl1l2φ
t
q1l1(Y

t
ij)

)

φt+1
q2l2

(Y t+1
ij ).

As the mixtures from the family {φt+1
ql , 1 ≤ q ≤ l ≤ Q} have identifiable parameters

(Assumption 1, iii)), we can identify the mixing distribution

∑

q2,l2∈Q

(

∑

q1,l1∈Q

αq1αl1πq1q2πl1l2φ
t
q1l1(Y

t
ij)

)

δ(βt+1

q2l2
,γt+1

q2l2
).

Now, applying again this identifiability at time t and constraint (1), we may identify the
whole mixing distribution

∑

q2,l2∈Q

∑

q1,l1∈Q

αq1αl1πq1q2πl1l2δ(βt
q1l1

,γt
q1l1

) ⊗ δ(βt+1

q2l2
,γt+1

q2,l2
).

This proves that the mixture given by (3) has identifiable components. From this mixture
and the fact that we already identified the parameters (β,γ) up to a global permutation,
we may extract the set of coefficients {α2

qπ
2
qq′ , 1 ≤ q, q′ ≤ Q} that corresponds to the

components φtqqφ
t+1
q′q′ in (3). As we also already obtained the values {αq, 1 ≤ q ≤ Q}, this

now identifies the parameters {πqq′ , 1 ≤ q, q′ ≤ Q}. This concludes the proof.
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2.3. Discussing identifiability in affiliation case

Note that the affiliation setup is excluded from our previous results. Identifying the whole
parameters from a binary affiliation SBM is a difficult task, as may be seen for instance
by the many different but always partial results obtained by Allman et al. (2011). In their
Corollary 7, the authors establish that when group proportions are known, the parameters
βin(:= βqq for all q) and βout(:= βql for all q 6= l) of a binary affiliation static SBM are
identifiable. In the weighted affiliation case, all parameters (α,βt,γt) of a (static) SBM
may be identified (Theorem 13 in Allman et al., 2011). Following the proof of Proposition 1,
we could identify (α,β,γ) in dynamic affiliation SBM under natural assumptions. Now,
without an additional constraint on the transition matrix π, it is hopeless to identify the
transition parameters. Indeed, as the groups play similar roles at each time step, label
switching between different time steps is free to occur and π may not be identified (note
that assuming that βt

in or γtin does not depend on t is of no help here). This may be seen
for instance from Example 1 that remains valid in the affiliation case. In fact, identifying
π in dynamic affiliation SBM seems to be as hard as identifying the group proportions in
static binary affiliation SBM. While static affiliation often relies on an assumption of equal
group proportions, there is no simple parallel situation for the transition matrix π in the
dynamic case (the trivial assumption π = Id is far too constrained). Let us now give some
intuition on why π is difficult to recover. For instance, following the proof of Proposition 1
and looking at the distribution of (Y t

ij , Y
t+1
ij ) enables us to identify a mixing distribution

with four components as follows. Let δtin (resp. δtout) be a shorthand for the Dirac mass
at parameter (βt

in, γ
t
in) (resp. (β

t
out, γ

t
out)). From the distribution of (Y t

ij , Y
t+1
ij ), we identify

the four following components

(

∑

qq′

α2
qπ

2
qq′

)

δtin ⊗ δt+1
in ;

(

∑

q

∑

l 6=m

α2
qπqlπqm

)

δtin ⊗ δt+1
out ;

(

∑

q 6=l

∑

m

αqαlπqmπlm

)

δtout ⊗ δt+1
in ;

(

∑

q 6=l

∑

q′ 6=l′

αqαlπqq′πll′
)

δtout ⊗ δt+1
out .

Now relying on the knowledge of the proportions of each of these four components, it
can be seen that it is not easy to identify the individual values of π. Without a proper
identification of the transition matrix π, we do not recover the behaviour of the group
membership through time. Empirical evidence for label switching between time steps in
the affiliation setup is given in Section 4.

3. Inference algorithm

3.1. General description

As usual with latent variables, the log-likelihood logPθ(Y) contains a sum over all possible
latent configurations Z and thus may not be computed except for small values of N and
T . A classical solution is to rely on expectation-maximisation (EM) algorithm (Dempster
et al., 1977), an iterative procedure that finds local maxima of the log-likelihood. The
use of EM algorithm relies on the computation of the conditional distribution of the latent
variables Z given the observed onesY. However in the context of stochastic blockmodel, this
distribution has not a factored form and thus may not be computed efficiently. We choose to
rely here on variational approximations of EM algorithm (VEM, see for instance Jordan et al.,
1999). These approximations have been first proposed in the context of SBM in Daudin
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et al. (2008) and later developed in many directions, such as online procedures (Zanghi
et al., 2008, 2010) or Bayesian VEM (Latouche et al., 2012). We refer to the review by Matias
and Robin (2014) for more details about VEM algorithm (in particular a presentation of EM
viewed as a special instance of VEM) and its comparison to other estimation procedures in
SBM. Note that convergence properties of VEM algorithms are discussed in full generality
in Gunawardana and Byrne (2005) and in the special case of SBM in Celisse et al. (2012);
Bickel et al. (2013).

VEM for dynamic SBM. In our context of dynamic random graphs, we start by writing the
complete data log-likelihood of the model

logPθ(Y,Z) =

N
∑

i=1

Q
∑

q=1

Z1
iq logαq +

T
∑

t=2

N
∑

i=1

∑

1≤q,q′≤Q

Zt−1
iq Zt

iq′ log πqq′

+
T
∑

t=1

∑

1≤i<j≤N

∑

1≤q,l≤Q

Zt
iqZ

t
jl logφ(Y

t
ij ;β

t
ql, γ

t
ql). (4)

We now explore the dependency structure of the conditional distribution Pθ(Z|Y). First,
note that it can be easily deduced from the DAG of the model (Figure 1, top) that

Pθ(Z|Y) = Pθ(Z
1|Y 1)

T
∏

t=2

Pθ(Z
t|Zt−1, Y t).

However, the distribution Pθ(Z
t|Zt−1, Y t) = Pθ((Z

t
i )1≤i≤N |Zt−1, Y t) can not be further

factored. Indeed, for any i 6= j, the variables Zt
i , Z

t
j are not independent when conditioned

on Y t. Our variational approximation naturally considers the following class of probability
distributions Q := Qτ parameterised by τ

Qτ (Z) =

N
∏

i=1

Qτ (Zi) =

N
∏

i=1

Qτ (Z
1
i )

T
∏

t=2

Qτ (Z
t
i |Zt−1

i )

=

N
∏

i=1

[

Q
∏

q=1

τ(i, q)Z
1
iq

]

×
T
∏

t=2

∏

1≤q,q′≤Q

τ(t, i, q, q′)Z
t−1

iq
Zt

iq′ ,

where for any values (t, i, q, q′), we have τ(i, q) and τ(t, i, q, q′) both belong to the set [0, 1]
and are constrained by

∑

q τ(i, q) = 1 and
∑

q′ τ(t, i, q, q
′) = 1. This class of probability

distributions Qτ corresponds to considering independent laws through individuals, while for
each i ∈ {1, . . . , N}, the distribution of Zi under Qτ is the one of a Markov chain (through
time t), with (inhomogeneous) transition τ(t, i, q, q′) = Qτ (Z

t
i = q′|Zt−1

i = q) and initial
distribution τ(i, q) = Qτ (Z

1
i = q).

We also need to consider marginal components of Qτ , namely τmarg(t, i, q) := Qτ (Z
t
i =

q). These quantities are computed recursively by

τmarg(1, i, q) = τ(i, q) and ∀t ≥ 2, τmarg(t, i, q) =

Q
∑

q′=1

τmarg(t− 1, i, q′)τ(t, i, q′, q).
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Note also that all these values τmarg(t, i, q) depend on the initial distribution τ(i, q). Entropy
of this distribution is denoted by H(Qτ ). Using this class of probability distributions on
QN, VEM algorithm is an iterative procedure to optimize the following criterion

J(θ, τ) :=EQτ
(logPθ(Y,Z)) +H(Qτ )

=

N
∑

i=1

Q
∑

q=1

τ(i, q)[logαq − log τ(i, q)]

+
T
∑

t=2

N
∑

i=1

∑

1≤q,q′≤Q

τmarg(t− 1, i, q)τ(t, i, q, q′)[log πqq′ − log τ(t, i, q, q′)]

+
T
∑

t=1

∑

1≤i<j≤N

∑

1≤q,l≤Q

τmarg(t, i, q)τmarg(t, j, l) logφ
t
ql(Y

t
ij). (5)

It consists in iterating the following two steps. At k-th iteration, with current parameter
value (τ (k), θ(k)), we do

• VE-step: Compute τ (k+1) = ArgmaxτJ(θ
(k), τ),

• M-step: Compute θ(k+1) = ArgmaxθJ(θ, τ
(k+1)).

Proposition 2. The value τ̂ that maximizes in τ the function J(θ, τ) satisfies the fixed
point equation

∀t ≥ 2, ∀i ≥ 1, ∀q, q′ ∈ Q, τ̂ (t, i, q, q′) ∝ πqq′
∏

j,j 6=i

Q
∏

l′=1

[φtq′l′(Y
t
ij)]

τ̂marg(t,j,l
′),

where ∝ means ’proportional to’ (the constants are obtained by the constraints on τ). More-

over, the value (π̂, β̂) that maximizes in (π,β) the function J(θ, τ) satisfies

∀(q, q′) ∈ Q2, π̂qq′ ∝
T
∑

t=2

N
∑

i=1

τmarg(t− 1, i, q)τ(t, i, q, q′),

∀t, ∀q 6= l ∈ Q2, β̂t
ql =

∑

1≤i6=j≤N τmarg(t, i, q)τmarg(t, j, l)1Y t
ij
6=0

∑

i,j τmarg(t, i, q)τmarg(t, j, l)
,

∀q ∈ Q, β̂qq =

∑

t

∑

1≤i6=j≤N τmarg(t, i, q)τmarg(t, j, q)1Y t
ij
6=0

∑

t,i,j τmarg(t, i, q)τmarg(t, j, q)
.

The proof of this result is immediate and omitted. Note that we have given a formula
with constant (through time) values βqq for any group q ∈ Q. While this assumption is an
identifiability requirement in the binary setup, it is not necessary in the weighted case. In
this latter case, we use it only for parsimony reasons. The corresponding formula when this
parameter is not assumed to be constant may be easily obtained.

To complete the algorithm’s description, we provide equations to update the parameters
τ(i, q), αq of initial distributions as well as the connectivity parameter γ. First, optimization
of J(θ, τ) with respect to the initialization parameters τ(i, q) is a little bit more involved.
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By neglecting the dependency on τ(i, q) of some terms appearing in criterion J , we choose
to update this value by solving the fixed point equation

∀i ≥ 1, ∀q ∈ Q, τ̂ (i, q) ∝ αq

∏

j,j 6=i

Q
∏

l=1

φ1ql(Y
1
ij)

τ̂(j,l). (6)

Our experiments show that this is a reasonable approximation (Section 4). For the sake of
completeness, we provide in Appendix A the exact equation satisfied by the solution.

Now parameter α is not obtained from maximising J as it is not a free parameter but
rather the stationary distribution associated with transition π. Thus, α is obtained from
the empirical mean of the marginal distribution τ̂marg over all data points

∀q ∈ Q, α̂q =
1

NT

T
∑

t=1

N
∑

i=1

τ̂marg(t, i, q).

Finally, optimization with respect to γ depends on the choice of the parametric family
{f(·, γ), γ ∈ Γ}. We give some examples below in Section 3.2.

Remark 1. Performing EM algorithm in HMM (Figure 1, top) requires the use of forward-
backward equations in order to deal with transition terms Zt−1

iq Zt
iq appearing in the complete

data log-likelihood (4). In our setup, forward-backward equations are useless and replaced
by a variational approximation. Indeed, it can be seen from Figure 1, middle, that the con-
ditional distribution of Zt−1

iq Zt
iq given the data can not be computed exactly through such

forward-backward equations. This is due to the fact that the set of variables Y t depend
on all hidden ones Zt

1, . . . , Z
t
N and focusing only on Zt

i is not sufficient to determine its
distribution.

Remark 2. In Yang et al. (2011), the authors derive a VEM procedure in a similar
(slightly less general) setup, but their variational approximation uses independent marginals
(through individuals and also time points). As a consequence, the VE-step that they derive
is more involved than ours (see Section 4 in Yang et al., 2011).

Model selection. Model selection on the number of groups Q is an important step. In
case of latent variables, when the true data likelihood may not be easily computed, model
selection may be done by maximizing an integrated classification likelihood (ICL) criterion

(Biernacki et al., 2000). For any number of groups Q ≥ 1, let θ̂Q be the estimated parameter

value with Q groups and Ẑ the corresponding maximum a posteriori (MAP) classification

at θ̂Q. In our case, the general form of ICL is given by

ICL(Q) = logPθ̂Q
(Y, Ẑ)− 1

2
Q(Q− 1) log(NT )− pen(N,β,γ), (7)

where the first penalization term accounts for transition matrix π and pen(N,β,γ) is a
penalizing term for the connectivity parameters (β,γ). As the number of parameters (β,γ)
depends on the specific form of the family {f(·; γ), γ ∈ Γ}, we provide context dependent
expressions for ICL in the next section. Note that the first penalization term accounts
for NT observations while the number of observations corresponding to SBM part of the
parameter in pen(N,β,γ) will be different. We refer to Daudin et al. (2008) for an expression
of ICL in static SBM that shows an analogous difference in penalizing groups proportions
or connectivity parameters.
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3.2. Estimation of γ and model selection: specific examples

As previously said, the M-step equations concerning γ differ depending on the specific choice
of the parametric family {f(·, γ), γ ∈ Γ}. We provide here many examples of classical choices
for these parametric families. Remember that the resulting conditional distribution on the
observations is a mixture between an element from this family and the Dirac mass at zero.
We also provide expressions for ICL criterion in these different setups.

Example 2 (Binary case). This specific case corresponds to a degenerate family with
only one element, the Dirac mass at 1, namely F (y, γ) = δ1(y). The parameter θ reduces
to (π,β) for which updating expressions at the M-step have already been given (see Proposi-
tion 2). Note that we imposed the constraint βt

qq constant with respect to t, for any q ∈ Q.
Now, model selection is performed through (7) where

pen(N,β,γ) = pen(N,β) =
1

2
Q log

(N(N − 1)T

2

)

+
1

2

Q(Q− 1)

2
T log

(N(N − 1)

2

)

.

Example 3 (Finite case). Let us consider a finite set ofM ≥ 2 known values {a1, . . . , aM}
not containing 0 and

f(y, γ) =
M
∑

m=1

γ(m)1y=am
,

with γ(m) ≥ 0 and
∑

m γ(m) = 1. The value γ̂ that maximizes J(θ, τ) with respect to γ is
given by

∀t, ∀q 6= l ∈ Q2, ∀m, γ̂tql(m) =

∑

1≤i6=j≤N τmarg(t, i, q)τmarg(t, j, l)1Y t
ij
=am

∑

m,i,j τmarg(t, i, q)τmarg(t, j, l)1Y t
ij=am

,

∀q ∈ Q, ∀m, γ̂qq(m) =

∑T
t=1

∑

1≤i6=j≤N τmarg(t, i, q)τmarg(t, j, q)1Y t
ij
=am

∑

m,t,i,j τmarg(t, i, q)τmarg(t, j, q)1Y t
ij
=am

.

These equations remain valid when considering a set of disjoint bins {Im}m instead of
pointwise values {am}m.

In this setup, we do not propose a model selection criterion for selecting the number of
groups Q. Indeed, our investigations show that a competition occurs between the number of
binsM and the number of groups Q, so that in general we end up selecting only Q = 2 groups
because of a large number of parameters (data not shown). In fact, this finite distribution
setup may be viewed as a nonparametric model for which BIC-like criterion (ICL is of that
type) are not suited. Section 5 proposes another approach to handle this case, relying on
the ’elbow’ method applied on the complete data log-likelihood.

Example 4 (Poisson case). We consider the truncated Poisson distribution

f(y, γ) = (eγ − 1)−1 γ
y

y!
, y ∈ N \ {0},

resulting in either a 0-inflated or 0-deflated Poisson when mixed with the Dirac mass at 0.
Let

∀x > 0, ψ(x) =
xex

ex − 1
,
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which is a strictly increasing function and as such admits a unique inverse function ψ(−1) on
(1,+∞). Note that ψ(−1) has no simple analytic expression but is easily found numerically.
In this case, the value γ̂ that maximizes J(θ, τ) with respect to γ is given by

∀t, ∀q 6= l ∈ Q2, γ̂tql = ψ(−1)
(

∑

1≤i6=j≤N τmarg(t, i, q)τmarg(t, j, l)Y
t
ij

∑

i,j τmarg(t, i, q)τmarg(t, j, l)1Y t
ij
6=0

)

,

∀q ∈ Q, γ̂qq = ψ(−1)
(

∑T
t=1

∑

1≤i6=j≤N τmarg(t, i, q)τmarg(t, j, q)Y
t
ij

∑

t,i,j τmarg(t, i, q)τmarg(t, j, q)1Y t
ij 6=0

)

.

Model selection is obtained by maximizing (7) with

pen(N,β,γ) =
1

2

(

|{βqq, q ∈ Q}|+Q
)

log
(N(N − 1)T

2

)

+
1

2

(

|{βt
ql, 1 ≤ q < l ≤ Q, 1 ≤ t ≤ T }|+ Q(Q− 1)

2
T
)

log
(N(N − 1)

2

)

.

Moreover, if βt
ql = βout does not depend on t and βqq = βin, the penalty term in ICL becomes

pen(N,β,γ) =
1

2

(

2 +Q
)

log
(N(N − 1)T

2

)

+
1

2

(Q(Q− 1)

2
T
)

log
(N(N − 1)

2

)

.

Example 5 (Gaussian homoscedastic case). Let us consider the Gaussian distri-
bution

f(y, γ) =
1√
2πσ

exp
(

− (y − µ)2

2σ2

)

,

where γ = (µ, σ2) ∈ R × (0,+∞). For parsimony reasons, we choose to consider the
homoscedastic case where the variance is constant across groups and simply denoted by σ2

t .
The value γ̂ that maximizes J(θ, τ) with respect to γ is given by

∀t, ∀q 6= l ∈ Q2, µ̂t
ql =

∑

1≤i6=j≤N τmarg(t, i, q)τmarg(t, j, l)Y
t
ij

∑

i,j τmarg(t, i, q)τmarg(t, j, l)1Y t
ij
6=0

,

∀q ∈ Q, µ̂qq =

∑T
t=1

∑

1≤i6=j≤N τmarg(t, i, q)τmarg(t, j, q)Y
t
ij

∑

t,i,j τmarg(t, i, q)τmarg(t, j, q)1Y t
ij
6=0

,

and ∀t, σ̂2
t =

∑

1≤i<j≤N

∑

1≤q,l≤Q τmarg(t, i, q)τmarg(t, j, l)[Y
t
ij − µ̂t

ql]
21Y t

ij
6=0

∑

i,j,q,l τmarg(t, i, q)τmarg(t, j, l)1Y t
ij
6=0

.

Here the remaining penalty term in (7) for ICL criterion writes

pen(N,β,γ) =
1

2
(2Q) log

(N(N − 1)T

2

)

+
1

2

(

2
Q(Q− 1)

2
T
)

log
(N(N − 1)

2

)

= Q log
(N(N − 1)T

2

)

+
Q(Q− 1)

2
T log

(N(N − 1)

2

)

.

3.3. Algorithm initialization

All EM based procedures look for local maxima of their objective function and careful ini-
tialization is a key in their success. For static SBM, VEM procedures often rely on a k-means



16 C. Matias and V. Miele

algorithm on the adjacency matrix to obtain an initial clustering of the individuals. In
our context, the dynamic aspect of the data needs to be properly handled. We choose to
initialize our VEM procedure by running k-means on the rows of a concatenated data matrix
containing all the adjacency time step matrices Y t stacked in consecutive column blocks.
As a result, our initial clustering of the individuals is constant across time (namely Zt

i does
not depend on t). A consequence of this choice is that this initialization works well when
the groups memberships do not vary too much across time (see Section 4 where we explore
different values of transition matrix π). In practice, real datasets will either exhibit nodes
that do not change group at all (see Section 5) or nodes that leave a group and then come
back to this group. Our initialization is performant in these cases. Another consequence is
that while we would expect the performances of the procedure to increase with the number
T of time steps, we sometimes observe on the contrary a decrease in these performances.
This is due to the fact that increasing T also increases the probability for an individual to
change group at some point in time and thus starting with a constant in time clustering of
the individuals, it becomes more difficult to correctly infer the groups membership at each
time point (see in Section 4 the difference between results for T = 5 and T = 10).

To conclude this section, we mention that initialization is also a crucial point for other
methods and we discuss in the next section its impact on the algorithm proposed in Yang
et al. (2011).

4. Synthetic experiments

The methods presented in this manuscript are implemented into a R package and available at
http://lbbe.univ-lyon1.fr/dynsbm. The package will soon be available on the CRAN.

4.1. Clustering performances

In this section, we explore the performances of our method for clustering the nodes across
the different time steps. To this aim, we will consider two different criteria. We rely on the
adjusted Rand index (ARI Hubert and Arabie, 1985) to evaluate the agreement between
the estimated and the true latent structure. This index is smaller than 1, two identical
latent structures (up to label switching) having an ARI equal to 1. Note that it can take
negative values and is built on Rand index with a correction for chance. Now there are
two different ways of using ARI in a dynamic setup. Following Yang et al. (2011); Xu and
Hero (2014), we first consider an averaged value over the different time steps 1 ≤ t ≤ T of
ARIt computed at time t. In this approach the dynamic setup may be viewed as a way of
improving the node clustering at each time step over a method that would cluster separately
the nodes at each time step. However, this averaged index does not say anything about
the smooth recovery of group memberships along time. In particular, it is invariant under
local switching on SBM part of the parameter (see Section 2.2). Thus we also consider the
global ARI value that compares the clustering of the set of nodes for all time points with
the true latent structure. Obviously, good performances for this criteria are more difficult
to obtain.

We use synthetic datasets created as follows. We consider binary graphs with N = 100
nodes and T ∈ {5; 10} different time steps. We assume Q = 2 latent groups with three
different values for the transition matrix π

πlow =

(

0.6 0.4
0.4 0.6

)

;πmedium =

(

0.75 0.25
0.25 0.75

)

;πhigh =

(

0.9 0.1
0.1 0.9

)

.
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Table 1. Bernoulli parameter values in 4

different cases, plus an affiliation example.

Difficulty β11 β12 β22

low- 0.2 0.1 0.15
low+ 0.25 0.1 0.2

medium- 0.3 0.1 0.2
medium+ 0.4 0.1 0.2

med w/ affiliation 0.3 0.1 0.3
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Figure 2. Boxplots of global ARI (gold, left) and averaged ARI (grey, right) in different setups. From

left to right: the three panels correspond to π = πlow (panels A,D), πmedium (panels B,E) and

πhigh (panels C,F), respectively. In each panel, from left to right: results corresponding to β =
low−, low+,medium−,medium+ and affiliation case, respectively. First row: T = 5 time points,

second row: T = 10.

These three cases correspond respectively to low, medium and high group stability. Namely
in the first case, individuals are more likely to change group across time, resulting in a
more difficult problem from the point of view of the initialization of our algorithm (see
Section 3.3). Note that the stationary distribution in those three cases is α = (1/2, 1/2) so
that the two groups have equal proportions. As for the Bernoulli parameters β, we explore
4 different cases representing different difficulty levels, plus a specific example of affiliation
for which we recall that parameters are not identifiable (it would otherwise correspond to
a medium difficulty). The choice of parameters is given in Table 4.1.

For each combination of (π,β), we generate 100 datasets, estimate their parameters,
cluster their nodes and report in Figure 2 boxplots of a global and of an averaged ARI
value. Mean squared errors (MSE) for estimation of the transition parameter π are given
in Figure 3. We only show MSE for π as the MSE for (β,γ) are strongly correlated with
the clustering results.

Figure 2 confirms that it is more difficult to obtain a smooth recovery of the groups
(measured through global ARI) than a local one (measured through averaged ARI). In
particular in the affiliation model, we observe that while the averaged ARI is rather good, the
global one can be low. However in the identifiable cases, we obtain rather good performances
for this global index when group stability is not too low or when connectivity parameters
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Figure 3. MSE for estimation of transition matrix π in different setups. From left to right:

the three panels correspond to π = πlow (panels A,D), πmedium (panels B,E) and πhigh

(panels C,F), respectively. In each panel, from left to right: results corresponding to β =
low−, low+,medium−,medium+ and affiliation case, respectively. First row: T = 5 time points,

second row: T = 10.

are well enough separated. As expected, the clustering performances increase with group
stability and with a better separation between the groups connectivity behaviors. When
increasing the number of time points from 5 to 10, clustering indexes tend to be slightly
better, exhibiting a smaller variance. However this is not always the case: for instance with
low/medium group stability and β = low+, we observe that the performances decrease from
5 to 10 time points. We believe that this is due to the initialization of our procedure: with
T = 10 time points, it is more likely that the groups membership differ from their initial
value. As we use as a starting point a constant with time value for these membership, our
algorithm is farther from the optimal value. Looking now at the MSE values for estimation
of π (Figure 3), we observe that when groups are not globally recovered, the MSE values
are higher. However in most of the cases, these MSE are rather small so that the dynamics
of the groups membership is captured.

Now, we compare our results with other procedures. The models from Yang et al.
(2011); Xu and Hero (2014) are the closest to our setup. Since Xu and Hero (2014) obtained
comparable performances as the ones from Yang et al. (2011), we focus on the latter here. (In
fact, Xu and Hero’s method is faster, with slightly lower clustering performances than Yang
et al.’s one.) Thus, we use the offline version of the algorithm proposed in Yang et al. (2011)
(Matlab code is available on the web site of the first author). We ran their code on the same
setup as above. When relying on default values of the algorithm, the results obtained are
very poor, with ARI values smaller than 10−2 in general (data not shown). We note that the
authors do not discuss initialization and simply propose to start with a random partition of
the nodes, which proves to be a bad strategy. In order to make fair comparisons, we thus
decided to combine their algorithm with our initialization strategy. Results are presented
in Figure 4.

From these results, we can see that putting appart our initialization strategy, our pro-
cedure outperforms Yang et al.’s one. Indeed, the method obtains good performances only
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Figure 4. Boxplots of global ARI (gold, left) and averaged ARI (grey, right) in different setups for the

combination of our initialization strategy with Yang et al.’s algorithm. From left to right: the three pan-

els correspond to π = πlow (panels A,D), πmedium (panels B,E) and πhigh (panels C,F), respectively.

In each panel, from left to right: results corresponding to β = low−, low+,medium−,medium+ and

affiliation case, respectively. First row: T = 5 time points, second row: T = 10.

in a few cases: (πhigh, β ∈ {medium+; med w/ affiliation}, T ∈ {5, 10}) ; (πhigh, β ∈
{low+,medium−, T = 5) and (πmedium, β ∈ {medium+; med w/ affiliation}, T = 5). In
all these cases, we can see that the method’s performances are due to a very good initial-
ization. Now, when the true classification is farther from initialization, the performances
considerably drop. In particular, for intermediate cases (e.g. medium group stability or
high group stability with T = 10), we can see that our method still succeeds in obtaining a
good partition (Figure 2) while this is not the case for Yang et al.’s one (Figure 4).

4.2. Model selection

We simulate a binary dynamic dataset with Q = 4 groups, transition matrix between states
satisfies πqq = 0.91 and πql = 0.03 for q 6= l. Bernoulli parameters are chosen as follows: we
draw i.i.d. random variables {ǫql}1≤q≤l≤4 ∈ [−1, 1] and then choose

∀q ∈ Q, βqq = 0.4 + ǫqq0.1

∀q 6= l ∈ Q2, βql = 0.1 + ǫql0.1

We generate 100 datasets under this model and estimate the number of groups relying on
ICL criterion. Results are presented in Figure 5. We observe that the correct number of
groups is recovered in 88% of the cases (left panel). Moreover, the right panel shows that
when ICL selects only 3 groups, ARI of the classification with 4 groups is rather low (less
than 80%). This shows that in those cases, classification with 4 groups is not the correct one,
so that VEM algorithm seems responsible for bad results (optimum has not been reached)
more than the penalization term.



20 C. Matias and V. Miele

3 4 5

Selected number of groups

F
re

qu
en

cy

0.
0

0.
2

0.
4

0.
6

0.
8

3 4 5

0.
5

0.
7

0.
9

Selected number of groups

ad
ju

st
ed

 R
an

d 
In

de
x 

fo
r 

4 
gr

ou
ps

Figure 5. Estimation of the number of groups via ICL criterion. Left panel shows the frequency of

the selected number of groups. Right panel shows ARI of the classification obtained with 4 groups

depending on the selected number of groups.

5. Analyzing a real dataset

In this section, we illustrate our method through the analysis of a real data example.

The dataset consists in face-to-face encounters of high school students (measured through
the use of wearable sensors) of a class from a French high school (see Fournet and Barrat,
2014, for a complete description of the experiment). In this class called ’PC’ (as students
focus on Physics and Chemistry), interactions were recorded during 4 days (Tuesday to
Friday) in Dec. 2011. We kept only the 27 (out of 31) students that appear every day,
i.e. that have at least one interaction with another student during each of the 4 days.
Interaction times were aggregated by days to form a sequence of 4 different networks. These
are undirected and weighted networks, the weight of an interaction between two individuals
being the number of interactions between these 2 individuals divided by the number of time
points for which at least two individuals interacted; thus a non negative real number that we
call interaction frequency. After examination of the distribution of these weights, we choose
to discretize these data into M = 3 bins (see Example 3) corresponding to low, medium
and high interaction frequency. As already explained in Example 3, our model selection
criterion is not fitted to this case. We thus choose to rely instead on the ’elbow’ method,
applied to the complete data log-likelihood. It consists in identifying a change of slope on
the curve that represents this complete data log-likelihood for different values of Q. The
method selects Q = 4 groups (see Figure 6) and we now present the results obtained with
our model fitted with Q = 4 groups.

Figure 7 presents a summary of the estimators we obtain for interaction parameters
(β,γ). In this figure, each of the 10 cells corresponds to a pair (q, l) with 1 ≤ q ≤ l ≤
4. In each cell, there are T = 4 different colored barplots, each of them containing the
proportions γ̂tql(m) for 1 ≤ m ≤ 3. Finally, the width of each barplot is proportional to

the corresponding value of β̂t
ql. We recall that when considering the diagonal cells (q, q),

parameters do not depend on t anymore. We observe that groups 2 and 3 are composed by
students that are likely to interact together (i.e. β̂22 and β̂33 are close to 1). Furthermore,
the frequency of their interactions inside their groups is higher than in the rest of the
network (γ̂qq(low) < γ̂qq(medium) < γ̂qq(high) for q = 2, 3). These two groups form two



Clustering dynamic random graphs via SBM 21

2 3 4 5 6 7

−
13

00
−

12
00

−
11

00

Number of groups

co
m

pl
et

e 
da

ta
 lo

g−
lik

el
ih

oo
d

Figure 6. Complete data log-likelihood estimated for different numbers of groups on the dataset of

interactions in the ’PC’ class (Fournet and Barrat, 2014).

communities such as defined in Fortunato (2010). Moreover, we observe that both groups
include a certain number of individuals (3 and 4 respectively) that permanently stay in the
group over time (see Figure 8). These individuals may play the role of ’social attractors’
or ’core leaders’ around which the other students are likely to gravitate. Group 4 displays
a similar pattern of community structure, with much less interaction (intermediate value

of β̂44) but also a significant level of interaction with group 2. Interestingly, groups 2 and
4 also exchange students over time (see fluxes between groups in Figure 8) and this could
reflect some cooperation or affinity between the students of these two groups. Group 1
is quite stable over time (7 permanent members, see Figure 8) and is characterized by a
low rate of interactions inside and outside the group (Figure 7). It clearly gathers isolated
students, but this does not mean that they do not interact with any student, they usually
do so, but with a small number of partners. Therefore, we do not only decipher evolving
communities (such as in Yang et al., 2011) but we also highlight the dynamics of aloneness
inside this class.

We now investigate if gender differences may help in explaining or refining the interac-
tion patterns that we reveal. We first note that group 3 is exclusively composed by male
students: this observation along with the previous conclusions suggest that group 3 may
be a closed/exclusive male-community. Meanwhile, some of these male students move to
group 1 which is partly composed by a ’backbone’ of female students that stay in group
1 (Figure 9). Moreover, we clearly observe that female students are likely to stay in their
group (most of the moves between groups are realized by males, Figure 9) and that a ma-
jority of them are in low-interacting groups 1 and 4. But not any female student moves
between these two groups, which supports a clear dichotomy pattern in the female organi-
zation with respect to male organization. In summary, we show evidence for some gender
homophily (see Fournet and Barrat, 2014, for a precise definition), i.e. gender is a key factor
for explaining the dynamics of the interactions between these young adults.

Lastly, we note that both information captured by our model (say β and γ) are often
convergent/correlated in this case, but we note that studying this network with a binary
model (i.e. not considering the interaction frequency) does not allow to capture interesting
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Figure 7. Summary of the interaction parameters β̂ and γ̂ estimated by our model with Q = 4 grous

on the dataset of interactions in the ’PC’ class (Fournet and Barrat, 2014). In each cell (q, l) with

1 ≤ q ≤ l ≤ 4, there are T = 4 barplots corresponding to the 4 measurements (Tuesday to Friday).

Each barplot represents the distribution of the parameter γt
ql for the three categories of interaction

frequency (low, medium and high). The width of each barplot is proportional to the sparsity parameter

βt
ql.

Figure 8. Alluvial plot showing the dynamics of the group membership estimated by our model on

the dataset of interactions in the ’PC’ class (Fournet and Barrat, 2014). Each line is a flux that

represents the move of one or more students from a group to another group. The thickness of the

lines is proportional to the number of students and the total height represents the 27 students.
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Figure 9. Same as in Figure 8 for the 15 male students (upper panel) and the 12 female students

(lower panel).

structure (data not shown). Therefore, the presence/absence of an interaction as well as its
frequency are important and require an explicit modelling such as in our approach.

6. Extensions

In the present work, we limited ourselves to the case where the list of nodes {1, . . . , N}
stays constant across time. However in real data applications it may happen that some
actors enter or leave the study during the analysis. This may be handled in a simple way
as follows. Let us consider V = {1, . . . , N} as the total list of individuals and for each time
step t, a subset V t of V with cardinality Nt of actors are present. Data is formed by a
series of adjacency matrices Y = (Y t)1≤t≤T where each Y t still has size N × N . For all
pair of present nodes i, j ∈ V t, entry Y t

ij characterizes the binary or weighted interaction
between i, j while for any i, j ∈ V such that i /∈ V t, entry Y t

ij is set to 0. Now, we construct
the latent process Z = (Zt

i )1≤t≤T,i∈V on an extended set Qa = Q ∪ {a} where the extra
value a stands for absent. For each time step t and whenever i ∈ V t, random variable Zt

i

is constrained to vary in Q while for any i /∈ V t we fix Zt
i = a. As previously, the random

time series (Zi)i∈V are supposed to be independent while for each individual i ∈ V , the
sequence Zi = (Zt

i )1≤t≤T forms an inhomogeneous Markov chain with values in Qa and
transitions πt constrained by, for all q, q′ ∈ Q,

πt
qa = P(Zt

i = a|Zt−1
i = q) = 1{i /∈ V t},

πt
aq = P(Zt

i = q|Zt−1
i = a) = αq1{i ∈ V t},

πt
qq′ = P(Zt

i = q′|Zt−1
i = q) = πqq′1{i ∈ V t}.

Here, π = (πqq′ )1≤q,q′≤Q stands as previously for a transition matrix on Q of an irreducible
aperiodic stationary Markov chain with stationary distribution α. Note that the whole
chain Zi is not stationary anymore. The probability of any trajectory of the latent process
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simply writes as

P(Z) =

N
∏

i=1

P(Z1
i )

T
∏

t=2

P(Zt
i |Zt−1

i ) =
∏

q∈Q

αNq
q ×

∏

q,q′∈Q

π
Nqq′

qq′ ,

where

Nq =
∑

i∈V 1

1{Z1
i = q}+

T
∑

t=2

∑

i∈V t,i/∈V t−1

1{Zt
i = q},

and Nqq′ =

T
∑

t=2

∑

i∈V t−1∩V t

1{Zt−1
i = q, Zt

i = q′}.

As such, a node that would not be present at each time point contributes to the likelihood
only through the part of the trajectory where it is present. Moreover, given the latent
groups Z, for any i, j ∈ V t, the conditional distribution of Y t

ij is still given by (1) while
whenever i /∈ V t, j ∈ V , we have Y t

ij is deterministic and set to 0. Thus, a node absent at
time t does not contribute to the likelihood of the observations. Generalization of our VEM
algorithm easily follows.
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A. Optimization with respect to τ(i, q)

In this section, we provide the exact fixed point equation satisfied by the values τ̂(i, q)
maximizing J(θ, τ). We have

τ̂ (i, q) ∝ αq

∏

j,j 6=i

Q
∏

l=1

[φ1ql(Y
1
ij)]

τ̂(j,l)
∏

t≥2

∏

q2...qt

( πqt−1qt

τ̂ (t, i, qt−1, qt)

)τ̂(2,i,q,q2)...τ̂(t,i,qt−1,qt)

×
∏

t≥2

∏

q2...qt,l

φtqtl(Y
t
ij)

τ̂marg(t,j,l)τ̂(2,i,q,q2)...τ̂(t,i,qt−1,qt),

with the convention: whenever t = 2 then qt−1 = q. This equation is to be compared with
our approximation given by (6).
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mixture. Pattern Recognition 41 (12), 3592–3599.

Zanghi, H., F. Picard, V. Miele, and C. Ambroise (2010). Strategies for online inference of
model-based clustering in large and growing networks. Ann. Appl. Stat. 4 (2), 687–714.

Zreik, R., P. Latouche, and C. Bouveyron (2015). The dynamic random subgraph model
for the clustering of evolving networks. Technical report, HAL.


