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Electromagnetic PIC simulations with smooth particles: a

numerical study∗

Martin Campos Pinto†, Mathieu Lutz‡and Marie Mounier§

June 24, 2015

Abstract

In this article we study a charge-conserving finite-element particle scheme for the Maxwell-
Vlasov system that is based on a div-conforming representation of the electric field and we
propose a high-order deposition algorithm for smooth particles with piecewise polynomial shape.
The numerical performances of the method are assessed with an academic beam test-case, and it
is shown that for an appropriate choice of the particle parameters the efficiency of the resulting
method overcomes that of similar finite-element schemes using point particles.

Introduction

We consider a numerical scheme for the 2d Transverse Electric (TE) Maxwell system

∂tE − c2 curlB = − 1
ε0
J (1)

∂tB + curlE = 0 (2)

coupled with a Vlasov equation to model the transport of particles with elementary charge q and
mass m,

∂tf + v ·∇xf +
q

m
(E + v⊥B) ·∇vf = 0. (3)

Here f = f(t,x,v) is the plasma distribution function in phase-space, with x = (x, y) the position
variable, v = (vx, vy) the velocity variable and v⊥ := (vy,−vx). In the above TE mode, the
electromagnetic field takes the form E = (Ex(x, t), Ey(x, t)), B = Bz(x, t) and the 2d reduction
yields two curl operators, namely

curlB = (∂yB,−∂xB) and curlE = ∂xEy − ∂yEx.

Finally the charge and the current density are given by

ρ(t,x) := q

∫
R2

f(t,x,v) dv, (4)

J(t,x) := q

∫
R2

vf(t,x,v) dv (5)
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§Nuclétudes, CS 70117, 91978 Courtaboeuf cedex, France

1



and we recall that they satisfy a continuity equation

∂tρ+ divJ = 0. (6)

As is well known and formally verified by taking the divergence of the Ampère equation (1), this
property of the source guarantees that the solutions of the above Maxwell evolution system satisfy
the Gauss law

divE = 1
ε0
ρ (7)

at any time t, as long as it is the case for the initial solution E0. (For the magnetic field the Gauss
law is degenerate since B = Bz(x, t) has a zero divergence by construction.) The aim of this article
is to describe a FEM-PIC scheme with smooth particles for the above Maxwell-Vlasov system that
is charge-conserving in the sense that it preserves a (strong) Gauss law for the numerical solution,
and to study its numerical performances with an academic beam test-case.

The outline is as follows. In Section 1 we describe a mixed finite-element method for the
time-dependent Maxwell system (1)-(2) that is based on a div-conforming representation of the
electric field E, and we recall the particle approximation of the Vlasov equation (3). In this
charge-conserving scheme the current is discretized using a Raviart-Thomas interpolation that is
recalled in Section 2.1, and in Sections 2.2 and 2.3 we describe how to apply it using numerical
Fekete quadratures in the case where J is approximated by smooth particles. Finally we show
in Section 3 some numerical results obtained for a smooth electron beam in a simple domain. In
particular, we discuss how the accuracy and efficiency of the resulting FEM-PIC scheme vary with
some parameters of the smooth particles, and we compare it with two FEM-PIC methods using
point particles.

1 Description of the numerical scheme

In the present Section we describe the numerical method used to simulate the Maxwell-Vlasov sys-
tem. We consider a bounded computational domain Ω with Lipschitz boundary that is partitioned
by a regular family of conforming simplicial meshes (Th)h>0, and inside each triangle T ∈ Th we
assume that the vertices {xT0 ,xT1 ,xT2 } are numbered counterclockwise. We denote the correspond-
ing edges by E(T ) = {eT0 , eT1 , eT2 }, so that eTi and xTi are opposite. We also let nTe be the outward
unit vector of T that is normal to e, and τTe the associated tangent vector obtained by rotating nTe
through + 90 degrees. We then write Eh = ∪T∈ThE(T ) and assuming that the triangles are given
arbitrary indices, we fix an orientation for the edges as follows. For any e ∈ Eh, we let T−(e) be
the triangle of minimum index for which e is an edge. If e is shared by another triangle we denote
the latter by T+(e). Note that, due to the conformity of the mesh, no more than 2 triangles can
have e as an edge. The edge e is then oriented by setting

xe0 := x
T−(e)
i+1 , xe1 := x

T−(e)
i+2 where i is such that e = e

T−(e)
i (8)

(and where for simplicity we have identified x
T−(e)
i and x

T−(e)
i+3 ). We also set

ne := nT
−(e)

e ,

and observe that if e is an interior edge then we have ne = −nT
+(e)

e . We denote by T̂ a reference
triangle with vertices

x̂0 :=

(
0
0

)
, x̂1 :=

(
1
0

)
, x̂2 :=

(
0
1

)
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and we let

FT : T̂ → T, x̂ 7→ xT0 + FT x̂, FT :=

(
xT1 − xT0 xT2 − xT0
yT1 − yT0 yT2 − yT0

)
(9)

be the affine function that maps T̂ on any T ∈ Th (and preserves the numbering of the vertices).
As for the boundary conditions, we will consider standard metallic and Silver-Müller boundary
conditions, namely

E × n =

{
0 on the metallic boundaries ΓM ⊂ ∂Ω

c(B × n)× n = −cB on the absorbing boundaries ΓA = ∂Ω \ ΓM
(10)

where n is the outward unit vector normal to ∂Ω.

1.1 Finite element scheme for the Maxwell system

For the Maxwell system we consider a space discretization that relies on a mixed formulation with
a strong Ampère equation. It involves a continuous finite-element space for the magnetic field

V µ
h := Pp(Th) ∩H(curl; Ω) = {u ∈ C(Ω) : u|T ∈ Pp(T ), T ∈ Th} (11)

where Pp(T ) denotes the space of polynomials of total degree ≤ p on T, and a div-conforming
Raviart-Thomas finite-element space for the electric field

V ε
h := RT p−1(Ω, Th) = {u ∈ H(div; Ω) : u|T ∈ RT p−1(T ), T ∈ Th} (12)

with RT p−1(T ) := Pp−1(T )2 +
( x
y

)
Pp−1(T ) see e.g. [3, 1] for further details on H(div) conform-

ing spaces. Here the exponents µ and ε stand for “magnetic” and “electric” respectively. In
a semi-discrete setting, the approximate electro-magnetic field is then defined as the solution
(Bh(t),Eh(t)) ∈ V µ

h × V ε
h to the system 〈∂tBh, ϕ〉+ 〈Eh, curlϕ〉+ c〈Bh, ϕ〉ΓA = 0 ϕ ∈ V µ

h ⊂ H(curl; Ω) = H1(Ω)

〈∂tEh,ϕ〉 − c2〈curlBh,ϕ〉 = − 1
ε0
〈Jh,ϕ〉 ϕ ∈ V ε

h ⊂ H(div; Ω)

(13)
where Jh ∈ V ε

h is an approximate current density. This discretization is of course not new. Its
convergence is established in [6] (for the 3d Maxwell system) and its charge conservation properties
are advocated in [7], where it is presented as a “D/H formulation” due to the fact that it essentially
relies on representing the electric field (and the current density) as a 2-form defined through its
fluxes.

This discretization has several interesting properties. First, using the embedding curlV µ
h ⊂ V ε

h

we see that the discrete Ampère equation holds in a strong (i.e., pointwise) sense in V ε
h

∂tEh − c2 curlBh = − 1
ε0
Jh. (14)

Second, we observe that if Jh is defined as

Jh := πdiv
h J (15)

where πdiv
h is the finite-element interpolation on the Raviart-Thomas space V ε

h (see Section 2), then
the approximate electric field satisfies a (strong, i.e., pointwise) Gauss law involving an approximate
charge density. Indeed, as can be verified with integrations by parts, the finite-element interpolation
satisfies a commuting diagram property

div πdiv
h u = Ph divu, u ∈ H1(Ω) (16)
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where Ph : L2(Ω)→ Pp−1(Th) is the L2-projection on the piecewise polynomials of degree ≤ p, i.e.,

〈Phu, ϕ〉 = 〈u, ϕ〉, ϕ ∈ Pp−1(Th).

In particular, taking the divergence of the strong Ampère equation (14) and using the continuity
equation (6) yields

divEh =
1

ε0
ρh

with an approximate charge density ρh = Phρ.

Remark 1.1. We observe that the electric field Eh can be computed in a discontinuous space Ṽ ε
h

containing V ε
h , indeed the discrete Ampère equation holds in a strong (i.e., pointwise) sense, so

that the electric field Eh will belong to the div-conforming Raviart-Thomas space V ε
h as long as its

initial value Eh does so.

Remark 1.2. A probably more usual finite-element discretization of the TE Maxwell system (1)-
(2) consists of looking for Eh(t) in a curl-conforming space V ε

h and Bh(t) in a space V µ
h containing

curlV ε
h , such that 〈∂tEh,ϕ〉 − c2〈Bh, curlϕ〉+ c〈n×Eh,n×ϕ〉ΓA = − 1

ε0
〈Jh,ϕ〉 ϕ ∈ V ε

h ⊂ H(curl; Ω)

〈∂tBh, ϕ〉+ 〈curlEh, ϕ〉 = 0 ϕ ∈ V µ
h ⊂ L2(Ω).

(17)
Compared to (13), an explicit time discretization based on (17) leads to inverting at each time step
a mass matrix in a curl-conforming space (for Eh) instead of a curl-conforming space (for Bh).
Because the former consists of vector-valued fields, it results in more expensive solves.

1.2 Particle method for the Vlasov equation

The Vlasov equation (3) is discretized by a particle method which consists of approximating f by
a collection of N numerical particles,

fN (t,x,v) :=
N∑
k=1

wkS(x− xk(t))S(v − vk(t)). (18)

Here the shape function S can either be a Dirac measure or a smooth, symmetric function (S(−v) =
S(v)) with compact support and unit integral. As for the phase-space particle centers (xk,vk),
they are initialized together with the particle weights wk in such a way that fN (t = 0) approximates
the initial data f0 in a function or in a measure’s sense, and they are transported by following the
characteristic curves associated to (3), i.e.,

dxk
dt

= vk

dvk
dt

=
q

m

(
E(xk, t) + v⊥k B(xk, t)

)
.

(19)

Accordingly, we can define a current and a charge density from the above particle approximation,
namely 

ρN (t,x) := q

∫
R2

fN (t,x,v) dv = q

N∑
k=1

wkS(x− xk(t))

JN (t,x) := q

∫
R2

vfN (t,x,v) dv = q
N∑
k=1

wkvk(t)S(x− xk(t))

(20)

4



where we have used the symmetry of S in the last equality.
The coupling between the Vlasov and the Maxwell discretizations is then essentially carried out

by using the discrete fields Eh, Bh in the above ODE, and by setting J = JN in the finite element
scheme (13)-(15).

1.3 Fully discrete FEM-PIC scheme

For computational issues it will be more convenient to represent the electric field Eh in a fully
discontinuous space Ṽ ε

h which contains the div-conforming space V ε
h , see Remark 1.1. Let us

denote by
σµλ , λ ∈ Λµh and σ̃ελ, λ ∈ Λ̃εh

two bases of degrees of freedom for the respective spaces V µ
h and Ṽ ε

h , with Λµh and Λ̃εh appropriate
sets of indices or multi-indices. We next denote by

ϕµλ, λ ∈ Λµh and ϕ̃ελ, λ ∈ Λ̃εh (21)

the associate bases for the spaces themselves, that are bi-orthogonal to the above degrees of freedom
in the sense that

σµλ(ϕµγ) = δλ,γ and σ̃ελ(ϕ̃εγ) = δλ,γ

holds for all λ and γ in Λµh and Λ̃εh, respectively. In the same way we could define a basis for the
div-conforming space V ε

h : this will be done explicitely in Section 2.1 below. Then, introducing the
matrices

Mµ =
(
〈ϕµλ, ϕµγ〉

)
λ,γ∈Λµh

, M̃ε =
(
〈ϕ̃ελ, ϕ̃εγ〉

)
λ,γ∈Λ̃εh

, C̃ε =
(
σ̃ελ(curlϕµγ)

)
(λ,γ)∈Λ̃εh×Λµh

,

and Aµ =
(
〈ϕµλ, ϕµγ〉ΓA

)
λ,γ∈Λµh

,
(22)

and the column vectors corresponding to the fields and the current density

B =
(
σµλ(Bh)

)
λ∈Λµh

, Ẽ =
(
σ̃ελ(Eh)

)
λ∈Λ̃εh

, and J̃ =
(
σ̃ελ(πdiv

h J)
)
λ∈Λ̃εh

, (23)

the conforming method (13) reads:

d
dtM

µB + (C̃ε)tM̃εẼ + cAµB = 0

d
dtẼ− c2C̃εB = − 1

ε0
J̃.

(24)

A leap-frog time stepping with implicit treatment of the absorbing boundary conditions on ΓA
leads then to the following fully discrete scheme

MµBn+ 1
2 = MµBn− 1

2 −∆t
(
(C̃ε)tM̃εẼn + cAµBn+ 1

2
)
,

Ẽn+1 = Ẽn + ∆t
(
c2C̃εBn+ 1

2 − 1
ε0
J̃n+ 1

2
)
.

(25)

Remark 1.3. Of course, in order that (22) and (23) indeed define matrices and vectors, we need
to use indexing functions for the sets Λµh and Λ̃εh. We assume that these we are given.

Now, because in practice the characteristic curves (19) are advanced with the leap-frog scheme
xn+1
k = xnk + ∆tv

n+ 1
2

k ,

v
n+ 1

2
k = v

n− 1
2

k +
q∆t

m

En
h(xnk) +

v
n+ 1

2
k − v

n− 1
2

k

2

⊥Bn
h (xnk)

 ,
(26)

5



we need to compute the Bh field on the integer time steps. Thus, we decompose the Faraday
equation in two half-time steps. Using again an implicit treatment of the absorbing boundary
terms we obtain

(Mµ + c∆t
2 Aµ)Bn = MµBn− 1

2 − ∆t
2 (C̃ε)tM̃εẼn

(Mµ + c∆t
2 Aµ)Bn+ 1

2 = MµBn − ∆t
2 (C̃ε)tM̃εẼn

Ẽn+1 = Ẽn + ∆t
(
c2C̃εBn+ 1

2 − 1
ε0
J̃n+ 1

2
)
.

(27)

Note that since here the entries of the column vectors Bn and Ẽn represent coefficients in the bases
(21), the discrete fields En

h and Bn
h can be evaluated on any x ∈ Ω with

Bn
h (x) =

∑
λ∈Λµh

(Bn)λϕ
µ
λ(x) and En

h(x) =
∑
λ∈Λ̃εh

(Ẽn)λϕ̃
ε
λ(x).

The procedure to compute J̃n+ 1
2 from the particle distribution will be explained in the following

sections.

2 The Raviart-Thomas current deposition

2.1 Interpolation on Raviart-Thomas finite elements

On the (local) Raviart-Thomas space RT p−1(T ) (see Section 1.1) associated with some aribtrary
T ∈ Th, we recall that the classical degrees of freedom (see, e.g., [3] or [1, Sec. 2.3.1 and Ex. 2.5.3])
correspond to spaces of linear forms given by{

Mε
T (u) := {

∫
T u · π : π ∈ Pp−2(T )2}

Mε
e(u) := {

∫
e(u · ne)π : π ∈ Pp−1(e)} for every edge e ∈ E(T ).

(28)

As is well known these degrees of freedom are unisolvent and H(div)-conforming. Now, to compute
the Raviart-Thomas projection of a current density one needs to specify a basis of degrees of
freedom, i.e., a particular set of linear forms that span the above spaces Mε

T (u) and Mε
e(u) for

any (smooth) function u. Here we shall use bases of Pq(T ) and Pq(e) made of Bernstein polynomials.
We recall that given a multi-index α in N3, resp. N2, the associated Bernstein polynomial on the
triangle T , resp. edge e is defined by

πT,α := (λT0 )α0(λT1 )α1(λT2 )α2 for α ∈ N3 resp. πe,α := (λe0)α0(λe1)α1 for α ∈ N2,
(29)

where λTi , resp. λei , is the i-th barycentric coordinate of T , resp. e (i.e., the affine function which
values are 1 on xTi , resp. xei , and 0 on the other vertices). As is well known, bases of Pq(T ) and
Pq(e) are then given by the collections {πT,α : α ∈ Γ2

q} and {πe,α : α ∈ Γ1
q}, where the sets Γdq

contain the multi-indices of length d+ 1 and weight q, i.e.,

Γdq := {α = (α0, . . . , αd) ∈ Nd+1 : α0 + · · ·+ αd = q},
Using these bases we consider the following degrees of freedom:{

σεT,d,α(u) := |FT |−1
∫
T (F̃tTu)d πT,α for T ∈ Th, d = 0, 1, α ∈ Γ2

p−2

σεe,β(u) :=
∫
e(u · ne)πe,β for e ∈ Eh, β ∈ Γ1

p−1,
(30)

where FT is defined in (9) and F̃T := RFTR
t is derived from FT by the rotation R :=

(
0 1
−1 0

)
Accordingly, we denote the sets of multi-indices for the degrees of freedom by

Λεh := Λεh,vol ∪ Λεh,edge with

{
Λεh,vol := Th × {0, 1} × Γ2

p−2

Λεh,edge := Eh × Γ1
p−1.

(31)
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The corresponding finite element interpolation on V ε
h := RT p−1(Th; Ω), that we denote

πdiv
h : H1(Ω)→ V ε

h ,

is then obtained by stitching together local projectors πdiv
T on RT p−1(T ) which are defined by the

relations
Mε

T (πdiv
T u− u) = {0}, Mε

e(π
div
T u− u) = {0}, e ∈ E(T ), (32)

in the sense that πdiv
h u :=

∑
T∈Th π

div
T u. We can verify that this amounts to computing the

approximate current density Jh = πdiv
h (J) from (15) with

Jh =
∑
λ∈Λεh

σελ(J)ϕελ. (33)

It then remains to compute approximations of the above degrees of freedom in the case where
J is defined through the moving particles. These approximations will be established in the next
Sections.

2.2 Smooth particle current deposition with numerical quadratures

Since a discrete version of the continuity equation (6) can be obtained in particle schemes by
averaging the time-dependent current density (20) over the time step, and evaluating the charge
density at tn (see [2] and the reference therein), we consider the following smoothed, time-averaged
current density:

J
n+ 1

2
N (x) :=

∫ tn+1

tn

JN (t,x)
dt

∆t
= q

N∑
k=1

wk

∫ tn+1

tn

v
n+1/2
k S(x− xk(t))

dt

∆t
. (34)

Here the characteristic trajectories can be taken piecewise affine, xk(t) := xnk + v
n+ 1

2
k (t− tn) with

constant speeds on [tn, tn+1], updated with (26). As for S we choose a tensor-product shape function
with univariate degree 2a, a ∈ N, and radius ε > 0, derived from the one proposed by Jacobs and
Hesthaven in [4], i.e.,

S(x) = Sε(x) := S1d
ε (x)S1d

ε (y) with S1d
ε (s) :=

{
ca
ε

[
1−

(
s
ε

)2 ]a
if s ∈ [−ε, ε]

0 otherwise,
(35)

where ca := 1/(2W (2a + 1)) and W (m) :=
∫ π

2
0 cos(θ)m dθ is the standard Wallis integral. To

deposit the current carried by the smooth particles in the H(div)-conforming space V ε
h we will

approximate the values of the coefficients in (33) with quadrature formulas. To this aim we use
triangular Fekete points of degree q ∈ 3N computed in Ref. [8]. On every triangle T they provide
a quadrature formula∫

T
u ≈

Nvol∑
j=1

wNI
T,ju(xNI

T,j) with Nvol := dim(Pq(T )) =
(q + 1)(q + 2)

2
quadrature points (36)

that is exact for u ∈ Pq(T ). Here NI stands for “Numerical Integration”, and for simplicity the
dependence of Nvol, w

NI
T,j and xNI

T,j on q has been made implicit.
One advantage of the Fekete points is that in the “volume” quadrature (36), a subset of the

quadrature points belong to the edges of T where they coincide with the Gauss-Lobatto points,
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hence providing quadrature formulas for the edges. In other words, on every edge e ∈ E(T ) we
have a quadrature formula ∫

e
u ≈

Nedge∑
j=1

wNI
e,ju(xNI

e,j) (37)

that is such that

{xNI
e,j : j = 1, . . . , Nedge} ⊂ {xNI

T,j : j = 1, . . . , Nvol} for all e ∈ E(T ). (38)

Moreover, the edge quadrature (37) involves Nedge := q+ 1 Gauss-Lobatto points, hence it is exact
for u|e ∈ P2q−1(e). Equipped with these quadrature formulas we let the discrete current density in

(27) be defined by J̃n+1/2 :=
(
σ̃εγ(J

n+ 1
2

h )
)
γ∈Λ̃εh

with

J
n+ 1

2
h = πdiv,NI

h (J
n+ 1

2
N ) :=

∑
λ∈Λεh

σε,NI
λ (J

n+ 1
2

N )ϕελ, where (39)


σε,NI
T,d,α(Jn+ 1

2 ) := |FT |−1
∑Nvol

j=1 w
NI
T,j(F̃

t
TJ

n+ 1
2

N (xNI
T,j))d πT,α(xNI

T,j) for T ∈ Th, d = 0, 1, α ∈ Γ2
p−2

σε,NI
e,β (Jn+ 1

2 ) :=
∑Nedge

j=1 wNI
e,j(J

n+ 1
2

N (xNI
e,j) · ne)πe,β(xNI

e,j) for e ∈ Eh, β ∈ Γ1
p−1.

(40)

Using the inclusion (38) we then see that the Fekete point values of J
n+1/2
N computed for the volume

degrees of freedom can be reused for the edge degrees of freedom.

Remark 2.1. In practice we can choose the degree q ∈ 3N of the Fekete formulas so that the order
of the resulting FEM scheme is preserved. Since (13) is formally a scheme of order p, this amounts

to asking that the approximation πdiv
h J ≈ πdiv,NI

h J is exact for J ∈ Pp−1(Th)2. When applied to
the edge quadratures this yields 2q− 1 ≥ 2p− 2 and for the volume quadratures it gives q ≥ 2p− 3.
Thus, for p ≤ 3 we can take q = 3.

2.3 The current deposition algorithm

To compute J
n+ 1

2
h we need the point values J

n+ 1
2

N (xNI
T,j), T ∈ Th, j = 1, . . . , Nvol (see (39), (40) and

the inclusion (38)). Consequently in view of (34) we have to compute elementary contributions of
the form

CNI
T,j(k, n) :=

∫ tn+1

tn

Sε(x
NI
T,j − xk(t))

dt

∆t
. (41)

Using the piecewise affine structure of the particle trajectories, and writing for simplicity

x̃k(τ) = x̃k(T, j, n; τ) := xNI
T,j − xk(t) = xNI

T,j − xnk − τv
n+ 1

2
k for τ := t− tn ∈ [0,∆t],

the elementary particle contribution (41) can be computed exactly with the following procedure.

Algorithm 2.2 (Exact computation of the time-averaged elementary particle contribution CNI
T,j(k, n)).

Let us write (x̃k, ỹk) = x̃k the above k-th particle trajectory relative to the j-th Fekete point of T .

1. Find the biggest intervals [τ?1 , τ
?
2 ] and [τ?3 , τ

?
4 ] such that −ε ≤ x̃k(τ) ≤ ε on [τ?1 , τ

?
2 ] and

−ε ≤ ỹk(τ) ≤ ε on [τ?3 , τ
?
4 ]. Then set τ? := max (0, τ?1 , τ

?
3 ), τ? := min (∆t, τ?2 , τ

?
4 ), and observe

that we have

CNI
T,j(k, n) =

∫ τ?

τ?

S1d
ε (x̃k(τ))S1d

ε (ỹk(τ))
dτ

∆t
.
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2. Noticing that x̃k(τ) and ỹk(τ) are affine on [τ?, τ
?] and that S1d

ε is a polynomial function
on [−ε, ε] (see (35)), it is an easy game to compute an explicit formula for the primitive of
S1d
ε (x̃k(τ))S1d

ε (ỹk(τ)).

The discrete current J
n+ 1

2
h is then implemented with a loop over the particles. To each particle

with index k = 1, . . . , N , we associate a current density

J
n+ 1

2
k := qwk

∫ tn+1

tn

v
n+1/2
k S(x− xk(t))

dt

∆t

and we observe that the quadratures CNI
T,j(k, n) computed in Algorithm 2.2 satisfy

qwkC
NI
T,j(k, n)v

n+1/2
k = qwk

∫ tn+1

tn

v
n+1/2
k S(xNI

T,j − xk(t))
dt

∆t
= J

n+ 1
2

k (xNI
T,j). (42)

In particular, the particle’s contribution to the projected current reads

πdiv,NI
h (J

n+1/2
k ) =

∑
λ∈Λεh

σε,NI
λ (J

n+ 1
2

k )ϕελ

=
∑
T∈Th

∑
d=0,1

∑
α∈Γ2

p−2

[
|FT |−1

Nvol∑
j=1

wNI
T,jπT,α(xNI

T,j)(F̃
t
TJ

n+ 1
2

k (xNI
T,j))d

]
ϕεT,d,α

+
∑
e∈Eh

∑
β∈Γ1

p−1

[Nedge∑
j=1

wNI
e,jπe,β(xNI

e,j)(J
n+ 1

2
k (xNI

e,j) · ne)
]
ϕεe,β

= qwk
∑
T∈Th

∑
d=0,1

∑
α∈Γ2

p−2

[
|FT |−1

Nvol∑
j=1

wNI
T,jC

NI
T,j(k, n)πT,α(xNI

T,j)(F̃
t
Tv

n+1/2
k )d

]
ϕεT,d,α

+ qwk
∑
e∈Eh

∑
β∈Γ1

p−1

[Nedge∑
j=1

wNI
e,jC

NI
T,j′(k, n)πe,β(xNI

e,j)(v
n+1/2
k · ne)

]
ϕεe,β,

(43)

where j′ = j′(j) is such that xNI
T,j′ = xNI

e,j , see (38). Specifically, we compute πdiv,NI
h (J

n+1/2
k ) with a

call to the following recursive algorithm (starting from the cell T that contains xnk).

Algorithm 2.3 (Recursive computation of the k-th particle contribution to J
n+ 1

2
h ). Given a cell

T , and assuming that the contributions to the volume dofs of T have not been computed yet, proceed
as follows.

(a) For every quadrature point xNI
T,j on the cell, use Algorithm 2.2 to compute (and store) the

elementary particle contributions CNI
T,j(k, n).

(b) For d = 0, 1 and α ∈ Γ2
p−2, compute the contribution

σε,NI
T,d,α(J

n+ 1
2

k ) = |FT |−1
Nvol∑
j=1

wNI
T,jπT,α(xNI

T,j)(F̃
t
TJ

n+ 1
2

k (xNI
T,j))d

= qwk|FT |−1
Nvol∑
j=1

wNI
T,jC

NI
T,j(k, n)πT,α(xNI

T,j)(F̃
t
Tv

n+1/2
k )d

and add it to the Raviart-Thomas coefficient (T, d, α) of the deposited current πdiv,NI
h (J

n+1/2
k ).
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(c) For e ∈ E(T ): if the contributions to the edge dofs associated with e have not been computed
yet, then for β ∈ Γ1

p−1, compute the contribution

σε,NI
e,β (J

n+ 1
2

k ) =

Nedge∑
j=1

wNI
e,jπe,β(xNI

e,j)(J
n+ 1

2
k (xNI

e,j) · ne)

= qwk

Nedge∑
j=1

wNI
e,jC

NI
T,j′(k, n)πe,β(xNI

e,j)(v
n+1/2
k · ne)

(where j′ = j′(j) is such that xNI
T,j′ = xNI

e,j, see (38)) and add it to the Raviart-Thomas

coefficient (e, β) of the deposited current πdiv,NI
h (J

n+1/2
k ).

(d) For every cell T ′ sharing an edge with T , do: if T ′ intersects the support of the moving
particle, that is the convex set ΩS(k, n) := [−ε, ε]2 + {xk(t) : t ∈ [tn, tn+1]}, see Remark 2.4
below, and if the particle contributions to the volume dofs associated with T ′ have not been
computed yet, then

– recursively call Algorithm 2.3 with T = T ′,

– otherwise do nothing (i.e., stop the recursion).

BRIEF ARTICLE

THE AUTHOR

xn
k

T xn+1
k

ϵ

ΩS(k, n)

Figure 1. Your figure

1

Figure 1: Example of a triangular mesh cell T (with its Fekete points for q = 3) intersecting the
convex support ΩS(k, n) of the k-th particle moving on the time step [tn, tn+1].

Remark 2.4. To test whether T intersects the convex set ΩS(k, n) := [−ε, ε]2 + {xk(t) : t ∈
[tn, tn+1]} (i.e., the moving particle support, see Figure 1), we can compute the determinants asso-
ciated with the edges eTi of T , namely the set{

det(xTi+2 − x,xTi+1 − x) for x ∈
{
xnk + ε

(
θx
θy

)
+ τv

n+1/2
k : θx, θy ∈ {−1, 1}, τ ∈ {0,∆t}

}}
.

If for some i ∈ {0, 1, 2} these determinants are all positive (or zero), then the intersection has a
zero measure and the particle k has no current contribution on the dofs associated to the cell T
(nor to one of its edges). Otherwise, the intersection may have a positive measure.
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3 A numerical study

3.1 An academic beam test case

To assess the performances of the above method we simulate an academic diode in a 2d domain
Ω = [0, 0.1m]2. On the left boundary a beam of electrons is steadily injected and accelerated by
a constant external field which derives from the electric potential imposed on both the cathode
(φext = 0 on the left boundary) and the anode (φext = 105V on the right boundary).

For simplicity, we consider that the beam is injected with a given distribution finj corresponding
to a smooth space-density ninj(y) over the injection window x = 0, y−inj := 0.03m ≤ y ≤ 0.07m =: y+

inj

and a Maxwellian distribution in the (first) velocity variable. Specifically, we consider

finj(t,x,v) := ninj(y)Minj(vx)δ0(vy) for x ∈ {0} × [y−inj, y
+
inj], v ∈ R+ × R (44)

with

ninj(y) :=
n̄inj π

2
sin

(
π(y − y−inj)

y+
inj − y−inj

)
and Minj(vx) :=

me

2πkTe
exp

(
−me(vx − vinj)

2

2kTe

)
.

Here the average injection speed is vinj := c/2, and the kinetic electron temperature is such that
the standard deviation in velocity is σ =

√
kTe/me = vinj/10. Finally we inject the electrons with

an average current J̄inj = qen̄injvinj of 104Am−2 (in absolute value), which determines the average
density n̄inj. In Figure 2 we show the typical profile of the solution in the steady state regime,
together with the mesh used in the test cases below.

Figure 2: Academic beam test case. The self-consistent E field (left plot) and the numerical
particles accelerated towards the right boundary (right plot) show the typical profile of the solution
in the steady state regime. For the considered geometry the external field is constant Eext =
−106Vm−1.

3.2 Charge-conserving injection of smooth particles

The above inflow distribution (44) is discretized by loading macro-particles (Dirac or smooth) on
the discrete times tn = n∆t, n = 0, 1, . . ., as follows. To preserve the discrete Gauss law and to
avoid a systematic approximation error on the injection boundary when finite-size particles are
used, we load the particles in a virtual region outside the computational domain similarly as in
other approaches, see e.g., [5] for the case of Dirac particles.

We first describe our injection procedure for the case of a single injection speed, say vinj. Since
the basic idea is to use a standard loading algorithm to approximate the injected beam before

11



it enters the domain, we extend the inflow space density ninj uniformly for x < 0, and we load
the particles in a portion of this virtual beam corresponding to x ∈ [x−inj, x

+
inj]. In order that no

charge be loaded inside the computational domain, we take x+
inj := −ε where we recall that ε is

the radius of the particle shape support, see (35). Next, because particles in this virtual region are
simply transported and feel no force, we see that (i) they will enter the computational domain with
their loading velocity, and (ii) in order that the successive particle loadings correspond to a regular
sampling of the injected beam, we must set

x−inj := x+
inj − vinj∆t. (45)

Finally, if we want to inject particles with different speeds the above procedure can be modified by
adapting the length of the virtual loading region according to the actual velocity of each particle.
Specifically, the random position of a particle loaded with velocity vx = v0

k should be drawn on a
virtual region [x−inj,k, x

+
inj] corresponding to

x+
inj := −ε x−inj,k = x−inj(v

0
k) := x+

inj − v0
k∆t (46)

as depicted in Figure 3.

BRIEF ARTICLE

THE AUTHOR

ϵ

xx−
inj,k = −ϵ − v0

k∆t x+
inj = −ϵ

vx

v0
k

Figure 1. Your figure

1

Figure 3: Phase-space profile of the smooth particle injection. For a charge-conserving injection,
particles must be loaded at each time step in a “virtual” region (outside the computational domain
x ≥ 0) where the inflow distribution finj is extended uniformly with respect to x < 0. For an
accurate discretization with smooth shapes of radius ε, particles with an initial speed of vx = v0

k

must then be loaded following this virtually extended distribution on an interval [−ε− v0
k∆t,−ε].

3.3 Numerical results

In Figures 4 and 5 we show the results obtained with the above finite element scheme (13) coupled
with the tensor-product Jacobs-Hesthaven particles (35) and we compare them with two standard
mixed finite element schemes coupled with point particles. The key is as follows.

• All the curves display the relative error ‖Fh − Fref‖/‖Fref‖ of some numerical field Fh versus
the cpu time of the associated run. Here the considered fields are either the projected current
density Jh = πdiv,NI

h J (plots in the top rows), the finite element electric field Eh (in the
center rows) or the finite element magnetic field Bh (in the bottom rows), and the errors are
measured in L2 (left plots) and L∞ (right plots).
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• All the finite element schemes use the same mesh (an unstructured triangulation of the
domain Ω = [0, 0.1]2 using 244 triangles with maximum diameter h ≈ 0.016) and the same
time domain, chosen so that particles have travelled approximatively three diode lengths
before the final time step where errors are measured. As for the reference fields, they were
obtained using a fine mesh of 2158 triangles with maximum diameter h ≈ 0.005, and smooth
particles.

• Abscissas show the cpu times in seconds, each simulation being run on a 2.3 GHz Intel Core
i7 laptop. Because depositing the current is the most expensive part, the runs were sped-up
by a parallel treatment of the particles using 7 processes.

• Curves with dashed lines show results obtained with the “strong-Ampère” mixed finite-
element method described (13) coupled with the smooth tensor-product particles (35). Each
curve corresponds to a different ratio between the particle radius ε > 0 and the mesh resolu-
tion h (defined as the maximum diameter of the triangles in the mesh), as indicated in the
plots.

• Curves with solid lines show results obtained with point particles (ε = 0, that is S = δ) for
comparison, coupled with two different finite-element Maxwell solvers. The filled circles cor-
respond to point particles coupled with the “strong-Ampère” finite-element scheme (13) and
the empty circles correspond to point particles coupled with the standard “strong-Faraday”
mixed finite-element scheme (17).

• In each curve, the different points correspond to different numbers Nppc of particles per cell.
This number determines the number of particles loaded in the virtual region outside the
computational domain as described in Section 3.2. It is indicated in the point particles runs
(where it varies between 50 and 5000) but has been ommited for readibility in the smooth
particle runs, where it varies between 5 and 50. Note that here the beam propagates on a
region containing approximatively 90 triangular cells, so that in the steady-state regime the
number of particles that are pushed at each time step in the computational domain is of
about 90Nppc.

Observing first the convergence curves obtained with point particles (solid lines with circle
points) we point out two facts.

• First, the “strong-Ampère” runs are much faster than the “strong-Faraday” ones. One reason
for this is that in the latter runs one must solve at each time step a linear problem involving
the mass matrix of the curl-conforming finite element space used for the electric field. In
the “strong-Ampère” runs the linear problems to be solved involve the mass matrix of the
continuous elements space for the magnetic field, which is much smaller since B is scalar
valued. A second reason is that point particles deposit their current with less operations in
the “strong-Ampère” scheme than in “strong-Faraday” schemes.

• Second, the “strong-Faraday” finite element scheme appears to be more robust than the
“strong-Ampère” one, indeed with the latter we observe spurious results for some values of

Nppc. This may be caused by the fact that when extended to point particles, πdiv
h J

n+1/2
N is not

a continuous function of the particle positions. Indeed, when a particle k moves exactly along

a mesh edge this projection involves volume-based degrees of freedom of J
n+1/2
k which are

essentially products between a Dirac measure on an edge and a piecewise polynomial function
that is fully discontinuous there. This effect does not appear when the particles deposit their
current in the curl-conforming finite element space involved in the “strong-Faraday” scheme,
as explained in [2, Lemma 3.1].
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From the convergence curves displayed in Figures 4 and 5 we then draw the following observa-
tions.

• Among the parameters for which different values are taken in our tests (i.e., the number of
particles per cell Nppc, the ratio ε/h and the degree of the smooth particle shape), the most
critical one seems to be the ratio between the particle radius ε and the maximum diameter h of
the mesh cells. Specifically, our results indicate that the best results (in terms of accuracy and
computational time) are obtained for smooth particles with radius ε in an approximate range
of h/4 to h/2, and for particles shapes (35) with coordinate degree 2a = 4, the latter value
seems to be the best choice for all the measured errors. Note that since h is the maximum
diameter of the mesh cells, this amounts to taking smooth particles with approximatively the
same diameter as the mesh cells.

• For the parameters chosen here, increasing the coordinate degree of the particles from 2a = 2
to 2a = 4 slightly improves the accuracy of the runs with particles radius of ε ≥ h/2 and it
deteriorates those with ε ≤ h/4. It has no significant effect on the computational time.

• Increasing the number Nppc of particles per cell improves the numerical accuracy for small
particles (ε ≤ h/4) but has basically no impact for medium or large particles (ε ≥ h/2). On
the other hand, it always deteriorates the cpu time of the runs.

• The best compromise between numerical accuracy and computational time seems to be ob-
tained for smooth particles with coordinate degree of 2a = 4 and radius ε ≈ h/2 (i.e., particles
with about the same diameter as the mesh cells), when using Nppc ≈ 5 − 10 particles per
cell. With those parameters the computational time is about the same as when using the
“strong-Ampère” finite element solver with about 200 point particles per cell, and the nu-
merical accuracy is improved by a factor ranging from approximatively 2 (when measured in
L2) to more than 4 (when measured in L∞).

Finally, we show in Figure 6 the snapshots of the electro-magnetic fields corresponding to the
“strong-Ampère” finite-element scheme coupled with about 200 point particles per cell (left plots)
and about 5 smooth particles per cell (right plots), with the parameters described just above.
As seen in Figure 5 these two runs took about the same cpu time (14 seconds), which clearly
demonstrates the higher efficiency of the smooth particles for this test case.

Conclusion

In this work we have proposed a conforming finite-element scheme for the 2d time-dependent
Maxwell system that preserves a strong Gauss law when the current is deposited from the particles
with a Raviart-Thomas finite-element interpolation, and we have described an algorithm based
on Fekete quadrature formulas for computing a numerical approximation of this current when the
particles have a smooth shape. A numerical study involving an academic beam test-case with
smooth injected current is used to assess the performances of the coupled scheme, and it is shown
that with a non-optimized implementation the proposed method is more accurate than two finite-
element schemes using point (Dirac) particles, for an appropriate choice of the particle parameters.
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Figure 4: Relative error curves obtained with tensor-product Jacobs-Hesthaven particles of coor-
dinate degree 2a = 2 and different values for the particle radius ε > 0. Filled and empty circles
(black curves) correspond to simulations using point particles (ε = 0), see the text for details. Here
the errors are measured in L2 (left) and L∞ (right) for the current density J (top), the electric
field E (center) and the magnetic field B (bottom). The abscissa shows the respective cpu times.
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Figure 5: Relative error curves obtained with tensor-product Jacobs-Hesthaven particles of coor-
dinate degree 2a = 4 and different values for the particle radius ε > 0. Filled and empty circles
(black curves) correspond to simulations using point particles (ε = 0), see the text for details. Here
the errors are measured in L2 (left) and L∞ (right) for the current density J (top), the electric
field E (center) and the magnetic field B (bottom). The abscissa shows the respective cpu times.
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Figure 6: Academic beam test-case. Snapshots of the self-consistent fields (Ex on the top row, Ey on
the center row and B on the bottom row) obtained with the “strong-Ampère” mixed finite-element
scheme (13) coupled with smooth particles (left plots) and smooth Jacobs-Hesthaven particles (35)
of radius ε = h/2 (right plots) with respective numbers Nppc of particles per cell of about 200 and
5. For these two runs the cpu time was the same, namely 14 seconds.
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