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Abstract. Using previous works on the second geometrization, we can now
submit a method to use xTAN formalisme in order to study theoretically net-
works (xTAN means extended tensorial analysis of networks). A �rst applica-
tion consists in the identi�cation of risk in electromagnetic compatibility. But
on this example, many others can be developed in various jobs including mul-
tiphysic ones. We detail the methodology through each of its steps: network
graphs, equations, jacobian matrix and Kron's metric, linked parametrized
surface, metric and sources, susceptibility spectrum, excitation spectrum and
�nally analysis.

1. Introduction

First tests to use geometry in network analysis was stopped. Due to formulation
too much far from the available geometry theory, the Kron's initial equations do not
give solution for this objective. Seconde geometrization encloses Kron's equations
in standard di�erential geometry. As a consequence, it becomes possible to study
networks under a general topological approach. We present here how to reach this
kind of system of equations. After what we can submit a methodology that can
be applied for all kind of problems. Finally we give some �rst simple examples in
order to show how the technique can be used to analyse theoretically networks. In
conclusion we speak of future works.

2. Basic mechanism to go from Kron's relations to xTAN

We won't develop here the Kron's method. Many publications are today avail-
able, including its specialization for EMC (MKMEmethod: modi�ed Kron's method
for EMC which enclosed generalized interactions as chords). We suppose known the
formalism. It leads, once the problem de�ned using graphs, to a group of equations
giving the system behaviors.

2.1. Function ψ. This system has the form:

(2.1) ψ =
{
ψk
(
x1, x2, . . . , xn

)
= ek

}
xu are generalized variables in multiphysics, like currents, locations, speeds, tem-

peratures, etc. ek are sources of energy that can be included in the ψk functions.
We prefer to separate them and keep them outside. Next operations justify this
choice.

These equations are established from graphs. When various physics are involved,
each kind of graph is usually associated with variables notations like in for electrical
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currents, Ti for temperatures, etc. All are grouped in an unique variable vector xq

leading to system (2.1).

2.2. Parametrized surface. We can see system (2.1) as a parametrized surface.
A jacobian matrix can be construct based on:

(2.2) J = [Jku] =
∂ψk
∂xu

The jacobian matrix can be seen as a covector of the basic vector associated
with the plane TpS locally tangent to the surface: J =

[
b1 b2 . . . bn

]
with

bu = (∂uψk). u ∈ N = {1, 2 . . . , N} where N is the number of equations in ψk.
Something particular appears on component of time derivation: ∂tx

u. As [∂t, ∂x] =
0, it leads to ∂x∂tx = 0 because ∂x∂tx = ∂t∂xx = ∂t1 = 0. So, all time derivatives
coming from inductances doesn't give components to J1.

2.3. Writing ψ with J . In order to obtain equations of ψ using J , we must
add at least derivative components to something like Jkux

u. More, J can include
components that doesn't appear directly in ψ. If ψk can be writen:

(2.3) Rµνx
ν + Lµνx

ν = eµ

and if Jµν = Rµν + ζµν , we can obtain ψ through:

(2.4) Jµνx
ν − ζµνxν + Lµνx

ν = eµ

and �nally:

(2.5) Jµνx
ν = eµ − (Lµν − ζµν)xν

2.4. G coming from J . By de�nition Gµν = 〈bµ,bν〉. With (2.2), this leads to:

(2.6) G = JTJ

This is the fundamental result giving the key to write ψ with G. If JT = Υ,
(2.5) becomes:

(2.7) Gσνx
ν = Υσµeµ −Υσµ (Lµν − ζµν)xν

Writing: Eσ = Υσµeµ and Sσν = Υσµ (Lµν − ζµν) we obtain:

(2.8) Gσνx
ν = Eσ − Sσνxν = Tσ

Lµν is the metric in the Kron's formalism and G the one in the last evolution
of xTAN formalism. This last one is always symetric and in compliance with rie-
manian's concept. To study theoretically the network means to study G and its
variation depending on time parameter and xν values.

1Note that it's the same if we write the system using Laplace's operator. If k is a constant,
pk = 0 by de�nition, while p−1k 6= 0: integration operations are included in J .
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3. Manifolds associated with ψ and S meaning

Each ψk can be seen as a manifold (or sub-manifold) if associated with domains
giving the limit values for xν . If G is �xed whatever xν values, it means that the
abstract space of variables (including currents) is �at and to study its frontiers, it's
only necessary to study the extreme values. If the abstract space of variables is
curvilinear, the situation becomes more complex.

3.1. Flat space. If the abstract space of variables xν is �at, the tangent plane
TpS stills the same whatever xν values. So if we look to some vector projection on
TpS given by: a = akbk. As there is a single plane for all the variables space, it
means that we can consider it as an image of the space. The scalar product

〈a,bq〉 = akGkq

is the source covector Tq. If we look how change Gkqa
q depending on xq, it will

give a constant value as TpS stills the same. Writing: θk = Gkqa
q, we study here:

∂xqθk.
Our problem in system reliability is to detect if the system states xν can reach

values where the system can break down (or is simply be disturbed in electromag-
netic compatibility). In other word the problem is to know if Tσ can be greather
than Gσνx

ν for the maxima values of xν and values coming from the environment
for Eσ? Major problem comes from the fact that to external excitation, the system
has its own inertia Lσν for which amplitudes depends on time variation. To eval-
uate the domains covered by the system functions, a solution can be to consider
particular waveforms: the most severe that the system can accept. These are both
fast rise time waveform and long time durations to combine high dynamic and high
power signals.

Another method can be to make a statistic on all the signals used by the system.
At each time step, the mean value can be assign to each variable xν or the mean
value plus the deviation one.

Finally a third technique previously submit could be to give each xν a value
taken from a set of possible ones recorded in all the functional life of the system.

From the output of these three approaches, we know xν and its maxima, also its
time derivatives. Adding knwon values of Eσ gives the risk through the comparison
of Gσνx

ν and Tσ.

3.2. Curved space. A curved space is characterized by the fact that θk is not con-
stant. Computing ∂xkGkqa

q gives two terms: (∂xkGkq) a
q+Gkq (∂xkaq). The metric

variations are de�ned using �rst: buv = ∂xubv. For example, if b1 =
(
2x1, 0, 0

)
we

obtain b11 = (2, 0, 0), with G11 = 4(x1)2. Once de�ne the Christo�el's coe�cients
given by: Γij,k = bij · bk. In our example, Γ11,1 = 4x1. It leads to:

(3.1)
∂

∂x1
G11 = 2Γ11,1

which can be generalized. This allows to compute θk and to study the system
variation for various domains of xk.

4. System strategy and trajectory through self adaptation

The system is parametrized by the time and eventually other parameters enclosed
in ψk. But in real systems, functions can change also under non linear behaviors,
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self adaptability of complex systems, etc. It means that G can change in the system
history. When L doesn't change, the risk can be raised up by the same comparison
as previously. To apply changes on G we use what we call �gamma matrices�. For
example on a transformer, the metric seems like:

G =

 (R1)2 0

0 (R2)2


Now for various reasons, R1 can evolve to R3 or R4 with probability p1 and p2.

Now calling:

G1 =

 (R3)2 0

0 (R2)2

 G2 =

 (R4)2 0

0 (R2)2


The γ matrix of components (γ, γ̃) is:

γ =


0 0 0

0 G1G
−1 0

0 0 G2G
−1

 γ̃ =


0 0 0

0 p1 0

0 0 p2


γ is applied on what we call a tenfold: a list of objects that de�ne the system.

It encloses all matrices used by Kron's formalism, plus those added by the second
geometrization (i.e. G,T ) and an information vector I = (1, 0, 0) memorying the
probabilities of existing for each system state. If ŭ is the system under study, we
apply γ · ŭ to describe its evolution. Note that in our example, the γ matrix given
acts only on G in ŭ. In general it can act on all the elements enclosed in ŭ. This
technique allow to make the manifolds associated withe the system equations to
change, to be deformed during time.

5. Methodology

The methodology follows next steps:

(1) to draw the graph and to choose a con�guration space associating the pri-
mary variables (i, T, ...) to xν ;

(2) to calculate J, L in order to �nd ψ;
(3) to make appearing G,S, T ;
(4) to analyze the abstract space topology and properties.

6. Future works

Future works will consist in studying the various manifolds obtained under each
kind of system and associated networks. Understanding their geometry, we may
�nd global approach to demonstrate in which cases they are stable or unstable,
when the risk is raised, etc. About the evoluation aspect, the work consists in
understanding how the manifolds change depending on the human factors, and
how the risk can appear after some steps of evolution. Global idea and approach is
to go further in geometrization compare to previous works.


