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Clutter Subspace Estimation in Low Rank
Heterogeneous Noise Context

A. Breloy∗‡, Student Member, IEEE, G. Ginolhac†, Member, IEEE, F. Pascal‡, Member, IEEE and P.
Forster∗, Member, IEEE

Abstract—This paper addresses the problem of the Clutter
Subspace Projector (CSP) estimation in the context of a dis-
turbance composed of a Low Rank (LR) heterogeneous clut-
ter, modeled here by a Spherically Invariant Random Vector
(SIRV), plus a white Gaussian noise (WGN). In such context,
the corresponding LR adaptive filters and detectors require
less training vectors than classical methods to reach equivalent
performance. Unlike classical adaptive processes, which are based
on an estimate of the noise Covariance Matrix (CM), the LR
processes are based on a CSP estimate. This CSP estimate is
usually derived from a Singular Value Decomposition (SVD) of
the CM estimate. However, no Maximum Likelihood Estimator
(MLE) of the CM has been derived for the considered disturbance
model. In this paper, we introduce the fixed point equation that
MLE of the CSP satisfies for a disturbance composed of a LR-
SIRV clutter plus a zero mean WGN. A recursive algorithm is
proposed to compute this solution. Numerical simulations validate
the introduced estimator and illustrate its interest compared to
the current state of art.

Index Terms—Covariance Matrix and Projector estimation,
Maximum Likelihood Estimator, Low-Rank clutter, SIRV.

I. INTRODUCTION

IN array processing, many applications require the use of the
covariance matrix (CM) of the noise: source localization

techniques [1, 2], radar and sonar detection methods [3, 4],
adaptive filters [5]. For instance, the optimal filter in terms
of Signal to Noise Ratio (SNR) is built from the inverse of
the CM of the noise and the steering vector. In practice,
the CM of the noise is unknown and has to be estimated
from a set of secondary data, i.e. K signal-free independent
realizations of the noise. The CM estimate is then used to
process sub-optimal adaptive methods [6]. Estimating the CM
or other interference parameters from a given data set is a
fundamental issue in signal processing. The CM estimator
typically used is the Sample Covariance Matrix (SCM), which
is the Maximum Likelihood Estimator (MLE) of the CM in
a Gaussian environment. In this case, 2M (where M is the
size of the data) secondary data are required to ensure good
performance of the sub-optimal filtering, i.e. a 3dB loss of the
output SNR compared to optimal filtering [7].

In some applications, the disturbance is not only Gaussian,
but a sum of noises with different distributions. In various
contexts [5, 8], it can be modeled by the sum of a correlated
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noise, referred to as clutter (caused by the response of the
environment to the emitted signal), plus a white Gaussian
noise (WGN, the thermal noise, due to electronics). When the
correlated disturbance has a low-rank (LR) structure, which
is the case for several applications, the corresponding sub-
optimal LR-filter is based on the projector on the clutter
subspace instead of the CM of the noise [9, 10]. The advantage
of LR method is that estimating the clutter subspace projector
requires only 2R secondary data (where R is the clutter rank,
and generally R � M ) to reach equivalent performance to
the previous scheme [11]. The projector estimate is usually
derived from the Singular Value Decomposition (SVD) of an
estimate of the CM, classically the SCM.

Nevertheless, the SCM is not well adapted for samples
that are not Gaussian (presence of outliers, heavy tailed
distributions...). Therefore, developing filters/detectors based
on the SCM in highly heterogeneous or impulsive clutter
environment may lead to poor performance. To describe this
kind of disturbance, one of the most general model is provided
by the Complex Elliptically Symmetric distribution (CES). A
detailed review of this model is provided in [12]. Among the
general CES class, we will focus on the Spherically Invariant
Random Vectors (SIRV) [13] also referred to as Compound-
Gaussian (CG) distributions. The SIRV family covers a large
panel of well known distributions, notably heavy tailed such
as Weibull and K-distribution and has been and extensively
studied in the literature [14–17]. Moreover, SIRV presents
good agreement to several real clutter data sets [18, 19].
Eventually, the disturbance will be modeled in this paper as a
LR-SIRV clutter plus WGN. This general model has already
been used in [10, 20–22].

In this context, the clutter subspace estimate may be derived
from the SVD of Tyler’s estimator [23], also known as
the Fixed-Point estimator (FPE) in the complex case [24],
which is an approached MLE of the CM for full rank SIRV
noise [25, 26]. Nevertheless, this approach presents two draw-
backs. Firstly, this estimator is not the MLE of the CM for
the considered disturbance and its corresponding model does
not take into account the LR structure of the noise. Therefore,
the clutter subspace estimate based on the FPE may lead to a
loss of performance [27]. Secondly, the FPE requires K > M
secondary data to be computed, which is a problem for high-
dimensional data1. Moreover, this requirement does not allows
to take full advantage of the LR assumption in the cases where

1Different methods are currently proposed to overcome this issue. Recent
and promising approaches are based on the regularization of the FPE algorithm
[28–32].
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2R � M . Finally, the FPE may not be the most appropriate
for the considered model of LR-SIRV plus WGN.

In this paper we then propose to develop a direct MLE
CSP, assuming that the rank R is known. This approach is
inspired by [21], where an estimator of the clutter subspace
had been derived only under specific hypotheses: the CM of
the LR SIRV clutter is assumed to have identical eigenvalues,
and the Probability Density Function (PDF) of the texture
is assumed to be known. The assumption of known texture
PDF has been relaxed in [33] by considering texture as an
unknown deterministic parameter. The main contribution of
this paper is to relax the hypothesis of identical eigenvalues
of the clutter CM. Thus, a new MLE of the CSP is introduced
in the context of a LR-SIRV clutter plus a WGN. This
MLE appears to be defined as the fixed point of an implicit
equation so the problem of its computation is also addressed.
An iterative algorithm based on a 2-Step MLE approach is
therefore proposed to approach the solution. The problem
of uniqueness of the solution is not addressed, therefore the
proposed algorithm could be trapped in local maximums.

This paper is organized as follows. Section II presents the
statistical model of the noise composed of a LR heterogeneous
clutter plus a WGN. Then, Section III introduces the solution
of the clutter subspace MLE. Since this solution is shown
to be defined as a fixed point of an implicit function, its
computation is discussed in section IV. In section V, the
proposed estimator is compared with the state of art (SCM,
NSCM and Shrinkage FPE) through Monte-Carlo simulations.
Section VI draws conclusions of this study.

The following convention is adopted: italic indicates a
scalar quantity, lower case boldface indicates a vector quantity
and upper case boldface a matrix. H denotes the transpose
conjugate operator or the simple conjugate operator for a scalar
quantity. T the transpose operator. CN(a,Σ) is a complex
Gaussian vector of mean a and of covariance matrix Σ. IM
is the M ×M identity matrix. |Σ| is the determinant of the
matrix Σ and Tr() is the Trace operator. d̂ is an estimate of the
parameter d. {wn}n∈[[1,N ]] denotes the set of n elements wn

with n ∈ [[1, n]] and whose writing will often be contracted into
{wn}. ei is the ith vector of the canonical basis of appropriate
dimension.

II. STATISTICAL MODEL AND EXPRESSION OF THE
LIKELIHOOD FUNCTION

We assume that K secondary data {zk}k∈[[1,K]] are avail-
able. Each of these data zk ∈ CM corresponds to a realization
of LR-SIRV process ck plus an independent additive zero-
mean complex WGN nk.

zk = nk + ck (1)

The WGN n follows the distribution:

n ∼ CN(0, σ2IM ) (2)

where the power of the WGN σ2 is assumed known2. It may
be considered unitary since it appears to be only a scale

2This hypothesis is made for describing a valid theoretical framework. In
practice, presented results could be applied with an estimate of σ2 used as
its actual value.

factor fully determined by the Clutter to Noise Ratio (CNR).
Therefore, for simplification we will assume σ2 = 1 without
loss of generality (w.l.o.g.). The LR-SIRV [13] c is a M -
dimensional zero mean complex Gaussian vector (the speckle)
of Covariance Matrix Σc, multiplied by the square root of a
positive random power factor (the texture) τ . We will assume
that there is no prior information on the texture PDF. In that
case, one can consider that each realization of the texture τk is
an unknown deterministic positive parameter. Each realization
ck follows then, conditionally to τk:

(ck|τk) ∼ CN(0, τkΣc) , (3)

where the LR-SIRV clutter CM Σc is defined by its rank R <
M (assumed to be known), its unknown eigenvectors vr and
unknown corresponding eigenvalues cr for r ∈ [[1, R]]:

Σc =

R∑
r=1

crvrv
H
r = VcCcV

H
c , (4)

with Cc the R×R diagonal matrix of the eigenvalues and Vc

the M ×R concatenation of the eigenvectors. We also define
the Clutter Subspace orthogonal projector:

Πc =

R∑
r=1

vrv
H
r = VcV

H
c (5)

And its complementary Π⊥c = IM −Πc.

Considering the presented model, each data zk can be
described, conditionally to τk, by:

(zk|τk) ∼ CN(0,Σk) , (6)

with:
Σk = IM + τkΣc (7)

The likelihood of the dataset is then:

f({zk}|{Σc}, {τk}) =
K∏

k=1

e−zH
k Σ−1

k zk

πM |Σk|
(8)

Up to a constant, the log-likelihood is:

log f({zk}|{Σc}, {τk}) = −
K∑

k=1

zHk Σ−1k zk −
K∑

k=1

ln |Σk|

(9)
Using the definition of Σk, one has:

K∑
k=1

ln |Σk| =
K∑

k=1

R∑
r=1

log(1 + τkcr) +K(M −R) (10)

The log-likelihood, up to a constant, can then be rewritten:

log(f) = −
K∑

k=1

zHk Vc(τkCc + IR)
−1VH

c zk

−
K∑

k=1

zHk (IM −Πc)zk −
K∑

k=1

R∑
r=1

log(1 + τkcr) (11)

The inversion of the matrix of the first term gives:

Vc(τkCc + IR)
−1VH

c =

R∑
r=1

1

τkcr + 1
vrv

H
r (12)
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Leading to the following log-likelihood expression (ignoring
constant terms):

log f =

K∑
k=1

R∑
r=1

[
τkcr

1 + τkcr
zHk vrv

H
r zk − log(1 + τkcr)

]
(13)

For identifiability and tractability purpose, we will also define
the factors dkr = τkcr, representing the power of the clutter
for each realization k and direction r. Which leads to the
following relaxed log-likelihood:

log f =

K∑
k=1

R∑
r=1

[
dkr

1 + dkr
zHk vrv

H
r zk − log(1 + dkr )

]
(14)

Where the parameters {dkr} will be considered as unknown,
deterministic and positive. This relaxed model appears as
"more general" since it involves more parameters (RK
instead of R + K). However, it does not take into account
the inherent link between the dkr ’s. This problem will be
discussed in section IV-A.

Let us now address the problem of the Maximum Likelihood
(ML) estimation of the CSP Πc. This problem will be here
treated as the ML estimation of a clutter subspace basis since
Πc =

∑R
r=1 vrv

H
r . Consequently, the term "MLE of the

clutter subspace" will here indifferently refers to the "MLE
of the CSP" Π̂c or the "MLE a clutter subspace basis"
{v̂r}r∈[[1,R]]. Nevertheless, we note that a basis defining the
MLE of Πc is not unique since it can be defined up to a
rotation.

III. MLE OF THE CSP

The first part of this section is devoted to the expression of
the MLE of the side parameters dkr and of the clutter subspace
basis {vr}. The second part discusses the interpretation of the
proposed result.

A. Clutter Subspace MLE

Considering the relaxed model (14), one has the following
Proposition and Theorem:

Proposition 1 The MLE under positivity constraint of dkr ,
denoted d̂kr for specific r ∈ [[1, R]] and k ∈ [[1,K]] is:

d̂kr =

{
zHk vrv

H
r zk − 1 if zHk vrv

H
r zk > 1

0 else , (15)

or equivalentely, with Πr = vrv
H
r :

d̂kr =

{
||Πrzk||2 − 1 if ||Πrzk||2 > 1

0 else (16)

Proof: The derivative of the expression (14) w.r.t. dkr , for
specific r ∈ [[1, R]] and k ∈ [[1,K]] is:

∂ ln f({zk}|{vr}, {dkr})
∂dkr

= − 1

1 + dkr
+

zHk vrv
H
r zk

(1 + dkr )
2

(17)

This expression is cancelled to identify d̂kr the MLE of dkr .
Nevertheless this power factor is assumed to be a positive
value. Since the likelihood is strictly decreasing after its

maximum d̂kr , the MLE under the positivity constraint is then
given by this Proposition 1.

Theorem 1 The MLE of the clutter subspace basis
{v̂r}r∈[[1,R]] is the solution of the following constrained
optimization problem:

maximize
{vr}

f0({vr}) =
R∑

r=1

vH
k M̂rvk

subject to vH
r vr = 1 , r ∈ [[1, R]]

vH
r vj = 0 , r, j ∈ [[1, R]] , r 6= j

where the matrices M̂r are defined by:

M̂r =

K∑
k=1

α̂k
r (v̂r)zkzHk , (18)

with

α̂k
r (v̂r) =

d̂kr

1 + d̂kr
(19)

and with d̂kr the MLE of the parameters dkr

Proof: c.f. Appendix A

The computation of such solution is not trivial and will be
discussed in section X.

B. Discussion

One may notice that the matrices {M̂r} defining different
v̂r’s in (18) are SCMs of the data scaled by estimated factors
α̂k
r . Since the power of the WGN is σ2 = 1. One can also

identify the terms:

α̂k
r =

d̂kr

1 + d̂kr
=

ĈNR
k

r

1 + ĈNR
k

r

, (20)

where ĈNR
k

r = d̂kr/σ
2 represents the estimated CNR of the

realization zk over the subspace Πr. The α̂k
r factors are then

corresponding to the MLE of the "power proportion" of the
clutter over the subspace defined by Πr. So α̂k

r give more
weight to zk’s with a strong CNR in the considered subspace.
Moreover, the threshold imposed by the positivity constraint
on d̂kr in Proposition 1 means that if the CNR of zk is too
low in the subspace Πr, this training vector is not taken into
account. The same type of factor appears in [21] and [33]
but its MLE expression differs since it involves the texture
PDF and does not take into account the possible difference of
the true CM eigenvalues. Yet, the ML estimation strategy is
similar.

Usually, robust estimates of the full-rank CM tends to scale
the data by a factor inversely proportional to the power of
the noise (or the texture), such as for the Normalized SCM
(NSCM) [34, 35], FPE [24–26], LR-FPE [36]. In this paper,
the problem is the estimation of the CSP. The matrices M̂r

do not define a MLE of the CM but only an intermediary to
obtain the LR clutter subspace MLE. Here, the scale factor α̂k

r

involved will increase as the texture increases, which means
that realizations zk that contain more power in the subspace of
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interest are given more significance in its estimation process.
This approach is therefore robust from the point of view of
estimating the CSP (not the CM). Such estimation method will,
in principle, not ensure good robustness to outliers, as detailed
in [36]. However it may be useful in some specific cases,
where the clutter is not well represented over the secondary
data set [37]. This scenario also corresponds to a low/average
CNR and/or very impulsive clutter.

Moreover, for increasing CNR, one can intuitively expect
that the scaling factors α̂k

r ' 1. This leads to the following
approximation Mr '

∑K
k=1 zkzHk . Meaning that the simple

SVD of the SCM can provide a "good" approximation of the
MLE of the CSP (at least for high CNR and low heterogene-
ity). This result is quite unexpected since the SCM is not a
robust estimate of the CM in presence of SIRV distributed
noise.

IV. CLUTTER SUBSPACE COMPUTATION

One may notice that the matrices M̂r are involving the
projectors {Πr} so the clutter CM MLE is defined as a fixed
point of an implicit function and is not directly reachable.
Similar problem is present in [21], and has been solved
by using an Expectation-Maximization (EM) [38] algorithm
which leads to a recursive method to compute the solution.
In our case, the PDF of the dkr ’s is not assumed known and
the EM approach can not be applied. Another solution, as
proposed in [33], is the 2-Step MLE algorithm3. We will
propose as well a 2-Step form algorithm to approach the
solution, nevertheless resolution of the second step is here
more complex than in [33], as shown in IV-B.

In this section, we will propose and study an algorithm to
approach this solution. This algorithm consists in alternatively
maximizing the likelihood in terms of {dkr} and {vr}. Since
it corresponds to an alternate maximization of a bounded
function, the convergence is ensured. Nevertheless, uniqueness
of the solution is not proven. Moreover, we propose an
optional regularization of the {dkr} estimates for the first
step. Its validity will be empirically demonstrated through the
simulations section.

Since we will resort to iterative algorithms to reach a
possible MLE solution, a good initialization is crucial to
avoid possible local maximums of f . As discussed in [21]
the SVD of the SCM provides a "good first guess" of the
CSP. This intuition is confirmed by the last remark made in
section III-B. The initial Π

(0)
c will be thus taken as the R

strongest eigenvectors of the SCM.

A. Step 1: estimating {d̂kr}(n) for fixed {vr}(n−1)

At this step, one may simply use Proposition 1 to obtain the
updated estimates {d̂kr}. Nevertheless, Proposition 1 provides
"bad" estimates since there is only one observation for each

3A parallel may here be explicited with previous works: when the dis-
turbance is only composed by a full rank SIRV, [26] showed that the FPE
algorithm corresponds to an approached EM proposed by [39] in the case of
unknown texture PDF.

parameter. We propose then an optional regularization of these
estimates. Although it is purely algorithmic, this regularization
will be shown to provide a noticeable gain in performance.

As described in Section II, a SIRV corresponds to a specific
case of the considered relaxed model with dkr = τkcr,
where τk is the texture of the kth sample and cr is the rth

eigenvalue of the clutter CM. This section aims at proposing
a specific method for recovering the parameters τk and cr out
of estimated dkr from Proposition 1. Indeed, in that case, the
dkr ’s are correlated and one can use their inherent structure to
improve the estimation process as well as to obtain separated
estimates of both parameters. Firstly, identifiability conditions
have to be set. Indeed, for any scale factor γ 6= 0 the couples
{τk, cr} and {γτk, cr/γ} may both describe the same SIRV
dkr = τkcr. According to previous works in CM estimates,
we will use the classical condition Tr(Σc) = R, which will
therefore impose the constraint

∑R
r=1 cr = R. Consequently,

the problem is to separate variables τk and cr from a given
matrix D with [D]k,r = dkr :

D =

d
1
1 · · · dK1
...

. . .
...

d1R · · · dKR

 , (21)

Since dkr = τkcr the problem consists in finding two vectors
τ (n) (the concatenated textures estimates) and c(n) (the con-
catenated eigenvalues estimates) that satisfies:

D = cτT =

c1...
cR

(τ1 · · · τK
)

(22)

The identifiability constraint imposes
∑R

r=1 cr = R, so each
column of D satisfies:

R∑
r=1

dkr =

R∑
r=1

crτk = τkR , (23)

which leads to:

τk =

R∑
r=1

dkr/R (24)

One can then obtain the cr’s by the following ratios:

cr =

∑K
k=1 d

k
r∑K

k=1 τk
(25)

One can derive regularized d̂k(n)r denoted d̃k(n)r by applying
the same process to the matrix [D̂]k,r = d̂kr , where the
expression of d̂kr is given by Proposition 1. The regularization
is then obtained with:

d̃k(n)r = τ̂
(n)
k ĉ(n)r =

∑R
r=1 d̂

k(n)
r

∑K
k=1 d̂

k(n)
r∑K

k=1

∑R
r=1 d̂

k(n)
r

(26)

To conclude, the exact MLE of the parameters {τk, cr}
are not directly obtainable. However the MLE of the relaxed
parameters dkr are. Moreover, one can derive estimates of
{τk, cr} (that are not exact MLE) through the set {d̂kr}
using their inherent structure. The obtained {τk, cr} can
be used to derive regularized estimates of the dkr ’s, in the
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sense that they satisfy the structure imposed by the non
relaxed model. Validity and interest of this regularization
approach will be justified in practice in the simulation sections.

B. Step 2: estimating {vr}(n) for fixed {dkr}(n)

The second step involves the maximization of the first term
of f in (14) w.r.t. vr’s for fixed dkr ’s.

maximize
{vr}

f0({vr}) =
R∑

r=1

vH
k M(n)

r vk

subject to vH
r vr = 1 , r ∈ [[1, R]]

vH
r vj = 0 , r, j ∈ [[1, R]] , r 6= j

with

M̂(n)
r =

K∑
k=1

d
k(n)
r

1 + d
k(n)
r

zkzHk , (27)

to obtain the updated clutter subspace basis {v̂r}(n+1)
r∈[[1,R]].

The optimization problem defining the MLE of the CSP
basis belongs to the Non-Convex Quadratic Constrained
Quadratic Program (QCQP) with Non-Convex constraints.
Indeed, the objective is maximizing a quadratic function (un-
bounded) over a bounded set (due to the normality constraint).
Moreover, the orthogonality constraints vH

r vj = 0 for r 6= j
are bi-linear and non convex. The problem is close to an SVD
problem: it would be one if the matrices Mr were all equals. It
is also not a joint-diagonalization problem because the objec-
tive function is not function of

∑R
r=1 ||diag(VHM̂rV)||2. For

this specific problem, there is to our knowledge no closed form
solution. Therefore, one has to resort to iterative algorithms to
reach local maximums of f0, as discussed below.

Such optimization problem is not trivial. To reach a local
maximum of the function, we will use algo 15 from [40]:
"Modified Steepest descent on Stiefel manifold". we also
refer to other possible algorithms [41, 42]. This algorithm
ensures to increase the likelihood over the Stiefel manifold,
so each update is satisfying the unitary constraints. We note
that there is no uniqueness of the solution and that the
algorithm could be trapped in local extremas. However, one
could expect that previous step provides a point near to the
global optimum. The algorithm could therefore be "wisely"
initialized. Moreover, in Appendix, we also propose an other
algorithm based on an heuristic with promising properties.

To sum up, the proposed algorithm, uniting step 1 and 2 is
described in the box Algorithm 1.

V. SIMULATIONS RESULTS

This section deals with numerical simulations to illustrate
interest of the introduced estimator and its associated algo-
rithm.

Algorithm 1 : 2-Step MLE algorithm for CSP estimation

1: Initialize {v(0)
r } as the R strongest eigenvectors of the SCM

2: for n = 1→ N do
3: Estimate {dkr}(n) conditionally to {vr}(n−1) with Proposi-

tion 1
4: Optional regularization {dkr}(n) ← {d̃kr}(n) with (26)
5: Compute the set of matrix {Mr}(n) with (18)
6: Apply algorithm 15 of [40] to locally maximize

R∑
r=1

vH
r M(n)

r vr

under unitary constraints, the solution updates {vr}(n)

7: end for
8: Π̂c =

∑R
r=1 v

(N)
r v

(N)H
r

Simulation parameters: Secondary data have been gen-
erated according to the LR-SIRV plus WGN model described
in section II. To recall it quickly: one has zk = ck + bk. The
WGN is distributed as nk ∼ CN (0, σ2IM ) and σ2 = 1. The
LR-SIRV clutter is distributed as (ck|τk) ∼ CN (0, τkΣc),
with a random texture τk generated for each sample. The tex-
ture PDF is a Gamma distribution (leading to a K-distributed
clutter) of shape parameter ν et scale parameter 1/ν, denoted
τ ∼ Γ(ν, 1/ν), which has E(τ) = 1. The rank R clutter
CM Σc is constructed with the first R eigenvectors and
eigenvalues of a Toeplitz matrix of correlation parameter
ρ ∈ [0, 1] (obtained through SVD). This matrix is then scaled
so Tr(Σc) = γM for a given constant γ. This scaling4 allows
to set the CNR thanks to the definition:

CNR =
E(τ)Tr(Σc)

Tr(σ2IM )
= γ (28)

Tested estimators: We will study the following estimators
of the CSP:
• SCM: The CSP estimate derived from the SVD of the

classical Sample Covariance Matrix

Σ̂SCM =
1

K

K∑
k=1

zkzHk (29)

• NSCM: The CSP estimate derived from the SVD of the
Normalized SCM, which is a consistent estimate of the
CSP in the considered context [22].

Σ̂NSCM =
1

K

K∑
k=1

zkzHk
zHk zk

(30)

• S-FPE: The CSP estimate derived from the SVD of
the Shrinkage-FPE, also known as Diagonally-Loaded
FPE[28, 30–32], which is a regularization of Tyler’s
estimator [23] that can be computed for K < M , and
is defined and unique for β ∈ ]max(0, 1−K/M), 1] by:

Σ̂S-FPE(β) = (1− β)M
K

K∑
k=1

zkzHk
zHk Σ̂−1S-FPE(β)zk

+ βIM

(31)

4Note that this scaling is not directly consistent with the constraint∑R
r=1 cr = R imposed in the estimation section IV-A, however it will not

impact results since the scale ambiguity is removed when using variables
d̃kr = ĉr τ̂k
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In the presented simulations, the S-FPE is computed with
the algorithm described in [32] with a diagonal loading
coefficient arbitrarily fixed to β = 0.1 if K > M and
β = 1−K/M + ε if K < M (with ε = 0.02).

• A-MLE: the approached MLE of the CSP, derived in
the context of LR-SIRV plus WGN assuming that the
eigenvalues of the clutter CM are all equals [33].

• MLE: The MLE introduced in this paper. We present the
results for 3 different algorithms:

– Algorithm 1 without regularization of the dkr ’s esti-
mates.

– Algorithm 1 with regularization of the dkr ’s estimates.
– As benchmark, we will also presents the results for

the algorithm using known actual dkr , which only
involves the second step.

For all the simulations, estimators that require iterative algo-
rithm have been computed with 30 iterations. the second step
of Algorithm 1 has also been computed with 30 iterations.

A. Validation Simulations : NMSE

In these first simulations, the studied criterion is the Normal-
ized Mean Square Error (NMSE), namely for a given estimator
Π̂c:

||Π̂c −Πc||2

||Πc||2
, (32)

with ||Πc||2 = R.
Figures 1 and 2 present respectively the NMSE of the

estimators versus K for average CNR (10dB) and high CNR
(30dB). First, we notice that in both cases, the NSCM reaches
the worst performance. The S-FPE also reaches bad perfor-
mances compared to others methods. In both cases, the MLE
involving known dkr reaches the best performances, which was
expected for a benchmark. We also notice the MLE approach
improves the results compared to the SCM, especially for av-
erage CNR (figure 1). More precisely, the algorithm involving
regularized d̃kr is achieving the best results, while the one
using d̂kr is close to the SCM. This illustrates the interest of
the regularization of the side parameters. However, we also
notice that A-MLE reach performance close to the MLE (with
regularization) so it seems that when it comes to estimating
clutter subspace only, precise information over the eigenvalues
is not necessary. In the context of high CNR (figure 2) the
SCM tends to have the same performance as the MLE based
algorithms, as it was inferred in the discussion section.

The NMSE criterion does not fully reflects the clutter
nulling performance of an estimator Π̂c, which will be consid-
ered in the next section. However we believe that the presented
results could be useful for others applications. For example in
the context of heterogeneous correlated sources embedded in
WGN. The NMSE criterion could be relevant is the projector
is function of parameters of interest θ: Πc(θ), like in MUSIC
[1] application.

Fig. 1. NMSE versus K. M = 60, R = 15, ν = 0.1, CNR=10dB, ρ = 0.9.

Fig. 2. CSR versus K. M = 60, R = 15, ν = 0.1, CNR=30dB, ρ = 0.9.

B. Clutter Suppression Ratio (CSR) simulations

In this section, we will study the following criterion, namely
Clutter Suppression Ratio (CSR):

10 log10

[
L∑

l=1

xH
l

[
IM − Π̂c

]
xl

]
− 10 log10

[
L∑

l=1

xH
l xl

]
for a set of L clutter-plus-noise vectors {xl}, independent
of the vectors used for estimating the clutter subspace. This
criterion assesses the clutter nulling performance of a given
CSP estimator Π̂c. Therefore, it is more reflective of an
applicative use, as this not directly linked to the NMSE. For a
given CNR γ, the analytic performance bound of this criterion
is:

10 log10

(
M −R

(γ + 1)M

)
(33)

For these simulations, according to previous results, we
only kept the MLE estimator computed with algorithm 1 and
regularization of the dkr parameters. Figures 3 to 5 present
respectively the CSR of the estimators versus K for various
CNR (resp. 3dB, 10dB, 20dB). The same conclusions as in
the previous section can be drawn: when the CNR is high,
the SCM has close performance to the MLE. When the CNR
is low, the MLE approach provides a gain in terms of clutter
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Fig. 3. CSR versus K. M = 60, R = 15, ν = 0.1, CNR=3dB, ρ = 0.9.

Fig. 4. CSR versus K. M = 60, R = 15, ν = 0.1, CNR=10dB, ρ = 0.9.

nulling performance. However, there is no strong difference
between A-MLE and MLE regarding to the CSR criterion.

To confirm the previous conclusions, Figure 6 presents the
CSR of the estimators versus the CNR. One can observe
that SCM and MLE’s tends to reach the same performance
when the CNR increases and that the difference between
SCM and MLE is visible only for low and average CNR.
Figures 7 presents the CSR of the estimators versus ν. The
parameter ν reflects the heterogeneity of the clutter: if it is
close to 0, the clutter will be highly heterogeneous. On the
contrary, if ν � 1, the clutter will tend to have a more
Gaussian behavior. First of all, we notice that the performance
of every estimator decreases when the noise becomes more
heterogeneous. However, this figure illustrates the robustness
of the MLE approach: indeed, one can observe that every
estimator will tend to have the same performance in the
Gaussian case i.e. for increasing ν. However the proposed
MLE (and also AMLE) are improving the CSR (compared
to other methods) for heterogeneous clutter.

VI. CONCLUSION

In this paper have been proposed an estimator of the rank
R CSP in the context of a LR-SIRV clutter (of known rank
R) plus WGN, as modeled in Eq. (7) and (8) respectively.
This estimator is derived in Theorem 1 as the MLE of the

Fig. 5. CSR versus K. M = 60, R = 15, ν = 0.1, CNR=20dB, ρ = 0.9.

Fig. 6. CSR versus CNR. M = 60, R = 15, ν = 0.1, K = 120, ρ = 0.9.

Fig. 7. CSR versus 10 log10(ν). M = 60, R = 15, CNR=10dB, K = 120,
ρ = 0.9.

CSP without prior knowledge of the the SIRV texture PDF.
The MLE of the CSP for the considered context is not
obtainable in a closed form solution but as the fixed point of an
implicit function. Therefore this paper has proposed a 2-Step
based MLE algorithm to compute this solution. The proposed
algorithm ensures convergence as it increases the likelihood at
each step. However the problem of uniqueness of the solution
has not been considered and it is possible that other rank
R subspaces exist that satisfies Theorem 1, meaning that
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the proposed algorithm could be trapped in local maximums.
Simulation results showed that introduced estimator outper-
forms the current state of art in terms of NMSE (accuracy
of estimation) and CSR (clutter nulling perfromance). More
precisely, the CSP MLE provides a robust estimator from
the point of view of estimating the CSP: it improves the
results when the sample set does not meet standard conditions
(high CNR and low heterogeneity) i.e. when there is "less"
clutter. Interestingly, a statistical interpretation (confirmed by
simulations) has also shown that the SCM could provide a
good approximation of the MLE in high CNR context. This
result is unexpected since it does not involve robust estimate of
the CM [12], even in the presence of an heterogeneous noise.
The considered model fits several applications where the noise
may have a LR heterogeneous structure such as STAP radar
[5], hyperspectral detection or array processing. However, the
problem of unknown rank R should be addressed in further
works.

APPENDIX A
PROOF OF THEOREM 1

Before beginning the proof of Theorem 1, unitary constraint
on {vr} has to be expressed. Indeed maximizing the likelihood
w.r.t. {vr} without constraints does not inherently ensure
fundamental properties on {vr}. The {vr} has to form an
ortho-normal basis of the estimated clutter subspace, therefore
the vectors vr have to satisfy unitary constraints, i.e.:
• vH

r vr = 1, for r ∈ [[1, R]]
• vH

r vj = 0, for r, j ∈ [[1, R]] and r 6= j

The unitary constraint will be imposed using the Lagrange
multipliers method. Let L({vr}) be the Lagrange function
associated to the unitary constraints on {vr}:

L({vr}) =
R∑

r=1

λr(v
H
r vr − 1)

+

R∑
r=1

R∑
l=r+1

µr,l vH
r vl +

R∑
r=1

R∑
l=r+1

µH
r,l vH

l vr , (34)

where λr are the Lagrange multipliers associated to the
normalization constraint and µr,l the ones associated to the
orthogonality constraint5. One has the following Lemma :

Lemma 1 The derivative of this L({vr}) w.r.t. vH
j for j ∈

[[1, R]] is:
∂L({vr})
∂vH

j

= VΛej , (35)

where V is the concatenation of the vectors vr, ej is the jth

vector of the canonical basis, and Λ is the Hermitian matrix
defined in defined in (37).

Proof: One has

∂L({vr})
∂vH

j

= λjvj +

R∑
l=j+1

µj,lvl +

j−1∑
r=1

µH
r,jvr (36)

5The presence of the complex conjugate sum associated to the µr,l’s is
required since we are dealing with complex vectors.

This expression may be rewritten using the R × R Lagrange
constraints matrix Λ, defined by:

[Λ]i,j =


µH
i,j if i < j
λj if i = j
µj,i if i > j

, (37)

which leads to Lemma 1. At this point, it is important to notice
that the matrix Λ is Hermitian since [Λ]i,j = [Λ]Hj,i.

To derive the MLE of {vr}, one replace the expression of
the MLE of the dkr (function of the vr’s) to obtain the reduced
log-likelihood. The obtained expression is then differentiated
w.r.t. the vr’s to identify the geometric relation that should
satisfy the MLE. Then, Lemma 2 allows to express the MLE
as a solution of a constrained optimization problem, which
concludes the proof of Theorem 1. We first derive Lemma 2:

Lemma 2 Let {Mr} be a set of R M ×M matrices. The
following constrained optimization problem

maximize
{vr}

f0({vr}) =
R∑

r=1

vH
k Mrvk

subject to vH
r vr = 1 , r ∈ [[1, R]]

vH
r vj = 0 , r, j ∈ [[1, R]] , r 6= j

has local solutions that are satisfying:

VH [M1v1|...|MRvR] = Λ (38)

where V is the concatenation of {vr}, and Λ is the Hermi-
tian matrix of the Lagrange multipliers associated to unitary
constraints.

Proof: Using the Lagrange constraints method, one has to
maximize the functional f0({vr})−L({vr}). One can cancel
the derivative of this functional w.r.t vj :

∂(f0 − L)({v̂r})
∂vH

j

= 0⇔Mjv̂j = V̂Λej , (39)

Then, all the R solutions w.r.t. each v̂r may be concatenated
in a single equation:

[M1v1|...|MRvR] = VΛ (40)

Multiplying 40 left by VH and using the relation VHV = IR
(verified under the unitary constraint) concludes the proof of
this lemma.

Let us now turn to the formal proof of Theorem 1 :
Proof: The dkr ’s are replaced by their MLE expression

from Proposition 1 in (14) in order to obtain the reduced log-
likelihood f̂ :

f̂({zk}|{vr}) =
R∑

r=1

K∑
k=1

zHk vrv
H
r zk −RK

−
R∑

r=1

K∑
k=1

ln(zHk vrv
H
r zk) , (41)
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the derivative of f̂ w.r.t. vH
j , j ∈ [[1, R]] is:

∂f̂

∂vH
j

=

K∑
k=1

zkzHk vj −
K∑

k=1

zkzHk vj

zHk vjvH
j zk

=

K∑
k=1

zHk vjv
H
j zk − 1

zHk vjvH
j zk

zkzHk vj

=

K∑
k=1

d̂kj

1 + d̂kj
zkzHk vj (42)

Eventually, if we denote M̂r the matrices:

M̂r =

K∑
k=1

α̂k
r (vr)zkzHk , (43)

with

α̂k
r (vr) =

d̂kr

1 + d̂kr
, (44)

the derivative of f̂ w.r.t. vH
j is then expressed as:

∂f̂({zk}|{vr})
∂vH

j

= M̂jvj (45)

Note that the case d̂kr = 0 (due to the threshold in Proposition
1) has not been not considered w.l.o.g. since it only means
that zk is not taken into account in the definition of M̂r.
Indeed, in that case α̂k

r = 0. One can also redefine each sum
in (41) by only involving the d̂kr 6= 0 and obtain the same
result.

Combining the Lagrange constraint method and f̂ leads to
maximize the following functional g w.r.t. the vr’s:

g({vr}) = f̂({zk}|{vr})− L({vr}) , (46)

which derivative w.r.t vj , given by (35) and (45) and is
cancelled for:

∂g({v̂r})
∂vH

j

= 0⇔ M̂jv̂j = V̂Λej , (47)

All the R solutions w.r.t. each v̂r may be concatenated in a
single equation: [

M̂1v̂1|...|M̂Rv̂R

]
= V̂Λ (48)

Using the relation V̂HV̂ = IR (verified under the unitary
constraint) gives:

V̂H
[
M̂1v̂1|...|M̂Rv̂R

]
= Λ (49)

One can then apply Lemma 2 to expresses the MLE of the
CSP basis as solution of a constrained optimization problem,
which concludes the proof of Theorem 1.
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