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Constructing exact sequences on non-conforming discrete spaces

In this note we propose a general procedure to construct exact sequences on non-conforming function spaces and we show how this construction can be used to derive a proper discrete Gauss law for structure-preserving discontinuous Galerkin (DG) approximations to the time-dependent 2d Maxwell equations.

Version française abrégée

Etant donné une suite exacte discrète V 0

h d 0 h --→ V 1 h d 1 h --→ V 2
h qui sera composée en pratique d'espaces conformes, il est possible de construire une nouvelle suite exacte sur un espace arbitraire Ṽ 1 h par la procédure suivante.

-En s'appuyant sur un projecteur P 1 h vers l'espace conforme V 1 h , on pose d1 h := d 1 h P 1 h . Le noyau de ce nouvel opérateur est essentiellement composé de l'image de d 0 h et du noyau de P 1 h .

-Pour définir un bon opérateur d0

h on étend l'opérateur d 0 h à un espace produit du type V 0 h × Ṽ 1 h de façon à atteindre tous les éléments de ce nouveau noyau. L'application au cadre des schémas DG pour les équations de Maxwell 2d se fait alors au moyen de l'observation suivante : lorsque l'opérateur P 1 h est obtenu par moyennisation locale des degrés de liberté d'arêtes dans une extension aux fonctions régulières par morceaux de l'interpolant canonique sur les éléments finis de Nédélec en 2d, la construction esquissée plus haut permet de retrouver l'opérateur rotationnel discret standard du schéma DG à flux centré.

La suite exacte ainsi construite fait alors intervenir un nouvel opérateur discret de type gradient dans un cadre Galerkin discontinu, qui par dualité définit un nouvel opérateur de divergence discrète. Conformément au programme de travail décrit dans [START_REF] Pinto | Handling the divergence constraints in Maxwell and Vlasov-Maxwell simulations[END_REF] en vue d'obtenir des schémas généraux préservant la structure pour les équations de Maxwell temporelles, cet opérateur divergence a les propriétés requises pour définir une loi de Gauss discrète devant être vérifiée par un schéma DG préservant la charge.

Introduction

Exact sequences of function spaces with differential operators such as gradient, curl or divergence play a major role in the construction and analysis of mixed finite element approximations of physical problems. This is especially true in computational electromagnetics since the works of Bossavit [START_REF] Bossavit | Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism[END_REF][START_REF] Bossavit | Un nouveau point de vue sur les éléments mixtes. Matapli[END_REF] who has pointed out the importance of preserving at the discrete level the natural structure of Maxwell's equations in terms of de Rham diagrams of differential forms [START_REF] Kotiuga | Hodge Decompositions and Computational Electromagnetics[END_REF], and in the recent decades the study of structure-preserving schemes has become a field of its own with numerous developments, see e.g. [START_REF] Boffi | A note on the deRham complex and a discrete compactness property[END_REF][START_REF] Hiptmair | Finite elements in computational electromagnetism[END_REF][START_REF] Costabel | Computation of resonance frequencies for Maxwell equations in non-smooth domains[END_REF][START_REF] Boffi | Compatible Discretizations for Eigenvalue Problems[END_REF][START_REF] White | Development and application of compatible discretizations of Maxwell's equations[END_REF][START_REF] Demkowicz | Polynomial Exact Sequences and Projection-Based Interpolation with Application to Maxwell Equations[END_REF][START_REF] Arnold | Finite element exterior calculus: from Hodge theory to numerical stability[END_REF][START_REF] Boffi | Mixed finite element methods and applications[END_REF][START_REF] Pinto | Gauss-compatible Galerkin schemes for time-dependent Maxwell equations[END_REF].

In the context of Hilbert spaces, de Rham diagrams take the form of sequences like

H 1 (Ω) H(curl; Ω) H(div; Ω) L 2 (Ω) grad curl div (1) 
which, under some smoothness and topological assumptions on the domain Ω, are exact in the sense that the range of each operator coincides with the kernel of the next one in the sequence. Many fundamental properties of finite-element discretizations, such as the spectral correctness of Maxwell's eigenvalue problem are then related to the question whether the underlying function spaces preserve this property.

To our knowledge, most of the available work in the field is concerned with conforming methods where the finite-dimensional function spaces are embedded in the above sequence [START_REF] Arnold | Finite element exterior calculus: from Hodge theory to numerical stability[END_REF]. In this note we propose a general procedure to construct exact sequences on non-conforming function spaces, and we show how this construction can be used to derive a proper discrete Gauss law in the context of structure-preserving discontinuous Galerkin (DG) approximations of the time-dependent Maxwell equations in 2d, following the approach outlined in [START_REF] Pinto | Handling the divergence constraints in Maxwell and Vlasov-Maxwell simulations[END_REF].

Abstract construction of exact sequences on arbitrary spaces

In this section we provide a general procedure to build an exact sequence on an arbitrary discrete space, starting from a known exact sequence. To this end we consider an abstract sequence of the form

V 0 h d 0 h -----→ V 1 h d 1 h -----→ V 2 h (2)
that is assumed exact in the sense that ker

d 1 h = d 0 h V 0 h . (3) 
The typical situation that we have in mind is that of conforming spaces V k h (i.e., embedded in a sequence of Hilbert spaces such as (1)) and operators d k h defined as the restriction of the corresponding differential operators. Now, if Ṽ 1 h is a finite-dimensional space that is a subset of neither V 1 h nor the Hilbert space associated to the differential operator d 1 h in the continuous sequence (1), we can build a new operator d1

h approximating d 1 h on Ṽ 1 h by considering a projection on V 1 h , P 1 h : V 1 h → V 1 h where V 1 h := V 1 h + Ṽ 1 h (4) 
(here the sum is necessary since P 1 h must be defined on V 1 h ), and by setting d1

h := d 1 h P 1 h | Ṽ 1 h : Ṽ 1 h → V 2 h . (5) 
In order to build an exact sequence involving Ṽ 1 h we need to characterize the kernel of the latter operator. Lemma 2.1 It holds ker d1

h = d 0 h V 0 h ⊕ (I -P 1 h ) Ṽ 1 h ∩ Ṽ 1 h .
Proof: The inclusion ⊃ is easily verified by applying d1 h , indeed this operator coincides with

d 1 h on d 0 h V 0 h since the latter is in V 1 h .
To verify next the inclusion ⊂ we take u ∈ ker d1 h . Then P 1 h u is in V 1 h and also in ker d 1 h , hence in d 0 h V 0 h according to the exact sequence property (3). In particular, we have

u = P 1 h u + (I -P 1 h )u ∈ d 0 h V 0 h ⊕ (I -P 1 h ) Ṽ 1 h
where we have used that u ∈ Ṽ 1 h , and the inclusion follows. Here the direct sum is verified by applying

P 1 h to some u ∈ d 0 h V 0 h ∩ (I -P 1 h ) Ṽ 1 h : clearly P 1 h u = 0, and since d 0 h V 0 h ⊂ V 1 h we also have u = P 1 h u.

Now that the kernel of d1

h is characterized, we may define an approximation of d 0 h on the product space

V 0 h × Ṽ 1 h . Specifically, we set d0 h : V 0 h → V 1 h , (ϕ, u) → d 0 h ϕ + (I -P 1 h )u, where V 0 h := V 0 h × Ṽ 1 h . (6) 
The proper operator on Ṽ 1 h is then obtained by a simple restriction d0

h := d0 h | Ṽ 0 h : Ṽ 0 h → Ṽ 1 h where Ṽ 0 h := ( d0 h ) -1 ( Ṽ 1 h ) = (ϕ, u) ∈ V 0 h : d0 h (ϕ, u) ∈ Ṽ 1 h , (7) 
indeed this yields the following result.

Theorem 2.2 The sequence

Ṽ 0 h d0 h -----→ Ṽ 1 h d1 h -----→ V 2 h (8) is exact, in the sense that d0 h Ṽ 0 h = ker d1 h .
Proof: The claimed relation is straightforward to verify, using the definition of d0 h and Lemma 2.1.

Remark 1 If we let d1

h := d 1 h P 1 h then the sequence V 0 h d0 h -----→ V 1 h d1 h -----→ V 2 h ( 9 
)
is also exact, and it remains so if we set

V 0 h := V 0 h × V 1 h in (6), since (I -P 1 h ) V 1 h = (I -P 1 h ) Ṽ 1 h . Remark 2 If V 1 h ⊂ Ṽ 1 h
, the above construction simplifies, as the sequences (8) and (9) coincide.

Application to the centered DG discretization of the 2d Maxwell system

The abstract construction described above can be applied to the design of structure-preserving Maxwell schemes based on fully discontinuous finite-element spaces, following the program outlined in [START_REF] Pinto | Handling the divergence constraints in Maxwell and Vlasov-Maxwell simulations[END_REF]Sec. 4]. In this short note we illustrate this construction in the case of a discontinuous Galerkin (DG) discretization of the normalized 2d Maxwell system

∂ t B + curl E = 0 ∂ t E -curl B = -J (10) 
on some bounded domain Ω of R 2 . Here we assume that Ω is simply-connected, Lipschitz and partitioned by a geometrically conforming triangulation T h with set of edges denoted by E h .

A reference exact sequence with conforming spaces

To begin with we consider the conforming sequence

V 0 h := L p (Ω, T h ) grad -------→ V 1 h := N p-1 (Ω, T h ) curl ------→ V 2 h := P p-1 (T h ) ( 11 
)
where

L p (Ω, T h ) := P p (T h ) ∩ H 1 (Ω) (12 
) denotes the continuous "Lagrange" elements of total degree ≤ p,

N p-1 (Ω, T h ) := N p-1 (T h ) ∩ H(curl; Ω) with N p-1 (T ) := P p-1 (T ) 2 ⊕ -y x P hom p-1 (T ) ( 13 
)
is the first-kind Nédélec space of order p (introduced in [START_REF] Nédélec | Mixed finite elements in R 3[END_REF] for the 3d setting, see also [4, Sec. 2.3]), and

P p-1 (T h ) := {v ∈ L 2 (Ω) : v| T ∈ P p-1 (T ), T ∈ T h } (14) 
are the discontinuous elements of degree ≤ p -1. As is well known, ( 11) is indeed exact in the sense that Im grad h = ker curl h [START_REF] Nédélec | Mixed finite elements in R 3[END_REF] holds with grad h := grad | V 0 h and curl h := curl | V 1 h , which correspond to d 0 h and d 1 h in our abstract construction. Relation ( 15) is usually derived from the continuous exact sequence

H 1 (Ω) grad -------→ H(curl; Ω) curl ------→ L 2 (Ω) (16) 
by using commuting diagrams of projection operators (see e.g. [START_REF] Boffi | Mixed finite element methods and applications[END_REF]) but a direct argument can be given here:

If u = v + ( -y x ) v ∈ N p-1 with v ∈ P 2
p-1 and v ∈ P hom p-1 , then curl u = curl v + (p + 1)v. Now assume curl u = 0. Since curl v clearly belongs to P p-2 , this yields v = 0 and hence u ∈ P 2 p-1 . Using this and the exact sequence [START_REF] White | Development and application of compatible discretizations of Maxwell's equations[END_REF] we find u = grad ϕ for some ϕ which must belong to P p , hence (15).

A new exact sequence with discontinuous Galerkin spaces

We next consider replacing the Nédélec space V 1 h by a fully discontinuous piecewise polynomial space Ṽ 1 h := P p-1 (T h ) 2 ⊂ H(curl; Ω). To construct an exact sequence based on this discontinuous space, following Section 2 we need a projection operator

P 1 h on V 1 h .
Here a natural choice is to extend the standard finite element interpolation based on the 2d Nédélec degrees of freedom which correspond to (see, e.g., [4, Sec. 2.3])

       M 1 T = {u → T u • v : v ∈ P p-2 (T ) 2 }, T ∈ T h M 1 e = {u → e (n e × u)v : v ∈ P p-1 (e)}, e ∈ E h (17) 
by using local averages on the edges. Specifically, we define

P 1 h : V 1 h → V 1 h = N p-1 (Ω, T h ) where V 1 h := Ṽ 1 h + V 1 h (18)
by the relations

M 1 T (P 1 h u) = M 1 T (u), T ∈ T h M 1 e (P 1 h u) = M 1 e ({u} e ), e ∈ E h . (19) 
Here we have used the standard notation for the averages on interior and boundary edges, namely 

This projection operator has several interesting properties. First it is local, in the sense that the degrees of freedom of P 1 h u associated to some mesh element (i.e., edge or triangle) only depend on the values of u on the neighboring mesh elements. In particular, P 1 h can be implemented with a sparse matrix. Second, the non-conforming curl operator d1 h corresponding to [START_REF] Bossavit | Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism[END_REF], that we shall now denote curl dg h := curl

P 1 h | Ṽ 1 h (21)
coincides with the standard DG curl with centered fluxes [START_REF] Fezoui | Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes[END_REF]. Indeed a straightforward computation using Green formulas and the form of the degrees of freedom (17) yields the following result.

Lemma 3.1 The non-conforming curl operator defined on Ṽ 1 h = P p-1 (T h ) 2 by (18)-( 21)

satisfies curl P 1 h u, v = T ∈T h u, curl v T - e∈E h {u}, [v] e for all v ∈ P p-1 (T h ) (22) 
with a standard notation for the averages (20) and tangential jumps on interior and boundary edges, i.e. 

An exact sequence is then provided by the abstract construction from Section 2. Specifically, setting

grad dg h : Ṽ 0 h → Ṽ 1 h , (ϕ, u) → grad ϕ + (I -P 1 h )u, ( 24 
) with Ṽ 0 h := (ϕ, u) ∈ V 0 h × Ṽ 1 h : grad ϕ + (I -P 1 h )u ∈ Ṽ 1 h (25) 
we find that the sequence

Ṽ 0 h grad dg h --------→ Ṽ 1 h curl dg h -------→ V 2 h ( 26 
)
is exact in the sense that Im grad dg h = ker curl dg h . (involving some approximation ρh to the exact charge density ρ) that should be preserved by a structurepreserving DG scheme for the time-dependent problem [START_REF] Costabel | Computation of resonance frequencies for Maxwell equations in non-smooth domains[END_REF]. To do so we define as a discrete divergence operator the adjoint of the above gradient operator (24) with a minus sign, namely

div dg h := -(grad dg h ) * : Ṽ 1 h → Ṽ 0 h . (29) 
In particular, if ρ h is an approximation to ρ in the continuous finite-element space V 0 h = L p (Ω, T h ), then setting ρh := (ρ h , 0) ∈ Ṽ 0 h allows to rewrite the discrete Gauss law (28) with test functions in Ṽ 0 h , as Ẽh , -grad ϕ + Ẽh , (P 1 h -I)u = ρ h , ϕ for all (ϕ, u) ∈ Ṽ 0 h .

Finally we point out that such a discrete Gauss law is well suited to the design of charge-conserving DG-particle schemes, and we refer to the forthcoming article [START_REF] Pinto | Compatible Maxwell solvers with particles in 2d. I: conforming and nonconforming schemes with a strong Faraday law[END_REF] for more details.

{u} e := 1 2 (

 2 u| T - e + u| T + e )| e and {u} e := (u| Te )| e respectively.

  [v] e := (n - e × v| T - e + n + e × v| T + e )| e and [v] e := (n e × v| Te )| e respectively.

) 3 . 3 .

 33 A proper discrete Gauss law for the DG discretization of the 2d Maxwell system Following [7, Sec. 4] the above construction can be used to derive a proper discrete Gauss law of the form div dg h Ẽh = ρh (28)

Email address: campos@ann.jussieu.fr (Martin Campos Pinto).Preprint submitted to the Académie des sciences

Acknowledgements

The author acknowledges stimulating discussions with Eric Sonnendrücker and Mathieu Lutz.