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Abstract

Let Γ be a doubling graph satisfying some pointwise subgaussian estimates of the Markov kernel. We introduce
a space H1(Γ) of functions and a space H1(TΓ) of 1-forms and give various characterizations of them. We prove
the H1-boundedness of the Riesz transform, from which we deduce the Lp boundedness of the Riesz transform for
any p ∈ (1, 2). Note that in [19, Theorem 1.40], we showed a H1

w-boundedness of the Riesz transform under weaker
assumptions, but the Lp boundedness was not established.
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We use the following notations. A(x) . B(x) means that there exists C independent of x such that A(x) ≤ C B(x)
for all x, while A(x) ≃ B(x) means that A(x) . B(x) and B(x) . A(x). The parameters from which the constant is
independent will be either obvious from context or recalled.
Furthermore, if E, F are Banach spaces, E ⊂ F means that E is continuously included in F . In the same way, E = F
means that the norms are equivalent.

1 Introduction and statement of the results

Let d ∈ N
∗. In the Euclidean case R

d, the Riesz transforms are the linear operators ∂j(−∆)− 1
2 . A way to define them

is to use the Fourier transform F : for all f ∈ S(Rd) and all ξ ∈ R
d, one has

F(∂j(−∆)− 1
2 f)(ξ) = i

ξj

|ξ|F(f)(ξ).

The Riesz transforms have a convolution kernel, that is ∂j(−∆)− 1
2 f = kj ∗ f where kj = cd

xj

|x|d+1 is a tempered

distribution. A remarkable property of the Riesz transform is that they are Lp bounded for all p ∈ (1, +∞) (see [28,
Chapter 2, Theorem 1]).

This result have been extended to other settings. Let M be a complete Riemannian manifold, with ∇ the Riemannian
gradient and ∆ the Beltrami Laplace operator. Assume M is doubling. Under pointwise Gaussian upper estimate of
the heat kernel ht, the Riesz transform ∇∆− 1

2 is bounded on Lp(M) for all p ∈ (1, 2] (see [12]). When p > 2, the Lp

boundedness of the Riesz transform holds under much stronger condition, expressed in term of Poincaré inequalities on
balls and of the domination of the gradient of the semigroup in Lq for some q > p (with L2 Poincaré inequality, see
[13]; with Lq Poincaré inequality, see [6]). Similar results were established in the case of graphs (see [26] when p < 2,
see [4] when p > 2).

We are interested now by the limit case p = 1. It appears than the Hardy space H1 is the proper substitute of L1

when Riesz transforms are involved. In the Euclidean case, H1(Rd) can be defined as the space of functions f ∈ L1(Rd)
such that ∂j(−∆)− 1

2 f ∈ L1(Rd) for all j ∈ [[1, d]] (see [18]). Moreover, the Riesz transforms ∂j(−∆)− 1
2 , that are

bounded from H1(Rd) to L1(Rd), are actually bounded on H1(Rd).
This last result, namely the H1 boundedness of the Riesz transform, have been extended to complete Riemannian

manifolds in [3] (completed in [2]), under the only assumption that the space is doubling. In order to do this, Auscher,
Mc Intosh and Russ introduced for functions and forms some Hardy spaces defined by using the Laplacian. In [3],
when M is a (complete doubling) Riemannian manifold, the authors deduced then a Hp(M) boundedness of the Riesz
transform for p ∈ (1, 2), where the spaces Hp are defined by means of quadratic functionals. Under pointwise Gaussian
upper estimates Hp(M) = Lp(M) and thus they recover Lp(M) boundedness of the Riesz transform obtained in [12].

The problem was also considered on graphs Γ. In the same spirit as [3], the present author established in [19] the
H1 = H1

w(Γ)-boundedness of the Riesz transform. In the present paper, we will assume some pointwise subgaussian
upper estimates on the Markov kernel. Under this assumption, we define a new Hardy space H1

s (Γ) which H1
w(Γ) is

continuously embedded in. Note that H1
w(Γ) = H1

s (Γ) if we assume some pointwise Gaussian estimates on the Markov
kernel. We prove again the H1 = H1

s (Γ) boundedness of the Riesz transform on graphs. However, those new Hardy
spaces H1

s (Γ) satisfy an interpolation property that make us able to get the Lp(Γ) boundedness of the Riesz transform
on graphs. Hence, for p ∈ (1, 2), we extend the Lp(Γ) boundedness of the Riesz transform to a larger class of graphs
than the one considered in [26].

In the context of Riemannian manifolds and graphs, under pointwise subgaussian estimates of the heat (or Markov)
kernel, quasi-Riesz transforms and Hardy spaces have been studied by Chen in [9]. We make a comparison in subsection
1.5

1.1 The discrete setting

Let Γ be an infinite set and µxy = µyx ≥ 0 a symmetric weight on Γ × Γ. The couple (Γ, µ) induces a (weighted
unoriented) graph structure if we define the set of edges by

E = {(x, y) ∈ Γ × Γ, µxy > 0}.

We call then x and y neighbors (or x ∼ y) if and only if (x, y) ∈ E.
We will assume that the graph is locally uniformly finite, that is there exists M0 ∈ N such that for all x ∈ Γ,

#{y ∈ Γ, y ∼ x} ≤ M0. (1)

In other words, the number of neighbors of a vertex is uniformly bounded.
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We define the weight m(x) of a vertex x ∈ Γ by m(x) =
∑

x∼y µxy.
More generally, the volume (or measure) of a subset E ⊂ Γ is defined as m(E) :=

∑

x∈E m(x).
We define now the Lp(Γ) spaces. For all 1 ≤ p < +∞, we say that a function f on Γ belongs to Lp(Γ, m) (or Lp(Γ)) if

‖f‖p :=

(

∑

x∈Γ

|f(x)|pm(x)

)
1
p

< +∞,

while L∞(Γ) is the space of functions satisfying

‖f‖∞ := sup
x∈Γ

|f(x)| < +∞.

Let us define for all x, y ∈ Γ the discrete-time reversible Markov kernel p associated with the measure m by p(x, y) =
µxy

m(x)m(y) . The discrete kernel pk(x, y) is then defined recursively for all k ≥ 0 by

{

p0(x, y) = δ(x,y)
m(y)

pk+1(x, y) =
∑

z∈Γ p(x, z)pk(z, y)m(z).
(2)

Notice that for all k ≥ 1, we have

‖pk(x, .)‖L1(Γ) =
∑

y∈Γ

pk(x, y)m(y) =
∑

d(x,y)≤l

pk(x, y)m(y) = 1 ∀x ∈ Γ, (3)

and that the kernel is symmetric:
pk(x, y) = pk(y, x) ∀x, y ∈ Γ. (4)

For all functions f on Γ, we define P as the operator with kernel p, i.e.

P f(x) =
∑

y∈Γ

p(x, y)f(y)m(y) ∀x ∈ Γ. (5)

It is easily checked that P k is the operator with kernel pk.
Since p(x, y) ≥ 0 and (3) holds, one has, for all p ∈ [1, +∞] ,

‖P ‖p→p ≤ 1. (6)

Remark 1.1. Let 1 ≤ p < +∞. Since, for all k ≥ 0,
∥

∥P k
∥

∥

p→p
≤ 1, the operators (I −P )β and (I +P )β are Lp-bounded

for all β ≥ 0 (see [15]).

We define a nonnegative Laplacian on Γ by ∆ = I − P . One has then

〈∆f, f〉L2(Γ) =
∑

x,y∈Γ

p(x, y)(f(x) − f(y))f(x)m(x)m(y)

=
1

2

∑

x,y∈Γ

p(x, y)|f(x) − f(y)|2m(x)m(y),
(7)

where we use (3) for the first equality and (4) for the second one. The last calculus proves that the following operator

∇f(x) =





1

2

∑

y∈Γ

p(x, y)|f(y) − f(x)|2m(y)





1
2

,

called “length of the gradient” (and the definition of which is taken from [14]), satisfies

‖∇f‖2
L2(Γ) =< ∆f, f >L2(Γ)= ‖∆

1
2 f‖2

L2(Γ). (8)

We recall now definitions of 1-forms on graphs and their first properties (based on [19]). We define, for all x ∈ Γ, the
set Tx = {(x, y) ∈ Γ2, y ∼ x} and for all set E ⊂ Γ,

TE =
⋃

x∈E

Tx = {(x, y) ∈ E × Γ, y ∼ x}.
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Definition 1.2. If x ∈ Γ, we define, for all functions Fx defined on Tx the norm

|Fx|Tx
=

(

1

2

∑

y∼x

p(x, y)m(y)|Fx(x, y)|2
)

1
2

.

Moreover, a function F : TΓ → R belongs to Lp(TΓ) if

(i) F is antisymmetric, that is F (x, y) = −F (y, x) for all x ∼ y,

(ii) ‖F‖Lp(TΓ) := ‖x 7→ |F (x, .)|Tx
‖Lp(Γ) < +∞.

The Hilbert space L2(TΓ) is outfitted with the inner product 〈·, ·〉 defined as

〈F, G〉 =
1

2

∑

x,y∈Γ

p(x, y)F (x, y)G(x, y)m(x)m(y).

Definition 1.3. Let f a function on Γ and F an antisymmetric function on TΓ. Define the operators d and d∗ by

df(x, y) := f(x) − f(y) ∀(x, y) ∈ TΓ

and
d∗F (x) :=

∑

y∼x

p(x, y)F (x, y)m(y) ∀x ∈ Γ.

Remark 1.4. It is plain to see that d∗d = ∆ and |df(x, .)|Tx
= ∇f(x).

As the notation d∗ suggests, d∗ is the adjoint of d, that is for all f ∈ L2(Γ) and G ∈ L2(TΓ),

〈df, G〉L2(TΓ) = 〈f, d∗G〉L2(Γ) . (9)

The proof of this fact can be found in [4, Section 8.1].

We introduce a subspace of L2(TΓ), called H2(TΓ), defined as the closure in L2(TΓ) of

E2(TΓ) := {F ∈ L2(TΓ), ∃f ∈ L2(Γ) : F = df}.

Notice that d∆−1d∗ = IdE2(TΓ) (see [19]). The functional d∆−1d∗ can be extended to a bounded operator on H2(TΓ)
and

d∆−1d∗ = IdH2(TΓ). (10)

Let us recall Proposition 1.32 in [19] .

Proposition 1.5. For all p ∈ [1, +∞], the operator d∗ is bounded from Lp(TΓ) to Lp(Γ).
The operator d∆− 1

2 is an isometry from L2(Γ) to H2(TΓ), and the operator ∆− 1
2 d∗ is an isometry from H2(TΓ) to

L2(Γ).

1.2 Assumptions on the graph

Definition 1.6. We say that (Γ, µ) satisfies (LB) if there exists ǫ = ǫLB > 0 such that

µxx

m(x)
= p(x, x)m(x) ≥ ǫ ∀x ∈ Γ. (LB)

Let us recall a result in [15].

Lemma 1.7. The condition (LB) implies that −1 does not belong to the L2-spectrum of P , which implies in turn the
analyticity of P in Lp(Γ), 1 < p < +∞. Namely,

‖(I − P )P n‖p→p .
1

n
.

We will need some assumptions that depends of the metric.

Definition 1.8. Let X be a nonempty set and ρ : X → [0, +∞). Say that ρ is a quasidistance if, and only if there
exists C > 0 such that, for all x, y, z ∈ X:
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(i) ρ(x, y) = 0 if, and only if, x = y,

(ii) ρ(x, y) = ρ(y, x),

(iii) we have the inequality
ρ(x, y) ≤ C (ρ(x, z) + ρ(z, y)) . (11)

Throughout all the paper, whenever ρ is a quasidistance on a graph Γ, we will assume that ρ take values in N and that
ρ(x, y) = 1 if x ∼ y with x 6= y.

Definition 1.9. Let ρ be a quasidistance on Γ.

(i) Define Cρ as the infimum of the constants C > 0 such that (11) holds. Note that (11) is satisfied with Cρ.

(ii) For x ∈ Γ and k ∈ R
∗
+, the ball B(x, k) (or Bρ(x, k)) is defined by

B(x, k) = {y ∈ Γ, ρ(x, y) < k}.

Conversely, B is a ball (for ρ) if there exists (xB, kB) ∈ Γ × N
∗ such that B = B(xB , kB). The radius of B is

defined as sup{ρ(y, Bc), y ∈ B}. Note that the radius r of the ball B(x, k) satisfies k ≤ r ≤ 2Cρk.

(iii) If j ≥ 1, Cj(x, k) denotes the annulus B(x, Cρ2j+1k)\B(x, Cρ2jk). Moreover, C0(x, k) denotes B(x, 2Cρk)

(iv) We will use the notation Vρ(x, k) or only V (x, k) for m(B(x, k)).

Definition 1.10. Let ρ be a quasidistance. We say that (Γ, µ, ρ) satisfies (DV) if the measure m is doubling with respect
to the quasidistance ρ, that is if there exists Cdv > 0 such that

V (x, 2k) ≤ CdvV (x, k) ∀x ∈ Γ, ∀k ∈ R
∗
+; (DV)

Proposition 1.11. Let (Γ, µ, ρ) satisfying (DV). Then there exists d > 0 such that

V (x, λr) . λdV (x, r) ∀x ∈ Γ, r > 0 and λ ≥ 1. (12)

Definition 1.12. Let ρ be a quasidistance. We say that (Γ, µ, ρ) satisfies (UE) if there exist three constants cue, Cue > 0
and η ∈ (0, 1] such that pk satisfies the subgaussian estimates

pk−1(x, y) .
Cue

V (x, k)
exp

[

−cue

(

ρ(x, y)

k

)η]

, ∀x, y ∈ Γ, ∀k ∈ N
∗. (UE)

Remark 1.13. Notice that when ρ = d2, assumption (UE) is the pointwise Gaussian upper estimate of the Markov
kernel. It corresponds then to the estimate (on the Markov kernel) made in [26] or [20]. In particular, when ρ = d2,
assumption (UE) is satisfied when Γ is the Cayley graph of finitely generated groups. Other graphs satisfying (UE) are
presented in section 5.

1.3 Definition of Hardy spaces

We define two kinds of Hardy spaces. The first one is defined using molecules.

Definition 1.14. Let M ∈ N
∗, p ∈ (1, ∞] and ǫ ∈ (0, +∞). A function a ∈ Lp(Γ) is called a (M, p, ǫ)-molecule if there

exist x ∈ Γ, s ∈ R
∗
+ and a function b ∈ Lp(Γ) such that

(i) a = [I − (I + s∆)−1]M b,

(ii) ‖b‖Lp(Cj(x,s)) ≤ 2−jǫV (x, 2js)
1
p

−1, ∀j ≥ 0.

We say that an (M, p, ǫ)-molecule a is associated with a vertex x and a real s when we want to refer to x and s given
by the definition.

Definition 1.15. Let M ∈ N
∗, p ∈ (1, ∞] and ǫ ∈ (0, +∞). A function a ∈ Lp(TΓ) is called an (M − 1

2 , p, ǫ)-molecule
if there exist x ∈ Γ, s ∈ R

∗
+ and a function b ∈ Lp(Γ) such that

(i) a = sM− 1
2 d∆M−1(I + s∆)−M+ 1

2 b;

(ii) ‖b‖Lp(Cj(x,s)) ≤ 2−jǫV (x, 2js)
1
p

−1 for all j ≥ 0.
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Remark 1.16. In the particular case p = 2, these definitions of molecules can be found in [19].

Remark 1.17. As will be seen in Propositions 2.6 and 2.9 below, when a is a molecule occurring in Definition 1.14 or
in Definition 1.15, one has ‖a‖L1 . 1.

Definition 1.18. Let M ∈ N
∗, p ∈ (1, ∞] and ǫ ∈ (0, +∞). We say that a function f on Γ belongs to H1

mol,M,p,ǫ(Γ)

if f admits a molecular (M, p, ǫ)-representation, that is if there exist a sequence (λi)i∈N ∈ ℓ1 and a sequence (ai)i∈N of
(M, p, ǫ)-molecules such that

f =

∞
∑

i=0

λiai (13)

where the convergence of the series to f holds pointwise. Define, for all f ∈ H1
mol,M,p,ǫ(Γ),

‖f‖H1
mol,M,p,ǫ

= inf







∞
∑

j=0

|λj |,
∞
∑

j=0

λjaj , is a molecular (M, p, ǫ)-representation of f







.

Definition 1.19. Let M ∈ N
∗, p ∈ (1, ∞] and ǫ ∈ (0, +∞). We say that a function f on TΓ belongs to H1

mol,M− 1
2 ,p,ǫ

(TΓ)

if f admits a molecular (M − 1
2 , p, ǫ)-representation, that is if there exist a sequence (λi)i∈N ∈ ℓ1 and a sequence (ai)i∈N

of (M − 1
2 , p, ǫ)-molecules such that

f =

∞
∑

i=0

λiai (14)

where the convergence of the series to f holds pointwise. Define, for all f ∈ H1
mol,M− 1

2 ,p,ǫ
(TΓ),

‖f‖H1

mol,M− 1
2

,p,ǫ

= inf







∞
∑

j=0

|λj |,
∞
∑

j=0

λjaj , is a molecular (M − 1

2
, p, ǫ)-representation of f







.

Proposition 1.20. Let M ∈ N
∗, p ∈ (1, ∞] and ǫ ∈ (0, +∞). Then:

(i) the map f 7→ ‖f‖H1
mol,M,p,ǫ

(resp. f 7→ ‖f‖H1

mol,M− 1
2

,p,ǫ

) is a norm on the space H1
mol,M,p,ǫ (resp. H1

mol,M− 1
2 ,p,ǫ

),

(ii) the space H1
mol,M,p,ǫ(Γ) (resp. H1

mol,M− 1
2 ,p,ǫ

(TΓ)) is complete and continuously embedded in L1(Γ) (resp. L1(TΓ)).

Proof: Remark 1.17 shows that, if f is in H1
mol the series (13) (or (14)) converges in L1, and therefore converges to f

in L1. This yields (i) and the embeddings in (ii). Moreover, a normed linear vector space X is complete if and
only if it has the property

∞
∑

j=0

‖fj‖X < +∞ =⇒
∞
∑

j=0

fj converges in X.

Using this criterion, the completeness of the Hardy spaces under consideration is a straightforward consequence
of the fact that ‖a‖L1 . 1 whenever a is a molecule. See also the argument for the completeness of H1

L in [23], p.
48. �

The second kind of Hardy spaces is defined via quadratic functionals.

Definition 1.21. Define, for β > 0, the quadratic functional Lβ on L2(Γ) by

Lβf(x) =





∑

(y,k)∈γ(x)

k2β−1

V (x, k)
|∆βP k−1f(y)|2m(y)





1
2

where γ(x) = {(y, k) ∈ Γ × N
∗, ρ(x, y) < k}.

Definition 1.22. The space E1
quad,β(Γ) is defined for all β > 0 by

E1
quad,β(Γ) :=

{

f ∈ L2(Γ), ‖Lβf‖L1 < +∞
}

.

It is outfitted with the norm
‖f‖H1

quad,β
:= ‖Lβf‖L1 .
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The space E1
quad,β(TΓ) is defined from E1

quad,β as

E1
quad,β(TΓ) :=

{

f ∈ E2(TΓ), ∆− 1
2 d∗f ∈ E1

quad,β(Γ)
}

.

It is outfitted with the norm
‖f‖H1

quad,β
:= ‖Lβ∆− 1

2 d∗f‖L1.

Remark 1.23. The fact that the map f 7→ ‖f‖H1
quad,β

is a norm is proven in [19, Remark 1.20].

1.4 Main results

In all the following statements, let (Γ, µ, ρ) be a weighted graph outfitted with a quasidistance and satisfying (LB),
(DV) and (UE).

Definition 1.24. Let (E, ‖.‖E) a normed vector space and (G, ‖.‖F ) a Banach space such that E ⊂ F . A Banach space
(F, ‖.‖F ) is the completion of E in G if

(i) we have the continuous embeddings
E ⊂ F ⊂ G

,

(ii) the set E is dense in F ,

(iii) for all e ∈ E, ‖e‖E = ‖e‖F .

Remark 1.25. The completion F of E always exists. However, F is defined in an abstract space. Even if E is
continuously embedding in a Banach G, F cannot always be identified to a subspace of G.

Theorem 1.26. Let β > 0. The completion H1
quad,β(Γ) of E1

quad,β(Γ) in L1(Γ) exists. Moreover, if M ∈ N∗, p ∈ (1, 2]

and ǫ ∈ (0, +∞), then the spaces H1
mol,M,p,ǫ(Γ) and H1

quad,β(Γ) coincide. More precisely, we have

E1
quad,β(Γ) = H1

mol,M,p,ǫ(Γ) ∩ L2(Γ).

Once the equality H1
mol,M,p,ǫ(Γ) = H1

quad,β(Γ) is established, this space will be denoted by H1(Γ).

Theorem 1.27. Let β > 0. The completion H1
quad,β(TΓ) of E1

quad,β(TΓ) in L1(TΓ) exists. Moreover, if M ∈ N
∗,

p ∈ (1, 2] and ǫ ∈ (0, +∞), then the spaces H1
mol,M− 1

2 ,p,ǫ
(TΓ) and H1

quad,β(TΓ) coincide. More precisely, we have

E1
quad,β(TΓ) = H1

mol,M− 1
2 ,p,ǫ(TΓ) ∩ L2(TΓ).

Again, the space H1
mol,M− 1

2 ,p,ǫ
(TΓ) = H1

quad,β(TΓ) will be denoted by H1(TΓ).

Remark 1.28. Note that the previous theorem provides that H1
mol,M,p,ǫ(Γ) (resp. H1

mol,M− 1
2 ,p,ǫ

(TΓ)) is independent of

M ∈ N
∗, ǫ ∈ (0, +∞) and p ∈ (1, 2].

Theorem 1.29. If T is linear operator acting on L2(Γ) such that

1. T is L2(Γ) bounded, that is there exists C2 > 0 such that

‖T f‖L2 ≤ C2‖f‖L2 ∀f ∈ L2(Γ),

2. T is bounded from H1(Γ) to L1(Γ), that is there exists C1 > 0 such that

‖T f‖L2 ≤ C1‖f‖L2 ∀f ∈ H1(Γ) ∩ L2(Γ).

Then for all p ∈ (1, 2],
‖T f‖p ≤ Cθ

2 C1−θ
1 ‖f‖p ∀f ∈ Lp(Γ) ∩ L2(Γ)

where θ is given by
1

p
=

θ

2
+

1 − θ

1
.
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Corollary 1.30. The Riesz transform d∆− 1
2 is bounded from H1(Γ) to H1(TΓ). As a consequence the Riesz transform

∇∆− 1
2 is bounded from H1(Γ) to L1(Γ), and thus is Lp-bounded for all p ∈ (1, 2].

Proof: Theorems 1.26 and 1.27 yields,

‖d∆− 1
2 f‖H1(TΓ) ≃ ‖d∆− 1

2 f‖H1
quad,1

(TΓ) = ‖∆− 1
2 d∗d∆− 1

2 f‖H1
quad,1

(Γ) = ‖f‖H1
quad,1

(Γ) ≃ ‖f‖H1(Γ).

Therefore, d∆− 1
2 is H1-bounded. Moreover, by Proposition 1.20,

‖∇∆− 1
2 f‖L1(Γ) = ‖d∆− 1

2 f‖L1(TΓ) . ‖d∆− 1
2 f‖H1(TΓ) . ‖f‖H1(Γ). (15)

Define now for any function φ on TΓ the linear operator

∇φf(x) =
∑

y∈Γ

p(x, y)df(x, y)φ(x, y)m(y).

Then the boundedness (15) yields the estimate

‖∇φf‖L1 . ‖f‖H1 sup
x∈Γ

|φ(x, .)|Tx
.

Moreover, since ‖∇∆− 1
2 f‖L2 = ‖f‖L2 (cf (8)), one has

‖∇φf‖L2 . ‖f‖L2 sup
x∈Γ

|φ(x, .)|Tx
.

Define now φf (x, y) =
df(x, y)

∇f(x)
. Note that sup

x∈Γ
|φf (x, .)|Tx

= 1. With Theorem 1.29, one has then

‖∇∆− 1
2 f‖Lp = ‖∇φf

∆− 1
2 f‖Lp . ‖f‖Lp

�

1.5 Comparison with previous results

For all x, y ∈ Γ, let d(x, y) be length of the shortest path linking x to y, where x0, . . . , xn is a path of length n if for
any i ∈ [[1, n]], xi−1 ≃ xi.

Russ established in [26] the following result:

Theorem 1.31. Let (Γ, µ, d2) satisfying (LB), (DV) and (UE).
Then the Riesz transform is of weak type (1, 1), that is

sup
λ>0

λm({∇∆− 1
2 f > λ}) . ‖f‖L1 ∀f ∈ L1(Γ)

and of strong type (p, p) (or Lp bounded) for all p ∈ (1, 2].

In the present paper, as in [26], we established the Lp boundedness of the Riesz transform for p ∈ (1, 2]. However, the
class of graphs that satisfies our assumptions (Corollary 1.30) is strictly bigger than the one satisfying the assumptions
of Theorem 1.31. Indeed, fractal-type graphs (see Section 5) such as the Sierpinski carpet fit into our theory but not
into the one of [26]. Contrary to [26], we do not prove the weak type (1, 1) of the Riesz transform. It was replaced in
the present paper by a H1(Γ) boundedness of the Riesz transform.

In [9], Chen stated

Theorem 1.32. Let (Γ, µ) be a graph satisfying (LB) and the local doubling property

m(x) ≃ m(y) ∀x ∼ y.

Then, for all α ∈ (0, 1
2 ), the quasi-Riesz transforms ∇∆−α are Lp bounded for all ∈ (1, 2).

Let β > 0 such that (Γ, µ, dβ) satisfy (LB), (DV) and (UE). Then, for all α ∈ (0, 1
2 ), the quasi-Riesz transforms

∇∆−α is of weak type (1, 1), and thus of strong type (p, p) for all p ∈ (1, 2].
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Notice that the Lp boundedness of the Riesz transform ∇∆− 1
2 implies the Lp boundedness of all quasi-Riesz trans-

forms ∇∆− 1
2 , α ∈ (0, 1

2 ). Therefore, Corollary 1.30 and Theorem 1.32 have a non-empty intersection. Chen proved
more general results than us on quasi-Riesz transforms while we succeeded, under subgaussian estimates, to prove the
boundedness of the “complete” Riesz transform.

In the context of complete Riemannian manifolds M with the doubling property, Chen also introduced in [9]
some results on Hardy spaces “adapted” to some elliptic operators satisfying pointwise subgaussian estimates. She
proved H1

L,s(M) := H1
L,mol(M) = H1

L,quad(M), i.e. we can define a Hardy space H1
L,s(M) that have two equivalent

characterizations. The first one, H1
L,mol(M) is the space of functions in L1 that have a molecular decomposition

while H1
L,quad(M) is defined by using quadratic functionals of Lusin type. The space H1

∆,s(M) is bigger than the one

introduced in [3] and, for p ∈ (1, 2), the “interpolated” spaces Hp
∆,s(M) are equal to Lp(M).

The main difference between the present paper and [9] is that Chen did not make the same work on graphs and
for 1-forms. Working on graphs brings some difficulties that do not appear, for examples, on Riemannian manifolds.
Moreover, the present work extends also the notion of subgaussian estimates met in [9]. Besides, by considering all
the functionals Lβ for β > 0, we have a difficulty that was not considered in [9], where only the functional L1 was
introduced.

Hardy spaces under subgaussian estimates of the heat kernel was defined previously in [25]. Let X be a space of
homogeneous space, L be a injective, non-negative, self-adjoint operator in L2(X) such that the semigroup generated
by −L satisfies Gaffney estimates of arbitrary order m. As in [9], the authors of [25] defined Hardy spaces Hp

L(X) for
p ∈ [1, 2]. They showed that Lp(X) = Hp(X). As an application, they proved H1

L(X) and Lp(X) boundedness of some
spectral multipliers of L.

2 Off-diagonal estimates

2.1 Gaffney estimates, first results

Definition 2.1. Let (X, m, ρ) be a measured space equipped with a quasidistance and p ∈ [1, +∞]. We say that a family
of operators (Ak)k∈, I = N

∗ or R
∗
+, satisfies Lp(X, m, ρ) (or Lp) Gaffney estimates if there exist C, c, η > 0 such that,

for any sets E, F ⊂ X and any function f ∈ Lp(X, m),

‖Ak[f1lF ]‖Lp(E) ≤ C exp

[

−c

(

ρ(E, F )

k

)η]

‖f‖p. (16)

It is plain to observe that (16) is equivalent to

‖Ak(f)‖Lp(E) ≤ C exp

[

−c

(

ρ(E, F )

k

)η]

‖f‖p

whenever f is supported in F .
Arguing as in [22, Lemma 2.3], one can establish the following composition property about Gaffney estimates:

Proposition 2.2. If As and Bt satisfy Lp Gaffney estimates, then there exist C, c, η > 0 such that for all subsets
E, F ⊂ Γ and all functions f ∈ Lp,

‖AsBt(f1lF )‖Lp(E) ≤ C exp

(

−c

[

ρ(E, F )

s + t

]η)

‖f‖Lp (17)

In particular, (AsBs)s∈I satisfies Davies-Gaffney estimates. More precisely, if ηA and ηB are the constants involved in
(16) respectively for As and Bt , then the constant η that occurs in (17) can be chosen equal to min{ηA, ηB}.

Proposition 2.3. Let (Γ, µ, ρ) be a weighted graph satisfying (DV) and (UE). Then (P k−1)k∈N∗ satisfies Lp Gaffney
estimates for any p ∈ [1, +∞].

Moreover the coefficient η that appears in the Gaffney estimates is the same as the one given by (UE).

Proof: We will prove the cases p = 1 and p = +∞. The conclusion can be then deduced from these endpoint estimates
by interpolation. Moreover, since P k is uniformly bounded on L1(Γ) and L∞(Γ), we can assume without loss of
generality that ρ(E, F ) ≥ k.
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We begin with p = 1. Let E, F ⊂ Γ and f ∈ L1(Γ). Then, for all k ≥ 1

‖P k−1(f1lF )‖L1(E) =
∑

x∈E

m(x)

∣

∣

∣

∣

∣

∑

z∈F

pk−1(x, z)f(z)m(z)

∣

∣

∣

∣

∣

≤
∑

z∈F

|f(z)|m(z)
∑

x∈E

pk−1(x, z)m(x)

.
∑

z∈F

|f(z)|m(z)
∑

x∈E

m(x)

V (z, k)
exp

(

−c

(

ρ(x, z)

k

)η)

≤
∑

z∈F

|f(z)|m(z)
∑

j≥0

∑

2j ρ(z,E)≤ρ(x,z)<2j+1ρ(z,E)

m(x)

V (z, k)
exp

(

−c

(

2jρ(z, E)

k

)η)

≤
∑

z∈F

|f(z)|m(z)
∑

j≥0

V (z, 2j+1ρ(z, E))

V (z, k)
exp

(

−c

(

2jρ(z, E)

k

)η)

.
∑

z∈F

|f(z)|m(z)
∑

j≥0

(

1 +
2jρ(z, E)

k

)d

exp

(

−c

(

2jρ(z, E)

k

)η)

.
∑

z∈F

|f(z)|m(z)
∑

j≥0

exp

(

− c

2

(

2jρ(E, F )

k

)η)

. ‖f‖L1

∑

l≥1

[

exp

(

− c

2

(

ρ(E, F )

k

)η)]l

. ‖f‖L1

1

1 − exp(− c
2 )

exp

(

− c

2

(

ρ(E, F )

k

)η)

. ‖f‖L1 exp

(

− c

2

(

ρ(E, F )

k

)η)

,

where the third line holds thanks to (UE), the sixth one is a consequence of (12) and the last but one because
ρ(E, F ) ≥ k.

We turn to the case p = +∞. One has for all x ∈ E,

|P k−1(f1lF )(x)| . 1

V (x, k)

∑

z∈F

|f(z)|m(z) exp

(

−c

(

ρ(x, z)

k

)η)

≤ ‖f‖L∞

∑

j≥0

∑

2jρ(z,E)≤ρ(x,z)<2j+1ρ(z,E)

m(z)

V (x, k)
exp

(

−c

(

2jρ(x, F )

k

)η)

. ‖f‖L∞ exp

(

− c

2

(

ρ(E, F )

k

)η)

,

where the first line holds because of (UE) and the last line is obtained as in the case p = 1. �

Proposition 2.4. Let (Γ, µ, ρ) be a weighted graph satisfying (LB), (DV) and (UE). Let m ∈ N. Then the family
(km∆mP k−1)k∈N∗ satisfies Lp Gaffney estimates for any p ∈ (1, +∞). Moreover the coefficient η that appears in the
Gaffney estimates is the same as the one given by (UE).

Proof: The proof is similar to the one of Theorem 1.2 in [16]. We give it for completeness. First, with Proposition 2.2,
we only need to prove the case m = 1. Then notice that we have for any k ∈ N the following operator identity
(see (8) in [16]),

I − P =
n
∑

l=0

2−l−1(I − P 2l

)2 + 2−n−1(I − P 2n+1

).

As a consequence, one has

‖(I − P )P k−1(f1lF )‖Lp(E)

≤
n
∑

l=0

2−l−1‖(I − P 2l

)2P k−1(f1lF )‖Lp(E) + 2−n−1‖(I − P 2n+1

)P k−1(f1lF )‖Lp(E).
(18)
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When 2n ≤ k, Proposition 2.3 yields

‖(I − P 2n+1

)P k−1(f1lF )‖Lp(E) ≤ ‖P k−1(f1lF )‖Lp(E) + ‖P k−1+2n+1

(f1lF )‖Lp(E)

. exp

[

−c

(

ρ(E, F )

3k

)η]

.
(19)

Also, Lemma 2.1 in [16] (which is only a consequence of the analyticity of P in Lp) implies

n
∑

l=0

2−l−1‖(I − P 2l

)2P k−1(f1lF )‖Lp(E) ≤
∑

l=0n

2−l−1‖(I − P 2l

)2P k−1‖p→p‖f‖p

.

n
∑

l=0

2−l−1

(

2l

k

)2

‖f‖p

≤ 2n

k2
‖f‖p.

(20)

In order to end the proof, we only need to choose the right n. If k exp
(

−c
[

ρ(E,F )
5k

]η)

≥ 1, we choose n ∈ N such

that

2n ≤ k exp

(

−c

[

ρ(E, F )

5k

]η)

< 2n+1

and the Gaffney estimates of k∆P k−1 is a consequence of (18), (19) and (20). Otherwise exp
(

−c
[

ρ(E,F )
5k

]η)

≤ 1
k

and the desired result is a consequence of Proposition 2.3. �

Corollary 2.5. Let (Γ, µ, ρ) be a weighted graph satisfying (LB), (DV) and (UE). Let M ∈ N
∗. Then ([I − (I +

s∆)−1]M )k∈R∗
+

satisfies Lp Gaffney estimates for any p ∈ (1, +∞).

Moreover the coefficient η that appears in the Gaffney estimates is the half of the one given by (UE).

Proof: The proof is analogous to the one of [19, Proposition 2.6] once we have Proposition 2.3. �

Corollary 2.6. Let (Γ, µ, ρ) be a weighted graph satisfying (LB), (DV) and (UE). Let M ∈ N
∗, p ∈ (1, +∞] and ǫ > 0.

Then the (M, p, ǫ)-molecules are uniformly bounded in L1(Γ).

Proof: Let q ∈ (1, p] ∩ (1, +∞). Then ([I − (I + s∆)−1]M )s∈R∗
+

satisfies Lq Gaffney estimates. Thus, if a = [I − (I +

s∆)−1]M b is a molecule associated with the vertex x ∈ Γ and the real s > 0, Corollary 2.5 yields

‖a‖1 ≤
∑

j≥0

V (x, 2js)1− 1
q

∥

∥[I − (I + s∆)−1]Mb
∥

∥

Lq(Cj(x,s))

.
∑

i≥0

∑

j≥0

V (x, 2js)1− 1
q

∥

∥[I − (I + s∆)−1]M [b1lCi(x,s)]
∥

∥

Lq(Cj(x,s))

.
∑

|i−j|≥nρ

V (x, 2js)1− 1
q e−c2η max{i,j} ‖b‖Lq(Ci(x,s)) +

∑

|i−j|<nρ

V (x, 2js)1− 1
q ‖b‖Lq(Ci(x,s))

.
∑

|i−j|≥nρ

V (x, 2js)1− 1
q V (x, 2is)

1
q

− 1
p e−c2ηj ‖b‖Lp(Ci(x,s))

+
∑

|i−j|<nρ

V (x, 2js)1− 1
q V (x, 2is)

1
q

− 1
p ‖b‖Lp(Ci(x,s))

.
∑

|i−j|≥nρ

(

V (x, 2js)

V (x, 2is)

)1− 1
q

e−c2ηj

2−iǫ +
∑

|i−j|<nρ

(

V (x, 2js)

V (x, 2is)

)1− 1
q

2−iǫ

.
∑

|i−j|≥nρ

2jd(1− 1
q

)e−c2ηj

2−iǫ +
∑

|i−j|<nρ

2−iǫ

. 1,

where nρ denote 2 + ln2(Cρ), so that ρ(Cj(x, s), Ci(x, s)) & 2max{i,j}s if j ≥ i + nρ. �
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2.2 Gaffney estimates for the gradient

We establish in this paragraph some additional Gaffney estimates.

Proposition 2.7. Let (Γ, µ, ρ) satisfying (LB), (DV) and (UE). Let p ∈ (1, 2). There exist C, c > 0 such that for all
sets E, F ⊂ Γ, there holds

‖
√

k∇P k−1[f1lF ]‖Lp(E) ≤ C exp

[

−c

(

ρ(E, F )

k

)η]

‖f‖Lp (21)

for any function f ∈ Lp(Γ) and any k ∈ N
∗.

Moreover, the value of η occurring in (21) is the same as the one in (UE).

Proof: First, assume that f is nonnegative and in L1(Γ) ∩ L∞(Γ). We define for all k ∈ N
∗ and all p ∈ (1, 2) a

“pseudo-gradient” by
Np(P k−1f) = −(P k−1f)2−p[∂k + ∆][(P k−1f)p]

where for any function uk defined on Γ × N
∗, ∂kuk = uk+1 − uk.

Moreover we define for any function f defined on Γ the operator A defined by

Af(x) =
∑

y∼x

f(y).

Propositions 4.6 and 4.7 of [20] state the following results.

(i) For all x ∈ Γ, Np(P k−1f)(x) ≥ 0. That is, for all x ∈ Γ,

Jkf(x) := −[∂k + ∆][(P k−1f)p](x) ≥ 0. (22)

(ii) For all p ∈ (1, 2], there exists C = Cp such that for all k ∈ N
∗ and all nonnegative function f ∈ L∞(Γ), there

holds
∣

∣∇P k−1f(x)
∣

∣

2 ≤ C
[

ANp(P k−1f)
]

(x). (23)

As a consequence of (ii), if 0 ≤ f ∈ L∞ and E, F ⊂ Γ, one has

∥

∥∇P k−1f
∥

∥

p

Lp(E)
.
∥

∥ANp(P k−1f)
∥

∥

p

2

L
p
2 (E)

≤
∑

x∈E

(

∑

y∼x

[

Np(P k−1f)(y)
]

)

p

2

m(x)

.
∑

y∈E+1

[

Np(P k−1f)(y)
]

p

2 m(y)

. ‖[Np(P k−1f)]
1
2 ‖p

Lp(E+1),

where
E+1 = {y ∈ Γ, ∃x ∈ E : x ∼ y} ⊂ {y ∈ Γ, ρ(y, E) ≤ 1}.

It remains to estimate ‖
(

Np(P k−1f)
)

1
2 ‖Lp(E+1). Without loss of generality, we can assume that ρ(E, F ) ≥ 2Cρk ≥

2Cρ (otherwise, [20, Corollary 4.3] or [17, Corollary 1.2] would provide the conclusion of Proposition 2.7). Under

this assumption, one has ρ(E+1, F ) ≥ ρ(E,F )
Cρ

−1 ≥ ρ(E,F )
2Cρ

& ρ(E, F ). The proof of the case where f is nonnegative

will be thus complete if we prove that for all p ∈ (1, 2) and for all E, F ⊂ Γ

‖
(

Np(P k−1[f1lF ])
)

1
2 ‖Lp(E) ≤ C√

k
exp

[

−c

(

ρ(E, F )

k

)η]

‖f‖Lp ∀f ∈ Lp, ∀k ∈ N
∗ (24)

with some constant C, c > 0 independent of E and F .
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In order to do this, we follow the idea of the proof of [20, Corollary 4.3]. Let uk = P k−1[f1lF ], then

‖N
1
2

p (uk)‖p
Lp(E) =

∑

x∈E

m(x)Np/2
p (uk)(x)

=
∑

x∈E

m(x)u
p(2−p)

2

k Jkf(x)p/2

≤
[

∑

x∈E

m(x)uk(x)p

]

2−p

2
[

∑

x∈E

Jkf(x)m(x)

]

p

2

≤ ‖uk‖p(1− p
2 )

Lp(E)

[

∑

x∈Γ

Jkf(x)m(x)

]

p

2

(25)

where the last but one step follows from Hölder inequality and the last one from (22) stated above. Yet,

∑

x∈Γ

Jkf(x)m(x) = −
∑

x∈Γ

∂k(up
k)(x)m(x)

≤ −p
∑

x∈Γ

m(x)up−1
k (x)∂kuk(x)

≤ p‖uk‖p/p′

p ‖∂kuk‖p

where the first line holds because
∑

x∈Γ ∆g(x)m(x) = 0 if g ∈ L1, the second line follows from Young inequality, and
the third one from Hölder inequality again (with 1

p + 1
p′ = 1). Here ‖uk‖p ≤ ‖f‖p while ‖∂kuk‖p = ‖∆uk‖p . 1

k ‖f‖p

by the analyticity of P on Lp. Thus
∑

x∈Γ

Jkf(x)m(x) .
1

k
‖f‖p

p.

Substitution of the last estimate in (25) gives

‖N
1
2

p (uk)‖Lp(E) .
1√
k

‖f‖
p

2
p ‖uk‖1− p

2

Lp(E),

which ends the proof of (24) if we replace ‖uk‖Lp(E) by the upper estimate given by Proposition 2.3.

The result for the case where f ∈ L∞(Γ) ∩ L1(Γ) is deduced by writing f = f+ − f−, with f+ = max{0, f} and
f− = max{0, −f}. Then

‖∇P k−1[f1lF ]‖Lp(E) ≤ ‖∇P k−1[f+1lF ]‖Lp(E) + ‖∇P k−1[f−1lF ]‖Lp(E)

.
1√
k

exp

[

−c

(

ρ(E, F )

k

)η]

[‖f+‖p + ‖f−‖p]

.
1√
k

exp

[

−c

(

ρ(E, F )

k

)η]

‖f‖p.

The result for the general case f ∈ Lp(Γ) is then a consequence of the density of L∞(Γ) ∩ L1(Γ) in Lp(Γ). �

Corollary 2.8. Let (Γ, µ, ρ) be a weighted graph satisfying (LB), (DV) and (UE). Let M ∈ N
∗.

Then (kM− 1
2 d∆M−1(I + k∆)−M+ 1

2 )k∈N∗ satisfies Lp Gaffney estimates for any p ∈ (1, 2).
Moreover the coefficient η occurring in the Gaffney estimates is the half of the one given by (UE).

Proof: The proof is analogous to the one of [19, Corolloary 2.11], using Proposition 2.7. �

Corollary 2.9. Let (Γ, µ, ρ) be a weighted graph satisfying (LB), (DV) and (UE). Let M ∈ N
∗, p ∈ (1, +∞] and ǫ > 0.

Then the (M − 1
2 , p, ǫ)-molecules are uniformly bounded in L1(TΓ).

Proof: The proof is analogous to the one of Corollary 2.6, using Corollary 2.8. �
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2.3 L
q-Lp Gaffney estimates

Definition 2.10. Let (X, m) a measured space equipped with a quasidistance ρ and α > 0. Let E, F ⊂ X , x0 ∈ X and
k ∈ N.

We say that (E, F, x0) is α-Gaffney suited if it satisfies one of the following conditions

(i) sup {ρ(x0, y), y ∈ F} < αρ(E, F ),

(ii) sup {ρ(x0, x), x ∈ E} < αρ(E, F ).

Moreover, we say that (E, x0, k) is α-Gaffney suited if it satisfies

sup {d(x0, x), x ∈ E} < αk.

At last, we say that (E, F, x0, k) is α-Gaffney suited if either (E, F, x0) or (E, x0, k) or (F, x0, k) is α-Gaffney suited.

Proposition 2.11. Let (Γ, µ, ρ) satisfying (LB), (DV) and (UE). Then for all a ∈ N, there exists Ca, ca > 0 such that

|Dapk−1(x, y)| . Ca

kaV (x, k)
exp

[

−ca

(

ρ(x, y)

k

)η]

∀x, y ∈ Γ, ∀k ∈ N
∗ (26)

where D is the operator acting on sequences as Dak = ak − ak+1.
Moreover, the value of η occurring in (26) is the same as the one in (UE).

Proof: The proof is similar to [20, Theorem A.1] (see also [16, Theorem 1.1]). �

Proposition 2.12. Let (Γ, µ, ρ) satisfying (LB), (DV) and (UE). Let j ∈ N, α > 0, p, q ∈ [1, +∞] such that q ≤ p.
There exists cj and Cj,α such that, for all sets E, F ⊂ Γ, all x0 ∈ Γ, all k ∈ N such that (E, F, x0, k) is α-Gaffney

suited, there holds

‖(k∆)aP k−1[f1lF ]‖Lp(E) ≤ Cj,αV (x0, k)
1
p

− 1
q exp

[

−cj

(

ρ(E, F )

k

)η]

‖f‖Lq (27)

for any function f ∈ Lq(X).
Moreover, the value of η occurring in (27) is the same as the one in (UE).

Proof: When E, F and x0 satisfy (i) in Definition 2.10 and when q = 1, the proof is inspired by the one of [20, Theorem
A.3].

We need the following result. There exist C′
j , c′

j > 0 such that

Ic′
j

:=
∑

y∈Γ

|(kD)jpk−1(x, y)|pe
c′

j

(

ρ(x,y)
k

)η

m(y) ≤ C′
jV (x, k)1−p. (28)

Indeed, the estimate (26) yields, with c′
j =

cj

2 ,

Ic′
j
.
∑

y∈Γ

1

V (x, k)p
e

−
cj

2

(

ρ(x,y)
k

)η

m(y)

.
1

V (x, k)p

+∞
∑

j=0

∑

y∈Cj(x,k)

e−
cj

2 2jη

≤
+∞
∑

j=0

V (x, 2j+1k

V (x, k)p
e−

cj

2 2jη

.
1

V (x, k)p−1

+∞
∑

j=0

2jde−
cj

2 2jη

.
1

V (x, k)p−1
.
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We can assume without loss of generality that ‖f‖1 = 1. Then, Jensen inequality implies

‖(k∆)aP k−1(f1lF )‖p
Lp(E) =

∑

x∈E

m(x)

(

∑

z∈F

(kD)apk−1(x, z)f(z)m(z)

)p

≤
∑

x∈E

m(x)
∑

z∈F

|(kD)apk−1(x, z)|p|f(z)|m(z)

≤ e
−c′

a

(

ρ(E,F )
k

)η
∑

z∈F

|f(z)|m(z)
∑

x∈E

m(x)|(kD)apk−1(x, z)|pe
c′

a

(

ρ(x,z)
k

)η

. exp

(

−c′
a

(

ρ(E, F )

k

)η)
∑

z∈F

|f(z)|m(z)
1

V (z, k)p−1

.
1

V (x0, k)p−1
exp

(

−c

(

ρ(E, F )

k

)η)

where, for the 4th line, we use the estimate (28). The doubling property (12) shows

V (x0, k)

V (z, k)
≤ V (z, Cρ[k + αρ(E, F )])

V (z, k)
.

(

1 +
αρ(E, F )

k

)d

. (1 + α)d exp

(

c

2

(

ρ(E, F )

k

)η)

, (29)

then the last line in the previous calculus holds for some c < c′
a.

Let us now prove the result when E, F and x0 still satisfy (i) in Definition 2.10 with q ∈ (1, p]. Without loss of
generality, we can assume that f is supported in F and in this case, one has

‖(k∆)aP k−1[f1lF ]‖Lp(E) .
1

V (x0, k)1− 1
p

exp

(

−c

(

ρ(E, F )

k

)η)

‖f‖L1(F )

.

(

m(F )

V (x0, k)

)1− 1
q 1

V (x0, k)
1
q

− 1
p

exp

(

−c

(

ρ(E, F )

k

)η)

‖f‖Lq(F ).

Then it remains to check that (12) yields

m(F )

V (x0, k)
≤ V (x0, αρ(E, F ))

V (x0, k)
. (1 + α)d

(

1 +
ρ(E, F )

k

)d

. (1 + α)d exp

(

c

2

(

ρ(E, F )

k

)η)

. (30)

The proof when (F, x0, k) is α-Gaffney suited is the same as the case where (E, F, x0) satisfies (i) in Definition
2.10, once we replaced (30) and (29) by

m(F )

V (x0, k)
. αd and

V (x0, k)

V (z, k)
. αd ∀z ∈ F,

which are both consequences of (12).

When (E, F, x0) satisfies (ii) in Definition 2.10 or when (E, x0, k) is α-Gaffney suited, the proof of Proposition
2.12 can be deduced from the previous cases. A way to do this is to adapt the proof of [20, Corollary A.4]. �

2.4 Off diagonal decay of Lusin functionals

Proposition 2.13. Let (Γ, µ, ρ) satisfying (LB), (DV) and (UE), and α, β, M > 0. Then there exists C, c > 0 such
that, for all x0 ∈ Γ and all sets E, F ⊂ Γ such that (E, F, x0) is α-Gaffney suited, there holds for all s > 0 and all
f ∈ L1(Γ) ∩ L2(Γ),

‖Lβ(I − (I + s∆)−1)M [f1lF ]‖L2(E) ≤ C

V (x0, ρ(E, F ))
1
2

(

s

ρ(E, F )

)M

‖f‖L1.

The proof of Proposition 2.13 is similar to the one of [20, Lemma 3.5] (based itself on Lemma 3.1 in [4]). We need
the following result, whose proof is analogous to the ones of [20, Lemma C.1 and Proposition C.2].
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Lemma 2.14. Let M > 0 and α ∈ [0, 1]. Define A = {(Ad,u
k )k∈N∗ , d ∈ R+, u ∈ N}, where, for all l ≥ 1,

Ad,u
k = kα

exp
(

−
(

d
k+u

)η)

(k + u)1+M
.

Then there exists C = CM,α such that

(

∑

k∈N∗

1

k
a2

k

)
1
2

≤ C
∑

k∈N∗

1

k
ak ∀(ak)k ∈ A.

Proof: (Proposition 2.13)

Without loss of generality, we can assume that f is supported in F . We also assume that x0, E and F satisfy (i)
of Definition 2.10 (if they satisfy (ii) instead of (i), the proof is similar).

First, if
∑

m b̃mzm is the Taylor series of the function (1 − z)−M , one has the identity

(I − (I + s∆)−1)M f = (s∆)M (I + s∆)−M f

=

(

s∆

1 + s

)M (

I − s

1 + s
P

)−M

f

=

(

s∆

1 + s

)M +∞
∑

m=0

b̃m

(

s

1 + s

)m

P mf

= (s∆)M
∞
∑

m=0

bmP mf,

(31)

where bm := b̃m
sm

(1+s)m+M and the series converges in L2(Γ). Notice that

∞
∑

m=0

bm = 1. (32)

Moreover, let κ be the only integer such that κ < β + M ≤ κ + 1. Since β > 0 and both κ and M are integers,
notice that

M ≤ κ (33)

If
∑

l alz
l is the Taylor series of the function (1 − z)β+M−κ−1, then one has

∆β+Mf =
∑

l≥0

alP
l∆κ+1f (34)

where the sum converges in L2(Γ) (see [19, Proposition 2.1] for the proof of the convergence).

The Minkowski inequality together with the identities (31) and (34) yields

‖Lβ(I − (I + s∆)−1)M f‖L2(E)

=





∑

k≥1

k2β−1
∑

x∈E

m(x)

V (x, k)

∑

y∈B(x,k)

m(y)|∆βP k−1(I − (I + s∆)−1)M f(y)|2




1
2

≤





∑

k≥1

k2β−1
∑

y∈Dk(E)

m(y)|∆βP k−1(I − (I + s∆)−1)M f(y)|2
∑

x∈B(y,k)

m(x)

V (x, k)





1
2

.





∑

k≥1

k2β−1‖∆βP k−1(I − (I + s∆)−1)M f‖2
L2(Dk(E))





1
2

≤ sM
∑

l,m≥0

albm





∑

k≥1

k2β−1‖∆1+κP k+l+m−1f‖2
L2(Dk(E))





1
2

:= sM
∑

l,m≥0

albm





∑

k≥1

1

k
I(k, l, m)2





1
2

,
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where Dk(E) denotes the set {y ∈ Γ, ρ(y, E) < k}
We want to get the following estimate estimate: there exists c > 0 such that

I(k, l, m) . J(k, l, m) := kM+β−κ 1

V (x0, ρ(E, F ))

exp
[

−c
(

ρ(E,F )
k+l+m

)η]

(k + l + m)1+M
‖f‖L1. (35)

We will first establish (35) when k ≤ ρ(E,F )
2Cρ

. In this case, notice that

ρ(Dk(E), F ) ≥ ρ(E, F )

Cρ
− k ≥ ρ(E, F )

2Cρ

and thus (Dk(E), F, x0) are 2Cρα-Gaffney suited. Proposition 2.12 implies then

I(k, l, m) .
kβ

(k + l + m)κ+1

1

V (x0, k + l + m)
1
2

exp

(

−c

(

ρ(E, F )

2Cρ(k + l + m)

)η)

‖f‖L1

.
kβ+M−κ

(k + l + m)M+1

1

V (x0, ρ(E, F ))
1
2

exp

(

− c

2

(

ρ(E, F )

2Cρ(k + l + m)

)η)

‖f‖L1

where the last line holds thanks to estimate (30) and (33).

Otherwise, k > ρ(E,F )
2Cρ

and then (F, x0, k + l + m) is 2Cρα-Gaffney suited and Proposition 2.12 yields

I(k, l, m) .
kβ

(k + l + m)κ+1

1

V (x0, k + l + m)
1
2

‖f‖L1

.
kβ+M−κ

(k + l + m)M+1

1

V (x0, ρ(E, F ))
1
2

‖f‖L1

.
kβ+M−κ

(k + l + m)M+1

1

V (x0, ρ(E, F ))
1
2

exp

(

−
(

ρ(E, F )

k + l + m

)η)

‖f‖L1

(36)

where the second line holds thanks to (DV) and (33). This ends the proof of (35).

Recall that M + β − κ ∈ (0, 1]. Then Lemma 2.14 implies

‖Lβ(I − (I + s∆)−1)M f‖L2(E) . sM
∑

k,l,m≥0

1

k
albmJ(k, l, m)

= sM ‖f‖L1

V (x0, ρ(E, F ))
1
2

∑

m≥0

bm

∑

n≥1

exp
[

−c
(

ρ(E,F )
n+m

)η]

(n + m)1+M

n−1
∑

l=0

al(n − l)M+β−κ−1.

(37)

We claim
n−1
∑

l=0

al(n − l)M+β−κ−1 . 1.

Indeed, when M + β = κ + 1, one has al = δ0(l) and the estimate is true. Otherwise, [20, Lemma B.1] yields that
al . (l + 1)κ−M−β and therefore

n−1
∑

l=0

al(n − l)M+β−κ−1 .

∫ 1

0

tκ−M−β(1 − t)M+β−κ−1dt < +∞.

Besides,

∑

n≥1

exp
[

−c
(

ρ(E,F )
n+m

)η]

(n + m)1+M
= ρ(E, F )−M−1

∑

n≥1

(

ρ(E, F )

n + m

)1+M

exp

[

−c

(

ρ(E, F )

n + m

)η]

. ρ(E, F )−M−1





ρ(E,F )
∑

n=1

1 +
∑

n>ρ(E,F )

(

ρ(E, F )

m + n

)M+1




. ρ(E, F )−M .
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Consequently, the estimate (37) yields

‖Lβ(I − (I + s∆)−1)M f‖L2(E) .
1

V (x0, ρ(E, F ))
1
2

(

s

ρ(E, F )

)M

‖f‖L1

∑

m≥0

bm

=
1

V (x0, ρ(E, F ))
1
2

(

s

ρ(E, F )

)M

‖f‖L1

where the last line is due to (32). �

Let us define a discrete version of the Littlewood-Paley functionals, that can be found in [20]. For any β > 0, the
functional gβ is defined as

gβf(x) =

(

∞
∑

k=1

k2β−1|∆βP k−1f(x)|2
)2

.

Proposition 2.15. Let (Γ, µ, ρ) satisfying (LB), (DV) and (UE), and α, β > 0. Then there exists C > 0 such that,
for all x0 ∈ Γ and all sets E, F ⊂ Γ such that (E, F, x0) is α-Gaffney suited, there holds for all k ∈ N

∗ and all
f ∈ L1(Γ) ∩ L2(Γ),

‖Lβ(I − P k)[f1lF ]‖L2(E) ≤ C

V (x0, ρ(E, F ))
1
2

k

ρ(E, F )
‖f‖L1

and

‖gβ(I − P k)[f1lF ]‖L2(E) ≤ C

V (x0, ρ(E, F ))
1
2

k

ρ(E, F )
‖f‖L1

Proposition 2.16. Let (Γ, µ, ρ) satisfying (LB), (DV) and (UE), M > 0, β ∈ (0, 1] and α > 0. Then there exists
C > 0 such that, for all x0 ∈ Γ and all sets E, F ⊂ Γ such that (E, F, x0) is α-Gaffney suited, there holds for all k ∈ N

∗

and all f ∈ L1(Γ) ∩ L2(Γ),

‖gβ(k∆)M [f1lF ]‖L2(E) ≤ C
C

V (x0, ρ(E, F ))
1
2

(

k

ρ(E, F )

)M

‖f‖L1

Proof: The proofs of these two propositions are similar to the one of Proposition 2.13 and is left to the reader. See also
[20, Lemma 3.5] and [19, Lemmata 2.14 and 2.18]. �

2.5 Application to interpolation results

Definition 2.17. A function a ∈ L2(Γ) is called an atom if there exist x ∈ Γ and k ∈ N
∗ and a function b ∈ L2(Γ)

supported in B(x, k) such that

(i) a = (I − P k)b,

(ii) ‖b‖L2 = ‖b‖L2(B(x,k)) ≤ V (x, k)− 1
2 .

We say that f belongs to E1
0(Γ) if f admits an atomic representation, that is if there exist a finite sequence (λi)i=0..N

and a finite sequence (ai)i=0..N of atoms such that

f =

N
∑

i=0

λiai. (38)

The space is outfitted with the norm

‖f‖E1
0

= inf







∞
∑

j=0

|λj |,
∞
∑

j=0

λjaj , is a atomic representation of f







.

Theorem 2.18. Let (Γ, µ, ρ) satisfying (LB), (DV) and (UE). If T is an L2(Γ) bounded linear operator and if there
exists C > 0 such that for all atoms

‖T a‖L1 ≤ C,

then for all p ∈ (1, 2], there exists a constant C = C(p) > 0 such that

‖T f‖p ≤ Cp‖f‖p ∀f ∈ Lp ∩ L2.
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The next result is an immediate corollary of Theorem 2.18.

Corollary 2.19. Let (Γ, µ, ρ) satisfying (LB), (DV) and (UE). Let (H1
0 (Γ), ‖.‖H1

0
) a normed vector space that satisfies

the continuous embedding
E1

0(Γ) ⊂ H1
0 (Γ) ⊂ L1(Γ).

If T is an L2(Γ)-bounded linear operator that verifies

‖T f‖L1 . ‖f‖H1
0

∀f ∈ H1
0 (Γ) ∩ L2(Γ),

then for all p ∈ (1, 2], there exists a constant C = C(p) > 0 such that

‖T f‖p ≤ Cp‖f‖p ∀f ∈ Lp ∩ L2.

The constant Cp can be chosen equal to ‖T ‖θ
L2→L2‖T ‖1−θ

H1
0→L1 , where θ is defined with

1

p
=

θ

2
+

1 − θ

1
.

Remark 2.20. The result holds even if the normed vector space H1
0 is not a Banach space.

This corollary will be used for the Hardy space H1
0 = H1(Γ). However, since we did not establish Theorem 1.26 yet,

we cannot speak of H1(Γ).

Proof: (Theorem 2.18)

The Vitali lemma, the weak L1-boundedness and the Lp-boundedness (for p > 1) of the Hardy-Littlewood maximal
function, or the Whitney decomposition are classical results from harmonic analysis and are proven in particular
when the metric is a quasidistance. These tools are the only ones needed to prove Theorem 5.3 in [7], which thus
remains true in our context. That is, Theorem 2.18 is a straightforward consequence of Theorem 5.3 in [7] if we
prove that for any x ∈ Γ, any k ∈ N

∗ and any h ∈ L2, we have

sup
y∈B(x,k)

|P kh(y)| . CM inf
z∈B(x,k)

[

M(|h|2)(z)
]

1
2 . (39)

With Proposition 2.12, since (B(x, k), x, k) is 1-Gaffney suited, there holds for any z ∈ C0(x, k) ⊃ B(x, k),

sup
y∈B(x,k)

|P kh(y)| ≤
∑

j≥0

‖P k[h1lCj(x,k)]‖L∞(B(x,k))

.
∑

j≥0

1

V (x, 2jk)
1
2

e−c2jη ‖h‖L2(Cj(x,k))

.
∑

j≥0

1

V (x, Cρ2j+1k)
1
2

e−c2jη ‖h‖L2(B(x,Cρ2j+1k))

.
∑

j≥0

e−c2jη

[M(|h|2)(z)]
1
2

. [M(|h|2)(z)]
1
2

where the third line is due to (DV). Hence, (39) holds true. �

Let us recall a result on Lp boundedness of Calderòn-Zygmund operators (originally due to Blunck and Kunstmann,
see Theorem 1.1 in [8], see also Theorem 1.1 in [1]).

Definition 2.21. A function f on Γ is in L1,∞(Γ) if

‖f‖L1,∞ := sup
λ>0

λm({x ∈ Γ, |f(x)| > λ}) < +∞.

Theorem 2.22. For any ball B, let AB be a linear operator in L2(Γ). Let T be a L2-bounded sublinear operator such
that for all balls B = B(x, k) and all functions f supported in B

1

V (x, 2jk)
1
2

‖T (I − AB)f‖L2(Cj(x,k)) ≤ αj(B)
1

V (x, k)
‖f‖L1(B)
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for all j ≥ 1 and
1

V (x, 2jk)
1
2

‖ABf‖L2(Cj(x,k)) ≤ αj(B)
1

V (x, k)
‖f‖L1(B)

for all j ≥ 0.
If the coefficients αj(B) satisfy

sup
B=B(x,k) ball

∑

j≥0

V (x, 2j+1k)

V (x, k)
αj(B) < +∞

then there exists a constant C such that

‖T f‖L1,∞ ≤ C‖f‖L1 ∀f ∈ L2 ∩ L1.

So by interpolation, for all p ∈ (1, 2], there exists a constant C = Cp such that

‖T f‖Lp ≤ Cp‖f‖Lp ∀f ∈ L2 ∩ Lp.

As a consequence, we have the following result

Theorem 2.23. Let (Γ, µ, ρ) be a weighted graph satisfying (LB), (DV) and (UE). Then for all β > 0, the functional
Lβ is Lp bounded for any p ∈ (1, 2] and also bounded from L1,∞ to L1.

Moreover, if gβ is the discrete Littlewood-Paley quadratic functional defined for any β > 0 as

gβf(x) =

(

∞
∑

k=1

k2β−1|∆P k−1f(x)|2
)2

,

then gβ is also Lp bounded for any p ∈ (1, 2] and also bounded from L1,∞ to L1.

Proof: We set AB = P kB . It is then a straightforward consequence of Theorem 2.22, Proposition 2.15 and Proposition
2.12. �

3 Tent spaces

In all this section, (Γ, µ, ρ) is a weighted graph satisfying (DV). We will prove that in this context, the atomic
decomposition in tent spaces still holds (see [11] and [27] for similar results).

Definition 3.1. We introduce the following sets in Γ × N
∗. If x ∈ Γ,

γ(x) = {(y, k) ∈ Γ × N
∗, ρ(x, y) < k},

if F ⊂ Γ,

R(F ) =
⋃

x∈F

γ(x) = {(y, k) ∈ Γ × N
∗, ρ(y, E) < k}

R(F ) = {(y, k) ∈ Γ × N
∗, ρ(y, E) <

k

2Cρ
},

and if O ⊂ Γ,
T (O) = {(y, k) ∈ Γ × N

∗, ρ(y, Oc) ≥ k}

T(O) = {(y, k) ∈ Γ × N
∗, ρ(y, Oc) ≥ k

2Cρ
}.

We define the functionals A and C mapping functions on Γ × N
∗ to functions on Γ by

Af(x) =





∑

(y,k)∈γ(x)

m(y)

kV (x, k)
|f(y, k)|2





1
2

and

Cf(x) = sup
x∈B





1

V (B)

∑

(y,k)∈T (B)

m(y)

k
|f(y, k)|2





1
2

.

For any p ∈ [1, +∞), T p(Γ) denotes the space of functions f on Γ ×N
∗ such that Af ∈ Lp(Γ). Moreover, T ∞(Γ) is the

space of functions f on Γ×N
∗ such that Cf ∈ L∞(Γ). The tent space T p(Γ) is equipped with the norm ‖f‖T p = ‖Af‖Lp

(or ‖f‖T p = ‖Cf‖L∞ when p = ∞).
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Remark 3.2. One has the following equality of sets

R(Ec) = T (O)c and R(Oc) = T (O)c .

Moreover, T (O) ⊂ T(O) and R(F ) ⊃ R(F ).

Definition 3.3. A function a defined on Γ × N
∗ is a T 1-atom if there exists a ball B such that

(i) a is supported in T (B),

(ii)
∑

(y,k)∈T (B)

m(y)

k
|a(y, k)|2 ≤ 1

V (B)
.

Lemma 3.4. There exists a constant C > 0 such that, for every T 1-atom a, one has

‖a‖T 1 ≤ C

Proof: Indeed, if a is a T 1-atom, there holds

‖a‖T 1 =
∑

x∈Γ

m(x)





∑

(y,k)∈γ(x)

m(y)

kV (x, k)
|a(y, k)|2





1
2

=
∑

x∈B

m(x)





∑

(y,k)∈γ(x)

m(y)

kV (x, k)
|a(y, k)|2





1
2

≤



V (B)
∑

x∈B

m(x)
∑

(y,k)∈γ(x)

m(y)

kV (x, k)
|a(y, k)|2





1
2

=



V (B)
∑

(y,k)∈T (B)

m(y)

k
|a(y, k)|2

∑

x∈B(y,k)

m(x)

V (x, k)





1
2

.



V (B)
∑

(y,k)∈T (B)

m(y)

k
|a(y, k)|2





1
2

. 1,

where the last but one line holds because the doubling property (DV) implies
∑

x∈B(y,k)

m(x)

V (x, k)
. 1. �

Definition 3.5. Let F ⊂ Γ and δ ∈ (0, 1). We say that a point x0 ∈ Γ has global δ-density with respect to F if, for all
k ∈ N

∗,
m(F ∩ B(x0, k))

V (x0, k)
≥ δ.

We define F ∗ as the set made of the points in Γ with δ-density with respect to F . If O = F c, then we define O∗ as

O∗ := (F ∗)c.

Proposition 3.6. Let δ ∈ (0, 1). One has

(i) F ∗ ⊂ F ,

(ii) there exists cδ > 0 such that any set O = F c with finite measure verify m(O∗) ≤ cδm(O).

Proof: The point (i) is obvious. For (ii), notice that O∗ ⊂ {x ∈ Γ, M(1lO) > 1 − δ}, where M denote the Hardy-
Littlewood maximal function. We conclude then by applying the weak L1-boundedness of the maximal function.
�
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Lemma 3.7. There exists δ ∈ (0, 1) (sufficiently close to 1) so that whenever F ⊂ Γ and φ is a non-negative function
on Γ × N

∗, there holds
∑

(y,k)∈R(F ∗)

φ(y, k)V (y, k)m(y) .
∑

x∈F

m(x)
∑

(y,k)∈γ(x)

φ(y, k)m(y).

Proof: We only need to check that for any (y, k) ∈ R(F ∗), one has

m{x ∈ F, x ∈ B(y, k)} & V (y, k). (40)

Indeed, once (40) is established, Fubini theorem yields

∑

(y,k)∈R(F ∗)

φ(y, k)V (y, k)m(y) .
∑

(y,k)∈R(F ∗)

φ(y, k)m(y)
∑

x∈Γ

m(x)1lF ∩B(y,k)(x)

=
∑

x∈F

m(x)
∑

(y,k)∈R(F ∗)

φ(y, k)m(y)1lB(x,k)(y)

≤
∑

x∈F

m(x)
∑

(y,k)∈γ(x)

φ(y, k)m(y).

We turn now to the proof of (40). Since (y, k) ∈ R(F ∗), there exists x0 ∈ F ∗ such that y ∈ B
(

x0, k
2Cρ

)

. Notice

then that B
(

x0, k
2Cρ

)

⊂ B(y, k). Consequently, assumption (DV) implies

m(B(x0, k) ∩ B(y, k)) ≥ V

(

x0,
k

2Cρ

)

≥ cV (x0, k)

for some constant c ∈ (0, 1] depending only of Cdv and Cρ. Thus

m(B(x0, k) ∩ B(y, k)c) ≤ (1 − c)V (x0, k)

Therefore,

m(F ∩ B(y, k)) ≥ m(F ∩ B(x0, k)) − m(B(x0, k) ∩ B(y, k)c)

≥ (δ + c − 1)V (x0, k)

& (δ + c − 1)V (y, k)

where the last line holds because the doubling property (DV) implies V (y, k) ≤ V (x0, 2Cρk) . V (x0, k) . As a
consequence, (40) holds and the lemma is proven if we choose δ ∈ (1 − c, 1). �

Theorem 3.8. (i) The following inequality holds, whenever f ∈ T 1(Γ) and g ∈ T ∞(Γ):

∑

(y,k)∈Γ×N∗

m(y)

k
|f(y, k)g(y, k)| .

∑

y∈Γ

Af(x)Cf(x).

(ii) The pairing

〈f, g〉 =
∑

(y,k)∈Γ×N∗

m(y)

k
f(y, k)g(y, k)

realizes T ∞(Γ) as equivalent to the Banach space dual of T 1(Γ).

(iii) Every element f ∈ T 1(Γ) can be written as

f =
∑

λjaj in T 1(Γ),

where aj are T 1-atoms, λj ∈ R,
∑ |λj | . ‖f‖T 1 .

(iv) Moreover, if f ∈ T 1(Γ) ∩ T 2(Γ), the atomic decomposition can be chosen to be convergent in T 2(Γ).

We use the following Whitney decomposition.
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Lemma 3.9. Let (Γ, µ) a weighted graph equipped with a quasidistance ρ satisfying (DV).
There exists C > 0 such that, for all subset E ⊂ Γ with finite measure, there exists a finite sequence of sets (Qi)i∈[[1,n]]

such that

(i) E =

n
⋃

i=1

Qi,

(ii) Qi ∩ Qj = ∅ if i 6= j,

(iii)
1

C
ρ(Qi, Ec) ≤ ri := max{ρ(x, y), x, y ∈ Qi} + 1 ≤ Cρ(Qi, Ec).

Proof: (Lemma 3.9)

Let M (depending only of Cρ) be the constant replacing 5 in the version of the lemma ‘5r’ adapted to quasidistances.

Define for all x ∈ E, Bx = B(x, ρ(x,Ec)
M ). We use then Lemma ‘Mr’ and we end the proof as in [10].

Notice that in the particular case of graphs, under assumption (DV), m(E) < +∞ is equivalent to E finite. Thus
the sequence (Qj)j is necessary finite. �

Proof: (Theorem 3.8)

(i) Let us define the truncated cone γh(x) by

γh(x) = {(y, k) ∈ Γ × N
∗, ρ(x, y) < k < h}

and define

A(f |h)(x) =





∑

(y,k)∈γh(x)

m(y)

kV (x, k)
|f(y, k)|2





1
2

.

Check that A(f |h)(x) is nondecreasing in h, and that A(f |∞)(x) = Af(x). For every g, we define the
stopping time h(x) as

h(x) = sup{h ∈ N
∗, A(g|h)(x) ≤ MCg(x)}

where M is a large constant that will be fixed later.

Define for x ∈ Γ and k ∈ N
∗ the sets B2(x, k) and B3(x, k) by

B2(x, k) := {a ∈ Γ, ∃y ∈ Γ : max{ρ(x, y), ρ(y, a)} < k}
and

B3(x, k) := {a ∈ Γ, ∃y, z ∈ Γ : max{ρ(x, y), ρ(y, z), ρ(z, a)} < k}.

Let us prove first that for any x ∈ Γ and k ∈ N
∗, one has

⋃

y∈B(x,k)

γk(y) ⊂ T (B3(x, k)). (41)

Indeed, if (a, l) ∈
⋃

y∈B(x,k)

γk(y), then there exists y ∈ B(x, k) such that ρ(a, y) < l < k. As a conse-

quence max{ρ(x, y), ρ(y, a)} < k and a ∈ B2(x, k). From the definition of B3(x, k), one get easily that
ρ(B2(x, k), B3(x, k)c) ≥ k. Hence ρ(a, B3(x, k)c) ≥ k > l, which yields that (a, l) ∈ T (B3(x, k)).

Let us prove now the following result: whenever x ∈ Γ and k ∈ N
∗, there holds

m({y ∈ B(x, k), h(y) ≥ k}) ≥ 1

2
V (x, k). (42)

Check that B(x, k) ⊂ B3(x, k) ⊂ B(x, αk) where α = Cρ(1 + 2Cρ) ≥ 1. Together with (41), it yields

1

V (x, k)

∑

y∈B(x,k)

[A(g|k)]2(y)m(y) =
1

V (x, k)

∑

y∈B(x,k)

m(y)
∑

(z,l)∈γk(y)

m(z)

lV (y, l)
|g(z, l)|2

≤ 1

V (x, k)

∑

(z,l)∈T (B(x,αk))

m(z)

l
|g(z, l)|2

∑

y∈B(z,l)

m(y)

V (y, l)

.
1

V (x, αk)

∑

(z,l)∈T (B(x,αk))

m(z)

l
|g(z, l)|2

≤ inf
y∈B(x,k)

Cg(y)2
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where the third line is a consequence of the doubling property (DV) and the fact that

∑

y∈B(z,l)

m(y)

V (y, l)
. 1.

Thus, we deduce

M2

V (x, k)
m({y ∈ B, h(y) < r}) inf

y∈B(x,k)
Cg(y)2 ≤ 1

V (x, k)

∑

y∈B(x,k)

1l{h(y)<r}[MCg(y)]2m(y)

≤ 1

V (x, k)

∑

y∈B(x,k)

1l{h(y)<r} A(g|r)2m(y)

≤ 1

V (x, k)

∑

y∈B(x,k)

A(g|r)2m(y)

≤ Cρ,dv inf
y∈B(x,k)

Cg(y)2.

where Cρ,dv depends only of Cρ and Cdv We choose then M such that
Cρ,dv

M2 ≤ 1
2 and we obtain (42).

From (42) and with Fubini theorem, one has for any non-negative function φ on Γ × N
∗,

∑

(y,k)∈Γ×N∗

φ(y, k)V (y, k)m(y) .
∑

(y,k)∈Γ×N∗

φ(y, k)m(y)
∑

x∈Γ

m(x)1l{x∈B(y,k), h(x)≥k}

=
∑

x∈Γ

m(x)
∑

(y,k)∈Γ×N∗

φ(y, k)m(y)1l{y∈B(x,k), k≤h(x)}

=
∑

x∈Γ

m(x)
∑

(y,k)∈γh(x)(x)

φ(y, k)m(y).

Take φ(y, k) = |f(y, k)||g(y, k)| 1
kV (y,k) and by Cauchy-Schwarz inequality,

∑

(y,k)∈Γ×N∗

m(y)

k
|f(y, k)g(y, k)| .

∑

x∈Γ

A(f |h(x))(x)A(g|h(x))(x)m(x)

≤ M
∑

x∈Γ

Af(x)Cg(x)m(x)

(ii) The fact that every element g ∈ T ∞ induces a linear functional on T 1 is immediate from (i). The converse
is obtained by a classical argument. Indeed, if l ∈ (T 1(Γ))∗, we construct a function g ∈ L2

loc(Γ) such that
l(f) =< f, g > for any function f with finite support. We check that g ∈ T ∞ and we conclude by noticing
that the space made of finitely supported functions is dense in T 1(Γ). Consequently, T ∞(Γ) is the dual of
T 1(Γ). See proof of Theorem 1 in [11] for details.

(iii) Let δ ∈ (0, 1) sufficiently close to 1 so that Lemma 3.7 is verified. Define for all i ∈ Z the set Oi as
Oi = {x ∈ Γ, A(f) > 2i} and let Fi = (Oi)c. We can define then F ∗

i and Oi
∗ and Proposition 3.6 provides

Oi
∗ ⊃ Oi and m(Oi

∗) . m(Oi). Notice that
⋃ T (Oi) and then

⋃

T(Oi
∗) contain the support of f . Indeed

if f(y, k) > 0, then for all x ∈ B(y, k), Af(x) > ǫy,k > 0. Thus B(y, k) ⊂ Oi for some i ∈ Z and then
(y, k) ∈ R(Oi).

Remark that m(Oi
∗) . m(Oi) . 2−i‖f‖T 1 < +∞. Let (Qi

j)j∈N be the Whitney decomposition of Oi
∗ provided

by Lemma 3.9. Then we can write T(Oi
∗)\T(Oi+1

∗ ) as a disjoint union
⋃

j ∆i
j where

∆i
j = (Qi

j × N
∗) ∩ (T(Oi

∗)\T(Oi+1
∗ )).

Denote by ri
j the diameter of Qi

j and xi
j ∈ Qi

j , we claim that there exists C > 0 such that any j, i, there holds

∆i
j ⊂ T (Bi

j) := T (B(xi
j , Cri

j)). (43)

It suffices to check that max{k ∈ N
∗, ∃x ∈ Γ : (x, k) ∈ ∆i

j} . ri
j . But for all y ∈ Qi

j ,

ri
j & ρ(Qi

j , (Oi
∗)c)

& ρ(y, (Oi
∗)c)

≥ 1

2Cρ
max{k ∈ N

∗, (y, k) ∈ T(Oi
∗)}.
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And thus

ri
j & max{k ∈ N

∗, ∃y ∈ Qi
j : (y, k) ∈ T(Oi

∗)}
= max{k ∈ N

∗, ∃y ∈ Γ : (y, k) ∈ (Qi
j × N

∗) ∩ T(Oi
∗)}

≤ max{k ∈ N
∗, ∃y ∈ Γ : (y, k) ∈ ∆i

j}

Now write
ai

j = f1l∆i
j

V (Bi
j)− 1

2 (µi
j)− 1

2

where

µi
j =

∑

(y,k)∈∆i
j

m(y)

k
|f(y, k)|2

and set
λi

j = V (Bi
j)

1
2 (µi

j)
1
2 .

We have then
f =

∑

i,j

λi
jai

j , (44)

where the convergence holds pointwise. Observe first that by construction, ai
j is a T 1-atom associated with

the ball Bi
j . Thus the series in (44) converge in T 1(Γ) and provide the desired atomic decomposition if we

have that
∑

λi
j . ‖Af‖L1. However, since x /∈ Bi

j implies that (y, k) /∈ B̂i
j for all (y, k) ∈ γ(x), remark that

µi
j ≤

∑

(y,k)∈T (Bi
j
)∩R(F ∗

i+1
)

m(y)

k
|f(y, k)|2

=
∑

(y,k)R(F ∗
i+1

)

m(y)

k
|f(y, k)|21lT (Bi

j
)(y, k)

.
∑

x∈Fi+1

m(x)
∑

(y,k)∈γ(x)

m(y)

kV (y, k)
|f(y, k)|21lT (Bi

j
)(y, k)

≤
∑

x∈Fi+1

m(x)
∑

(y,k)∈γ(x)

m(y)

kV (y, k)
|f(y, k)|21lBi

j
(x)

=
∑

x∈Bi
j
∩Fi+1

|Af(x)|2m(x)

≤ V (Bi
j)4i+1,

where we used Lemma 3.7 for the third line and the definition of Fi+1 for the last one. We conclude by
noticing that

∑

i,j

λi
j .

∑

i,j

V (Bi
j)2i

.
∑

i,j

m(Qi
j)2i

=
∑

i∈Z

|O∗
i |2i

.
∑

i∈Z

|Oi|2i

. ‖Af‖L1.

(iv) For the last point, it suffices to show that if f ∈ T 2(Γ)∩T 1(Γ) the decomposition constructed in (iii) converges
in T 2. Notice that

First, since
∑

x∈V (y,k)
m(x)

V (x,k) . 1, check that

‖f‖2
T 2 .

∑

(y,k)∈Γ×N∗

m(y)

k
|f(y, k)|2.
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Recall that the sets ∆i
j form a partition of the support of f . Thus

∥

∥

∥

∥

∥

∥

∑

|i|,j>N

λi
jai

j

∥

∥

∥

∥

∥

∥

2

T 2

≃
∑

(y,k)∈Γ×N∗

m(y)

k

∣

∣

∣

∣

∣

∣

∑

|i|,j>N

1l∆i
j

f(y, k)

∣

∣

∣

∣

∣

∣

2

≤
∑

|i|,j>N

∑

(y,k)∈∆i
j

m(y)

k
|f(y, k)|2

N→∞−−−−→ 0.

�

4 Equality of Hardy spaces

In all this section, (Γ, µ) is a weighted graph, equipped with a quasidistance ρ and satisfying (LB) and (DV) and (UE).

4.1 H
1

mol ∩ L
2 ⊂ E

1

quad

Proposition 4.1. Let ǫ > 0, M ∈ N
∗, p ∈ (1, 2] and β > 0. Then H1

mol,M,p,ǫ(Γ) ∩ L2(Γ) ⊂ E1
quad,β(Γ) and

‖f‖H1
quad,β

. ‖f‖H1
mol,M,p,ǫ

∀f ∈ H1
mol,M,p,ǫ(Γ) ∩ L2(Γ).

Proof: The proof is similar to the one of [19, Proposition 4.1]. Let f ∈ H1
mol,M,p,ǫ ∩L2(Γ). Then there exist (λi)i∈N ∈ ℓ1

and a sequence (ai)i∈N of (M, p, ǫ)-molecules such that f =
∑

λiai where the convergence is in L1(Γ) and

∑

i∈N

|λi| ≃ ‖f‖H1
mol,M,p,ǫ

.

First, since ‖P k‖1→1 ≤ 1 for all k ∈ N, the operators ∆β and then ∆βP k−1 are L1-bounded for β > 0 (see [15]).
Consequently,

∆βP l−1
∑

i∈N

λiai =
∑

i∈N

λi∆
βP l−1ai.

Since the L1-convergence in Γ implies the pointwise convergence, that is, for all x ∈ Γ,

∣

∣

∣

∣

∣

∆βP k−1
∑

i∈N

λiai(x)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

i∈N

λi∆
βP k−1ai(x)

∣

∣

∣

∣

∣

≤
∑

i∈N

|λi|
∣

∣∆βP k−1ai(x)
∣

∣ .

From here, the estimate

‖Lβf‖L1 =

∥

∥

∥

∥

∥

Lβ

∑

i∈N

λiai

∥

∥

∥

∥

∥

L1

.
∑

i∈N

|λi|‖Lβai‖L1

is just a consequence of the generalized Minkowski inequality.

It remains to prove that there exists a constant C such that for all (M, p, ǫ)-molecules a, one has

‖Lβa‖L1 ≤ C. (45)

Let x ∈ Γ and s > 0 associated with the (M, p, ǫ)-molecule a. By Hölder inequality and the doubling property, we
may write

‖Lβa‖L1 .

∞
∑

j=0

V (x, 2js)1− 1
p ‖Lβa‖Lp(Cj(x,s)). (46)
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We will now estimate each term of the above sum. We treat first the case j = 0. Remark that ‖(I+s∆)−1‖Lp→Lp ≤
1. Then (I − (I + s∆)−1)M is Lp-bounded by 1. Together with the fact that Lβ is Lp-bounded (see Theorem
2.23), one has

‖Lβa‖Lp(C0(x,s)) . ‖a‖Lp ≤ ‖b‖Lp .
1

V (x, s)1− 1
p

.

When j ≥ 1, decompose ‖Lβa‖Lp(Cj(x,s)) as

‖Lβa‖Lp(Cj(x,s)) ≤
∑

k≥0

∥

∥Lβ(I − (I + s∆)−1)M [1lCk(x,s) b]
∥

∥

Lp(Cj(x,s))
.

Notice, if |j − k| ≥ nρ, that

ρ(Ck(x, s), Cj(x, s)) ≃ 2max{j,k}s

where nρ stands for 2 + ln2 Cρ.

If |j − k| < nρ, the Lp-boundedness of Lβ and the uniform Lp-boundedness of (I − (I + s∆)−1)M implies

∥

∥Lβ(I − (I + s∆)−1)M [1lCk(x,s) b]
∥

∥

Lp(Cj(x,s))
. ‖b‖Lp(Ck(x,s)).

Besides, there exists α > 0 such that (Ck(x, s), Cj(x, s), x) are α-Gaffney suited whenever |j − k| ≥ nρ. Thus,
Proposition 2.13 yields

‖Lβa‖Lp(Cj(B)) .
∑

|j−k|≥nρ

V (x, 2js)
1
p

− 1
2

∥

∥Lβ(I − (I + s∆)−1)M [1lCk(x,s) b]
∥

∥

L2(Cj(x,s))

+
∑

|j−k|<nρ

‖b‖Lp(Ck(x,s))

.
∑

|j−k|≥nρ

V (x, 2js)
1
p

−12− max{j,k}M ‖b‖L1(Ck(x,s)) +
∑

|j−k|<nρ

‖b‖Lp(Ck(x,s))

.
∑

|j−k|≥nρ

V (x, 2js)
1
p

−12− max{j,k}M +
∑

|j−k|<nρ

2−kǫ

V (x, 2ks)1− 1
p

. 2−jǭV (x, 2js)
1
p

−1





∑

|j−k|≥nρ

2−k M
2 +

∑

|j−k|<nρ

2−k ǫ
2





. 2−ǭjV (x, 2js)
1
p

−1

where ǭ = 1
2 min{ǫ, M}.

As a consequence, one has

‖Lβa‖L1 .
∑

j≥0

2−ǭj

(

V (x, 2js)

V (x, 2js)

)1− 1
p

. 1.

�

Proposition 4.2. Let ǫ > 0, M ∈ N
∗, p ∈ (1, 2]. Then H1

mol,M− 1
2 ,p,ǫ

(TΓ) ∩ L2(TΓ) ⊂ E1
quad, 1

2

(TΓ) and

‖f‖H1

quad, 1
2

. ‖f‖H1

mol,M− 1
2

,p,ǫ

∀f ∈ H1
mol,M− 1

2 ,p,ǫ(TΓ) ∩ L2(TΓ).

Proof: The proof is similar to the previous one then we will point out only the main differences. Since d∗ and P k are
L1-bounded, it is enough to prove the uniform boundedness of ‖L 1

2
∆− 1

2 d∗a‖L1 when a is a (M, p, ǫ)-molecule.

However, notice that if a = sM− 1
2 d∆M−1(I + s∆)−M+ 1

2 b (with s, b associated with a), one has

‖L 1
2
∆− 1

2 d∗a‖L1 = ‖L 1
2
(I − (I + s∆)−1)M− 1

2 b‖L1.

We conclude then as in Proposition 4.1. �
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Proposition 4.3. The space E1
0 (Γ) is continuously embedded in E1

quad, 1
2

(Γ) and

‖f‖H1

quad, 1
2

. ‖f‖E1
0

∀f ∈ E1
0(Γ).

Proof: We refer to subsection 2.5 for the definition of E1
0(Γ) and of atoms.

Due to the definition of E1
0(Γ), we only need to check that the quantity ‖Lβa‖L1 is uniformly bounded on atoms.

The proof is analogous to the one of Proposition 4.1, using Proposition 2.15. �

4.2 E
1

quad ⊂ H
1

mol ∩ L
2

Proposition 4.4. Let M ∈ N
∗, ǫ > 0 and β > 0. Then E1

quad,β(Γ) ⊂ H1
mol,M,2,ǫ(Γ) ∩ L2(Γ) and

‖f‖H1
mol,M,2,ǫ

. ‖f‖H1
quad,β

∀f ∈ H1
quad,β(Γ).

Proposition 4.5. Let M ∈ N
∗, ǫ > 0 and β > 0. Then E1

quad,β(TΓ) ⊂ H1
mol,M− 1

2 ,2,ǫ
(Γ) ∩ L2(Γ) and

‖f‖H1

mol,M− 1
2

,2,ǫ

. ‖f‖H1
quad,β

∀f ∈ H1
quad,β(TΓ).

Proof: The proofs of the two above results are analogous to the ones in subsections 4.3 and 4.4 of [19], using the atomic
decomposition in Theorem (3.8) and Propositions 2.16 and 2.12.

The use of L1-L2 off-diagonal estimates instead of the L2-L2 ones enable to simplify the proof (the homogeneous
dimension do not need to appear). �

4.3 Proof of Theorems 1.26, 1.27 and 1.29

.

Proof: (Theorem 1.26)

Let β > 0, M ∈ N
∗, p ∈ (1, 2] and ǫ > 0. Propositions 4.1 and 4.4 yield the continuous embeddings

H1
mol,M,p,ǫ(Γ) ∩ L2(Γ) ⊂ E1

quad,β(Γ) ⊂ H1
mol,M,2,ǫ(Γ) ∩ L2(Γ) ⊂ H1

mol,M,p,ǫ(Γ) ∩ L2(Γ).

Thus, we deduce
H1

mol,M,p,ǫ(Γ) ∩ L2(Γ) = E1
quad,β(Γ) (47)

with equivalent norms. In particular, E1
quad,β(Γ) ⊂ L1(Γ).

Since the space of finite sum of (M, p, ǫ)-molecule is dense in H1
mol,M,p,ǫ(Γ) (see [7, Lemma 4.5] or [19, Lemma

3.5]), the space H1
mol,M,p,ǫ(Γ) is the completion of H1

mol,M,p,ǫ(Γ) ∩ L2(Γ) in L1. The completion H1
quad,β(Γ) of

E1
quad,β(Γ) in L1 exists then too and satisfies

(i) the two sets H1
quad,β(Γ) and H1

mol,M,p,ǫ(Γ) are equal,

(ii) the norms in H1
quad,β(Γ) and H1

mol,M,p,ǫ(Γ) are equivalent.

�

Proof: (Theorem 1.27)

Let M ∈ N
∗, p ∈ (1, 2] and ǫ > 0. Propositions 4.2 and 4.5 yield the continuous embeddings

H1
mol,M− 1

2 ,p,ǫ(TΓ) ∩ L2(TΓ) ⊂ E1
1
2 ,β(TΓ) ⊂ H1

mol,M− 1
2 ,2,ǫ(TΓ) ∩ L2(TΓ) ⊂ H1

mol,M− 1
2 ,p,ǫ(TΓ) ∩ L2(TΓ).

from which we deduce the equality of the all the spaces, with equivalent norms.

It follows that the completion of E1
quad, 1

2
(TΓ) in L1(TΓ) exists and satisfies, since H1

mol,M− 1
2 ,p,ǫ

(TΓ) is the completion

of H1
mol,M− 1

2 ,p,ǫ
(TΓ) ∩ L2(TΓ) in L1(TΓ),
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(i) the two sets H1
quad, 1

2

(TΓ) and H1
mol,M− 1

2 ,p,ǫ
(TΓ) are equal,

(ii) the norms in H1
quad, 1

2

(TΓ) and H1
mol,M− 1

2 ,p,ǫ
(TΓ) are equivalent.

Moreover, notice that if F ∈ H2(TΓ),

F ∈ E1
quad,β(TΓ) ⇐⇒ ∆− 1

2 d∗F ∈ E1
quad,β(Γ). (48)

Indeed, the implication ∆− 1
2 d∗F ∈ E1

quad,β(Γ) ⇒ F ∈ E1
quad,β(TΓ) is obvious, and the converse is due to Proposi-

tion 1.5. Theorem 1.26 implies that all the spaces E1
quad,β(Γ), β > 0, coincide. Together with (48), for all β > 0,

the spaces E1
quad,β(TΓ) coincide with E1

quad, 1
2

(TΓ). Hence, for all β > 0, the completion H1
quad,β(TΓ) of E1

quad,β(TΓ)

in L1(TΓ) exists and satisfies

(i) the two sets H1
quad,β(TΓ) and H1

quad, 1
2
(TΓ) are equal,

(ii) the norms in H1
quad,β(TΓ) and H1

quad, 1
2
(TΓ) are equivalent.

�

Proof: (Theorem 1.29)

According to Corollary 2.19, it suffices to shows that H1(Γ) = H1
mol,1,2,3(Γ) is continuously embedded in L1(Γ)

and that E1
0(Γ) is continuously embedded in H1(Γ) = H1

quad,1(Γ). However, the first embedding is stated in
Proposition 1.20 and the second one is due to Proposition 4.3. �

5 Examples of graph satisfying (DV) and (UE)

In this paragraph, we need to recall some classical definitions on graphs.
A path joining x to y is a sequence x = x0, x1, . . . , xn = y where for any i ∈ [[1, n]] we have xi−1 ∼ xi. The length of

such path is n. We define then on the graph Γ the “classical” distance d(x, y) as the length of the shortest path joining
x to y. We denote by Bd(x, r) and Vd(x, r) respectively the ball and the volume of the ball of center x and of radius r.

Let (Γ, µ) be a weighted graph with the doubling property for the distance d and that satisfy some Gaussian upper
estimates of the Markov kernels

pk−1(x, y) .
1

Vd(x,
√

k)
exp

(

−c
d2(x, y)

k

)

∀x, y ∈ Γ, ∀k ∈ N
∗.

It is the case, for example, of the Cayley graph of a discrete group with polynomial growth (see [21]).
We define then ρ(x, y) = d2(x, y) and one can easily check that both (DV) and (UE) are verified. As a consequence,

the Riesz transform ∇∆− 1
2 is Lp bounded on Γ for all p ∈ (1, 2] and we find again the main result in [26].

The second example are fractal-like graphs, that is doubling graphs where the Markov kernel satisfies some subgaus-
sian estimates such as

pk(x, y) .
1

Vd(x, k
1
β )

exp

(

−c

[

dβ(x, y)

k

]

1
β−1

)

∀x, y ∈ Γ, ∀k ∈ N
∗ (49)

for some β > 2. An example of such graphs is the Sierpinski carpets (see [5], [24]).
In this case, we choose ρ(x, y) = ⌊dβ(x, y)⌋, where ⌊r⌋ denotes the integer part of r ∈ R+. Since the collections of

balls induced by ρ and by d coincide, one has

Vρ(x, 2r) = Vd(x, s2) and Vd(x, s1) = Vρ(x, r)

with for all i ∈ {1, 2}, si such that ⌊sβ
i ⌋ ≤ ir < ⌊(si + 1)β⌋. Therefore, the assumption (DV) is implied by the fact that

d is a doubling metric. Besides, assumption (UE) with η = 1
β−1 ∈ (0, 1] is easily deduced from (49).

For our third example, we will present a graph that satisfies (DV) and (UE) for some quasidistance ρ, but where
the collections of balls defined with ρ and d do not coincide.

Definition 5.1. Let (Γ1, µ1, ρ1) and (Γ2, µ2, ρ2) be two weighted graphs. The graph (Γ, µ, ρ) is the free product of Γ1

and Γ2 if
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(i) Γ = Γ1 × Γ2,

(ii) for all x = (x1, x2) ∈ Γ and y = (y1, y2) ∈ Γ, µxy = µ1
x1y1

µ2
x2y2

,

(iii) for all x = (x1, x2) ∈ Γ and y = (y1, y2) ∈ Γ, ρ(x, y) = max{ρ1(x1, y1), ρ2(x2, y2)}.

Remark 5.2. Let (Γ, µ, ρ) be the free product of (Γ1, µ1, ρ1) and (Γ2, µ2, ρ2). Then the following facts are satisfied

(i) (x1, x2) ∼ (y1, y2) if and only if x1 ∼ y1 and x1 ∼ y1.

(ii) If x ∼ y and x 6= y, then ρ(x, y) = 1.

(iii) d((x1, x2), (y1, y2)) = max{d(x1, y1), d(x2, y2)}.

Proposition 5.3. Let (Γ1, µ1, ρ1) and (Γ2, µ2, ρ2) satisfying (LB), (DV) and (UE). Let (Γ, µ, ρ) be the graph defined
as the free product of Γ1 and Γ2. Then the graph (Γ, µ, ρ) satisfies (LB), (DV) and (UE).

Corollary 5.4. There exists a graph (Γ, µ) satisfying (LB) that can be outfitted with a quasidistance ρ such that

• the graph (Γ, µ, ρ) satisfies (DV) and (UE),

• there does not exist any β ≥ 2 such that ρ ≃ dβ.

Proof: (Corollary)

Take Γ1 and Γ2 two infinite graphs satisfying subgaussian estimates (49) with β1 6= β2 (for example Γ1 = Z
n and

Γ2 is the Sierpinski carpet). Proposition 5.3 implies that Γ = Γ1 × Γ2 satisfies (LB), (DV) and (UE). Notice then

that ρ((x, y), (x, z)) ≃ dβ2

2 (y, z) ≃ dβ2((x, y), (x, z)) and ρ((y, x), (z, x)) ≃ dβ1

1 (y, z) ≃ dβ1((y, x), (z, x)) �

Proof: (Proposition)

The fact that Γ satisfies (LB) if and only if both Γ1 and Γ2 satisfies (LB) is immediate.

By construction, one has Bρ(x, k) = Bρ1 (x1, k) × Bρ2 (x2, k). As a consequence,

Vρ(x, k) = Vρ1 (x1, k)Vρ2 (x2, k)

and then assertion (DV) follows from the doubling property of the graphs Γ1 and Γ2.

We have by construction p(x, y) = p1(x1, y1)p2(x2, y2). Therefore, by induction, we get the relation pk(x, y) =
p1

k(x1, y1)p2
k(x2, y2). As a consequence,

pk(x, y) .
1

Vρ1 (x1, k)Vρ2 (x2, k)
exp

[

−c1

(

ρ1(x1, y1)

k

)η1

− c2

(

ρ2(x2, y2)

k

)η2
]

.
1

Vρ(x, k)
exp

[

−c

(

ρ1(x1, y1)

k

)η

− c

(

ρ2(x2, y2)

k

)η]

≤ 1

Vρ(x, k)
exp

[

−c

(

ρ(x, y)

k

)η]

where c = min{c1, c2} and η = min{η1, η2}. Thus Γ satisfies (UE).

�

We finish the article with a question:

Question:

Let (Γ, µ, d) be any graph satisfying (LB) (DV). Does there always exist a quasidistance ρ such that (Γ, µ, ρ)
satisfies (DV) and (UE)?

30



References

[1] P. Auscher. On necessary and sufficient conditions for Lp-estimates of Riesz transforms associated to elliptic
operators on R

n and related estimates. Mem. Amer. Math. Soc., 186(871):75 pp, 2007.

[2] P. Auscher, A. McIntosh, and A. J. Morris. Calderòn reproducing formulas and applications to Hardy spaces.
Available as http://arxiv.org/abs/1304.0168.

[3] P. Auscher, A. McIntosh, and E. Russ. Hardy spaces of differential forms and Riesz transforms on Riemannian
manifolds. J. Geom. Anal., 18(1):192–248, 2008.

[4] N. Badr and E. Russ. Interpolation of Sobolev spaces, Littlewood-Paley inequalities and Riesz transforms on
graphs. Publ. Mat., 53:273–328, 2009.

[5] M. T. Barlow and R. F. Bass. Random walks on graphical Sierpinski carpets. In Random walks and discrete
potential theory (Cortona, 1997), Sympos. Math., XXXIX, pages 26–55. Cambridge Univ. Press, Cambridge, 1999.

[6] F. Bernicot, T. Coulhon, and D. Frey. Gaussian heat kernel bounds through elliptic moser iteration. Available at
http://arxiv.org/pdf/1407.3906.pdf, 2014.

[7] F. Bernicot and J. Zhao. New abstract Hardy spaces. J. Funct. Anal., 255:1761–1796, 2008.

[8] S. Blunck and P. C. Kunstmann. Calderón-Zygmund theory for non-integral operators and the H∞ functional
calculus. Rev. Mat. Iberoamericana, 19(3):919–942, 2003.

[9] L. Chen. Quasi Riesz transforms, Hardy spaces and generalized sub-Gaussian heat kernel estimates. PhD thesis,
Université Paris Sud - Paris XI; Australian national university, 2014. https://tel.archives-ouvertes.fr/tel-01001868.

[10] R. R. Coifman, Y. Meyer, and E. M. Stein. Un nouvel éspace fonctionnel adapté à l’étude des opérateurs définis
par des intégrales singulières. In Harmonic analysis (Cortona, 1982), volume 992 of Lecture Notes in Math., pages
1–15. Springer, Berlin, 1983.

[11] R. R. Coifman, Y. Meyer, and E. M. Stein. Some new function spaces and their applications to harmonic analysis.
J. Funct. Analysis, 62:304–335, 1985.

[12] T. Coulhon and X. T. Duong. Riesz transforms for 1 ≤ p ≤ 2. Trans. Amer. Math. Soc., 351(3):1151–1169, 1999.

[13] T. Coulhon and X. T. Duong. Riesz transform and related inequalities on noncompact Riemannian manifolds.
Comm. Pure Appl. Math., 56(12):1728–1751, 2003.

[14] T. Coulhon and A. Grigor’yan. Random walks on graphs with regular volume growth. Geom. Funct. Anal.,
8(4):656–701, 1998.

[15] T. Coulhon and L. Saloff-Coste. Puissances d’un opérateur régularisant. Ann. Inst. H. Poincaré Probab. Statist.,
26(3):419–436, 1990.

[16] N. Dungey. A note on time regularity for discrete time heat kernels. Semigroups forum, 72(3):404–410, 2006.

[17] N. Dungey. A Littlewood-Paley-Stein estimate on graphs and groups. Studia Mathematica, 189(2):113–129, 2008.

[18] C. Fefferman and E. M. Stein. Hp spaces of several variables. Acta Math., 129(3-4):137–193, 1972.

[19] J. Feneuil. Hardy and BMO spaces on graphs, application to Riesz transform. arXiv preprint arXiv:1411.3352,
2014.

[20] J. Feneuil. Littlewood-Paley functionals on graphs. Math. Nachr., 2015. Available as http://fr.arxiv.org/abs/
1404.1353 and http://onlinelibrary.wiley.com/doi/10.1002/mana.201400119/abstract.

[21] W. Hebisch and L. Saloff-Coste. Estimates for Markov chains and random walks on groups. The Annals of
Probability, 21(2):673–709, 1993.

[22] S. Hofmann and J. M. Martell. Lp bounds for Riesz transforms and square roots associated to second order elliptic
operators. Publ. Mat., 47(2):497–515, 2003.

[23] S. Hofmann and S. Mayboroda. Hardy and BMO spaces associated to divergence form elliptic operators. Math.
Ann., 344:37–116, 2009.

31



[24] O. D. Jones. Transition probabilities for the simple random walk on the Sierpiński graph. Stochastic Process.
Appl., 61(1):45–69, 1996.

[25] P. C. Kunstmann and M. Ulh. Spectral multiplier theorems of Hörmander type on Hardy and Legesgue spaces.
2012. Avaiable as http://arxiv.org/pdf/1209.0358v1.pdf.

[26] E. Russ. Riesz tranforms on graphs for 1 ≤ p ≤ 2. Math. Scand., 87(1):133–160, 2000.

[27] E. Russ. The atomic decomposition for tent spaces on spaces of homogeneous type. In CMA/AMSI Research
Symposium “Asymptotic Geometric Analysis, Harmonic Analysis, and Related Topics”, volume 42 of Proc. Centre
Math. Appl. Austral. Nat. Univ., pages 125–135. Austral. Nat. Univ., Canberra, 2007.

[28] E. M. Stein. Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30.
Princeton University Press, Princeton, N.J., 1970.

32


