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Abstract

We consider the Besov space B%?(G) on a unimodular Lie group G equipped with a sublaplacian A. Using
estimates of the heat kernel associated with A, we give several characterizations of Besov spaces, and show an
algebra property for B59(G) N L (G) for a > 0, 1 < p < 400 and 1 < g < +o0o. These results hold for polynomial
as well as for exponential volume growth of balls.
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1 Introduction and statement of the results

We use the following notations. A(z) < B(z) means that there exists C' independent of x such
that A(x) < C B(x) for all z. A(z) ~ B(z) means that A(z) < B(z) and B(x) < A(z). The
parameters which the constant is independent to will be either obvious from context or recalled.

1.1 Introduction

Let d € N*. In R?, the Besov spaces B24(R%) are obtained by real interpolation of Sobolev spaces and can be defined,
for p,q € [1,+00] and o € R, as the subset of distributions S’(R%) satisfying

q

I fllza = [1Y* fllLe + (Z (25| p * fle]q> < 400 (1)
k=1

where, if p € S(R?) is supported in B(0,2)\B(0, %), ¢x and 9 are such that For(¢) = p(27%¢) and Fy(€) =

)
1= 3252, p(2758).

The norm of the Besov space B2?(R?) can be also written by using the heat operator. Indeed, Triebel proved in
[16, 18, Section 2.12.2] that for all p,q € [1, +oc], all @ > 0 and all integer m > ¢,

q ﬂ) @)

LPt

81\/[ Ht
ot M

||f||Bg’q = HfHLp + (/ t(mf%)q f
0

where H; = e'2 is the heat semigroup (generated by —A). Note that we can give a similar characterization by using,

instead of the heat semigroup, the harmonic extension or another extensions obtained by convolution (see [19, 12]).
Another characterization in term of functional using differences of functions was done. Define for M € N*| f €
LP(RY), x,h € R? the term
M

M _
v =3 () o m
1=0
and then for M > a > 0, p,q € [1, +o0]
seted = ([ v, ®
We have then for all @ > 0, p,q € [1,+00] and M € N with M > a,
1fllgza = (| fllLe + S&5 f- (4)

One of the remarkable property of Besov spaces (see [7, Proposition 1.4.3], [14, Theorem 2, p. 336], [12, Proposition
6.2]) is that BE:4(R?) N L>(R?) is an algebra for the pointwise product, that is for all « > 0, all p, q € [1, +0c0], one has

If9llsze S W lBzallgllioe + 11 fllz=<llgll5ze- ()

The idea of [7] consists in decomposing the product fg by some paraproducts. The authors of [12] wrote B24(R?) as a
trace of some weighted (non fractional) Sobolev spaces, and thus deduced the algebra property B2:4(R?)N L (R9) from
the one of WP*(R4)NL>®(R%). Notice also that, when o € (0,1) and M = 1, the algebra property of B2:4(R%)N L>(R?)
is a simple consequence of (4).

The property (5) have also been studied in the more general setting of Besov spaces on Lie groups. Gallagher and
Sire stated in [10] an algebra property for Besov spaces on H-type groups, which are a subclass of Carnot groups. In
order to do this, they used a some paradifferential calculus and a Fourier transform adapted to H-groups.

Moreover, in the more general case where GG is a unimodular Lie group with polynomial growth, they used the
definition of Besov spaces obtained using Littlewood-Paley decomposition proved in [9]. When « € (0, 1), they proved
a equivalence of the Besov norms with some functionals using differences of functions, in the spirit of (3), and thus they
obtained an algebra property for B29(G) N L*°(G). They shows a recursive definition of Besov spaces and wanted to
use it to extend the property (5) to a > 1. However, it seems to us that there is a small gap in their proof and they
actually proved the property |[fgllpzs < (| fll sz + 1 fllz=) (gl ze + llgllz)-

In our paper, we defined Besov spaces on unimodular Lie group (that can be of exponential growth) for all a > 0,
and then we proved an algebra property on them. We used two approaches. One with functionals in the spirit of
(3) and the other one using paraproducts. We did not state any results on homogeneous Besov spaces because the



definition of these spaces need a particular work (a extension of the work in [5] to o ¢ (—1, 1) should work). However,
we have no doubt that our methods work once we get the proper definition of homogeneous Besov spaces with some
good Calderén-Zygmund formulas.

Note that methods used in [10] or in the present paper are similar to the ones in [6] and [1], where fractional Sobolev
spaces L2 (G) are considered on unimodular Lie groups (and on Riemannian manifolds). In these two last articles, the
authors proved the algebra property for L2 (G) N L*°(G) when p € (1,400) and o > 0.

1.2 Lie group structure

In this paper, G is a unimodular connected Lie group endowed with its Haar measure dx. We recall that “unimodular”
means that dx is both left- and right-invariant. We denote by L the Lie algebra of G' and we consider a family
X = {Xy,..., X} of left-invariant vector fields on G satisfying the Hormander condition (which means that the Lie
algebra generated by the family X is £). Denote Zo(N) = U{l, .k} Then if I = (iy,..., i) € Zoo(N), the length

leN
of I will be denoted by |I| and is equal to n, whereas X; denotes the vector field X;, ... X, .

A standard metric, called the Carnot-Caratheodory metric, is naturally associated with (G,X) and is defined as
follows. Let [ : [0,1] — G be an absolutely continuous path. We say that [ is admissible if there exist measurable
functions aq,...,ax : [0,1] — C such that

I'(t) = Zai(t)Xi(l(t)) for a.e. t € [0,1].

1/ k 2
If | is admissible, its length is defined by |I| = / <Z |ai(t)|2> dt. For any z,y € G, the distance d(x,y) between
0 \i=0

x and y is then the infimum of the lengths of all admissible curves joining x to y (such a curve exists thanks to the
Hormander condition). The left-invariance of the X;’s implies the left-invariance of d. For short, |z| denotes the distance
between the neutral e and z, and therefore d(z,y) = |y~ 'z| for all x and y in G.

For r > 0 and « € G, we denote by B(z,r) the open ball with respect to the Carnot-Caratheodory metric centered
at x and of radius r. Define also by V(r) the Haar measure of any ball of radius 7.

From now and abusively, we will write G for (G, X, d, dz). Recall that G has a local dimension (see [13]):

Proposition 1.1. Let G be a unimodular Lie group and X be a family of left-invariant vector fields satisfying the
Hérmander condition. Then G has the local doubling property, that is there exists C' > 0 such that

V(2r) <CV(r) VO <r <1.
More precisely, there exist d € N* and ¢,C' > 0 such that
crdSV(r) <Cr YO <r<l.
For balls with radius bigger than 1, we have the result of Guivarc’h (see [11]):

Proposition 1.2. If G is a unimodular Lie group, only two situations may occur.
FEither G has polynomial growth and there exist D € N* and ¢,C' > 0 such that

erP < Vir) < cr? Vr > 1,
or G has exponential growth and there exist c1,co,Cy,Co > 0 such that
e <V(r) < Cie2r Vr > 1.

We consider the positive sublaplacian A on G defined by

k
A== X7
i=1

We will denote by Hy = e~ ** the heat semigroup on G associated with A.



1.3 Definition of Besov spaces

Definition 1.3. Let G be a unimodular Lie group. We define the Schwartz space S(G) as the space of functions
p € C(G) where all the seminorms

Ny () = sup ec‘m‘|XI<p(x)| ceN, T €T (N)
zeG

are finite.

The space S'(G) is defined as the dual space of S(G).
Remark 1.4. Note that we have the inclusion S(G) C LP(G) for any p € [1,+00]. As a consequence, LP(G) C S§'(G).

Definition 1.5. Let G be a unimodular Lie group and let « > 0, p,q € [1,+00]. The space f € BPY(G) is defined as
the subspace of S'(G) made of distributions f such that, for allt € (0,1), A™H;f € LP(G) and satisfying

1l sge = AZF + || Hy fllp < +oo,

L e am adt\ "
quﬁ:(A @m2HA HJ”)-;)

if ¢ < 400 (with the usual modification if ¢ = +00) and m stands for the only integer such that § <m < § + 1.

where

Remark 1.6. Lemma 2.6 provides that the heat kernel hy is in S(G) for allt > 0. Thus Hyp € S(G) whenever ¢t > 0
and ¢ € S(G). When f € S'(G), the term X[ H,f denotes the distribution in S'(G) defined by

(X1Hif, ) = (-D)I(f, HX10) Vg € S(G).

1.4 Statement of the results

Proposition 1.7. Let G be a unimodular Lie group. The one has for all p € [1,400], all multi indexes I € Too(N) and
all t € (0,1),
_
[XiHfllp < Crt™= (| fll,  VfeLP(G).

Remark 1.8. In particular, one has that ||[tAH||, <1 oncet € (0,1) and for all p € [1,400]. When p € (1,+00),

since A is analytic on L* (and thus on L?), we actually have |[tAH||, <1 for allt > 0. The case
The following result gives equivalent definitions of the Besov spaces B2'¢ only involving the Laplacian.

Theorem 1.9. Let G be a unimodular Lie group and p,q € [1,400] and o > 0.
0,1) fa=0

0,1) ifa>0" then the following norms are equivalent to the norm of B21(QG).

If m > 3 and to arealin{

o (| (et jamm ) ) o fl

q

. o q
(ii) | Ha flp+ | D2 [P a™ Hy 1], ]
j<—1
9Ji+1 q é

d
[ wearms g
27

R

(iii) | Hyofllp+ | D |27

j<—1 |

P
if we assume that o > 0.

Remark 1.10. Here and after, we say that “a norm N is equivalent to the norm in B29” if and only if the space of
distributions f € 8" such that A™H, f is a locally integrable function in G for allt > 0 and N(f) < 400 coincides with
Bt and the norm N s equivalent to ||-|| gp.o.

The previous theorem allows us to recover some well known facts about Besov spaces in R?.



Corollary 1.11. [Embeddings] Let G a unimodular Lie group, p,q,r € [1,400] and o > 0. We have the following

continuous embedding
BEU(G) € BY(G)

once q < r.

Corollary 1.12. [Interpolation]
Let G be a unimodular Lie group. Let sg,s1 > 0 and 1 < pgo,p1,qo,q1 < 00.

Define
s* = (1 — 9)80 + 051
1 1-60 0
e T
p Po P
1 1-60 0
I— +

¢ o @
The Besov spaces form a scale of interpolation for the complex method, that is, if so # s1,
(B, B ™) gy = BL"
The following result is another characterization of Besov spaces, using explicitly the family of vector fields X.

Theorem 1.13. Let G be a unimodular Lie group, p,q € [1,4+00] and « > 0. Let m be an integer strictly greater than
«. Then )
q\ @

Hifl, + 2177 max sup || X7H:f 6
Iy o | 32 (25 ., sup Xl (6)

is an equivalent norm in BEI(G).

With the use of paraproducts, we can deduce from Corollary 1.12 and Theorem 1.13 the complete following Leibniz
rule.

Theorem 1.14. Let G be a unimodular Lie group, 0 < « and p, p1,p2, ps, pa,q € [1, +00] such that
1 1 1 1 1
+

pr P2 ps ps P
Then for all f € BEv9 N LP3 and all g € B4 N LP2, one has
Ifgllpze S N fllpzallgllzes + IfllLesllgll grasa. (7)
Remark 1.15. The Leibniz rule implies that B2:1(G) N L*°(G) is an algebra under pointwise product, that is
1f9llBze S fllBzallglizee + 11 f]Lellgll 5z

Let us state another characterization of B2? in term of functionals using differences of functions.
Define V,, f(z) = f(zy) — f(z) for all functions f on G and all z,y € G. Consider the following sublinear functional

Fetl) = </|y|g1 () V?IZI)) .

Theorem 1.16. Let G be a unimodular Lie group. Let p,q € [1,+00]. Then for all f € LP(G),
L&) + 11 llp = ASAS) + 1l

once a € (0,1).
Remark 1.17. When G has polynomial volume growth, Theorem 1.16 is the inhomogeneous counterpart of Theorem 2
in [15]. Note that this statement is new when G has exponential volume growth.

Remark 1.18. From Theorem 1.16, we can deduce the Leibniz rule stated in Theorem 1.14 in the case « € (0,1).
As Sobolev spaces, Besov spaces can be characterized recursively.
Theorem 1.19. Let G be a unimodular Lie group. Let p,q € [1,+0o0] and o > 0. Then

feBP(G) < Vi, X,f € BYYG) and f € LP(G).

Remark 1.20. Note that a similar statement is established in [10]. However, we prove this fact for p € [1, +00] while
the authors of [10] used the boundedness of the Riesz transforms and thus are restricted to p € (1, 400).



2 Estimates of the heat semigroup

2.1 Preliminaries

The following lemma is easily checked:

Lemma 2.1. Let (A,dz) and (B,dy) be two measured spaces. Let K(x,y) : A x B — Ry be such that
Sup/ K(z,y)dy < Cp
r€AJB

and

sup/ K(z,y)de < Ca.
yeB JA

Let g € [1,+00]. Then for oll f € LY(B)

(

with obvious modifications when q¢ = +o0.

a a -1 1
@) <y,

/B K(z,9)f (4)dy

Lemma 2.2. Let (a,b) € (Z U {+oc})? such that a < b, 0 < a < 3 two real numbers and q € [1,+0c]|. Then there
exists Co g > 0 such that for any sequence (¢y)nez, one has

q b
29— max{n,j}ﬁcn‘| < Z |:2(0‘7ﬁ)"6n:|q .

n=a

Proof: We have
q b g
9~ max{n,j}ﬂcn] = Z [Z K(nv.])d"‘|
Jj=a Ln=a
with dn _ 2"(a7ﬁ)6n and K(n,]) = Q(j*n)QQ("*maX{jyn})ﬁ.

According to Lemma 2.1, one has to check that

b
sup > K(n,j) S1

j€lab] .=,
and

b
sup 3 K(n.j) 5 1.

nefa,b] J=a

For the first estimate, check that

b 7 b
sup »_ K(n,j)= sup |2/ "gnlBma) pgje R gmne
j€lab] .=, Jj€[a,b] n=a n=j+1

J +o00
< sup 9i(a=p) on(B-a) 4 gja g—na
ap 2109 3 >

n=-—oo n=j+1

SL
since f —a >0 and o > 0.
The second estimate can be checked similarly:

b n b
sup ZK(TL,]) = sup [27" Z oo 4 gn(f—a) Z 27 (a=h)
n€la,b] j=a j€la,b] j=a j=n+1
<1



Proposition 2.3. Let s > 0 and ¢ > 0. Define, for all t € (0,1) and all x,y € G,

lytz2\° 1 wle?
Kt(xvy) = < 1 V(\/E)e t .

Then, for all g € [1,+00],

([ ([ mtematar) a)" < ol
Proof: Let us check that the assumptions of Lemma 2.1 are satisfied. For all © € G and all ¢ € (0, 1),
1 ly~1z2\° _ olu—lel?
Ki(z,y)dy = / ( e dy
/G V() Ja t
1 / (|ylac|2)S elyTlel?
= e t dy
VVE) Jiy-rap<t t
1 / <|y11'|2>s _olyTtel?
+ e T dy
V(V1) ly=tz|?>t ¢

=1+ Is.

The term I is easily dominated by 1. As for I, it is estimated as follows:

0BT o s ()
A N B Y
27 V< |y~ e <291Vt t

JIO

Z/\

i 2J+1\/_ 4;5 7(:41
Jj=0 V

Notice that Propositions 1.1 and 1.2 imply that (V i \/‘)/) < 274 if 271/t <1 and

VTV VTV V) e
V (Vi) V) vvy "~

if 274/t > 1. Hence,
i V(;jﬂx/f) piseet’ < ie_M <1
j=0 (V#) =0

which yields with the uniform estimate

/ Ko(z,y)dy < 1.
G

In the same way, one has
/ Ki(z,y)dx < 1.
G

Lemma 2.1 provides then the desired result.

Proposition 2.4. Let s > 0 and ¢ > 0. Define

K(ty) = (M) V(D) e

t

</o1 (/G K(t’y)g(y)dy)q%)% N (/G Ig(y)I%)%.

Then, for all g € [1,+00],



Proof: Let us check again that the assumptions of Lemma 2.1 are satisfied, that are in our case
sup /K(t,y)dyg Cp
t€(0,1)

and

L dt
SHP/ K(t,y)? < Ca.

yeG Jo

The first one is exactly as the estimate (9).For the second one, check that

[t () 4
< [T (Y e [ ()

oo pailyP? 2N, L2
52/ V(lyl) <M) L
= a-Grnp V(VE) t

< Z |y| ]se—c4j +1

277+ yl)

< Z 2j(d+23)602je—c4j +1
=0
S

where the last but one line is obtained with the estimate (8). O

2.2 Estimates for the semigroup

Because of left-invariance of A and hypoellipticity of +A Hy=e ~*A has a convolution kernel h; € C™(G) satisfying,
for all f € L}(G) and all x € G,

H,f(x) = /G ha(y™2) f(y)dy = /G ha(y) f (xy)dy = /G ha() f (zy~)dy.

The kernel h,; satisfies the following pointwise estimates.

Proposition 2.5. Let G be a unimodular Lie group. For all I € To(N), there existCr,cy > 0 such that for all x € G,
all t € (0,1], one has

C x|?
| X1hi(z)| < milexp (—cl| | ) )
t>V (V1) !
Proof: Tt is a straightforward consequence of Theorems VIII.2.4, VIIT.4.3 and V.4.2. in [20]. O

Lemma 2.6. Let G be a unimodular group. Then hy € S(G) for all t > 0.

Proof: The case t < 1 is a consequence of the estimates on h;. For ¢ > 1, just notice that S(G) * S(G) C S(G). O

Proposition 2.7. For all I € T(N) and all p € [1,400], one has

IXiHflp, ST TNl Ve (0.1), f € LP(G).
Proof: Proposition 2.5 yields for any ¢ € (0, 1]
» 1
_ P
sl st ([ [ meanroa) a)
G |JG
where K;(z,y) = m exp <7c‘yitz‘ )

The conclusion of Proposition 2.7 is an immediate consequence of Proposition 2.3. 0




3 Littlewood-Paley decomposition

We need a Littlewood-Paley decomposition adapted to this context. In [10], the authors used the Littlewood-Paley
decomposition proven in [9, Proposition 4.1], only established in the case of polynomial volume growth. We state here
a slightly different version of the Littlewood-Paley decomposition, also valid for the case of exponential volume growth.

Lemma 3.1. Let G be a unimodular group and let m € N*. For any ¢ € S(G) and any [ € S'(G), one has the

identities .
1 =1
= — tA mH AkH

where the integral converges in S(G), and

1 odt =
f= 1)./ (tA)™ Hyf — +Z k'AkHlf

(1)
where the integral converges in S'(G).

Proof: We only have to prove the first identity since the second one can be obtained by duality.
Let ¢ € S(G). Check first the formula

oo at [ dt " (
(m —1)! :/ (tu)™e —tu & :/ (tu)™ —tu_ + ot
0 o t
k=0
Thus by functional calculus, since ¢ C L?(G), one has
1 o dt 1
= m/ (tA)" Hep— + Z AkHl% (10)

where the integral converges in L?(G). Since the kernel h; of H; is in S(G) for any t > 0 (see Lemma 2.6), the
formula (10) will be proven if we have for any ¢ € N and any I € Z(N),

lim Ny, </ (tA)mHtgaﬁ) = 0. (11)
u—0 ’ 0 t

Let n > ‘ | be an integer. Similarly to (10), one has for all x € G and all t € (0, 1),
n—1

Hip(z) = ;)/ (v —t)" LA Hyp(z)dv + Z %(1 —t)*AFH, o(z).
¢ k=0 "

(n—1)!

Hence, for all 2 € G and all u € (0,1), we have the identity

I . dt 1 1 e min{u,v} _— _—
(tA)"Hyp(x)— = —— | A" Hyp(z) " (v — )" dt | do
0 t (n=1!J 0

1 u
+y EA“”Hl(p(x)/ tm 1 — t)kdt.
k=0 """ 0

Note that
min{u,v}
/ tm_l(’U _ t)n—ldt 5 um,Un—l
0

and

/ tm L1 = t)kRdt < u™

0
Therefore, the Schwartz seminorms of fo (tA mHttpdt can be estimated by

u dt 1
Moo ([ earm o) g [0 sup e A ol
0 0 zeG
(12)

+ustup el X AR ™ H o).
e OmEG



Check then that for all w € (0,1] and all [ € N, we have

sup €171 X A Hyyp()| = sup 17! | X1 H,, Alp(w)]

zeG zeG
< sup el [ Xiha(y 1) 160 ldy
zeG G
vzl ~13[ elvl] Al (13)
Ssup [ X0 (5 )0 () dy
zeG JG
< (Sup/ v 7 X hy (y~1a)| dy) > Nicle)
zeGJG —
=
where the third line holds because |z| < [y~ 'z| + |z|.
However, for all € G and all w € (0, 1], Proposition 2.5 yields that, for all 2 € G,
G V(vw) Ja
1] 1 Fly~tw|?
5w777/ e gy (14)
V(Vw) Ja
< w_%.
By gathering the estimates (12), (13) and (14), we obtain
“ dt ! I s
Ny (/ (tA)mHthT) <u™ Nrio(¢) [/ V" T do 4 Z 1
0 [1]<2(m4n) 0 k=0
Su™ Z Nic(p)
|11<2(m+n)
u—0 0
which proves (11) and finishes the proof. O

4 Proof of Theorem 1.9 and of its corollaries

4.1 Proof of Theorem 1.9
In this section, we will always assume that o > 0, p,q € [1, +00].

Proposition 4.1. For all t1,ty € (0,1) and all integers m > §,

! o dt\ * ,
I S Wt lo+ ([ (e lamm), ) §) vres©

when o > 0 and
adt

oo :
1l S+ ([ (-t iamma,)' §)° vresio)

when a > 0 and q < +00, with the usual modification when q = +o00.

Proof: Lemma 3.1 (recall that LP(G) C S§'(G)) yields the estimate

1 m—1
il A m dt
11,5 [ e iAm g1, S + 3 1AR 1,
k=0

10



However, for all k € N, [|A*H, f||, < Q_Lto)kHHtopr- Then, when o > 0,

1
1lln < / o AL | £l

L e 9 dt U ogadt\ 7
S(f (msia Htfn) ) ([ e=5)" + 1,
0 0

<([ (s 1amma,)’ @> 4 1Huu fl

which prove the case a > 0.
If @« =0, Lemma 3.1 for the integer m + 1 implies

| Ho 1 < / A i £, +Z||MHl+t1f||p

1 tm+1
< / A Hfl, %+ Ho £l

<([ (i) ) ( A (ti) %)7+|Htof|p
< ([ (o) )+ i,

Q=

Proposition 4.2. For all integers m > 5,

([ @narmmn,) @) <ist+ ([ (o=t jaramg),)° dt)

Proof: We use Lemma 3.1 and get
1
d
A™H, f :/ SAH,A™H, <> + HyA™H, f.
O S

Thus,

1
(/0 G INT AR dt)
<(f (e [t o) 5) o ([ (ot 1am ) o)

= Il + IQ.
We start with the estimate of I;. One has A H,, f = HA™ T H, f = H{A™ T H, f. Then

1 t q % 1 1 q %
ne ([ (s [lammsl,as) ) ([ (s A, as) G
0 0 p t 0 t p t

= 111 +IIQ

Notice

I = (/O (tm+1—— HAm—HH fH )q dt)

which is the desired estimate. As far as I]5 is concerned,

e () ([ e %)

11



with g(s) = smH1-% HA’”‘HHsfH and K(s,t) = (é)m_% 1s>¢. Since

! dt
Kst—<1 and K(s,t)?gl,
0
L 1
d q
15 ([ o)
0 S

It remains to estimate I>. First, verify that Proposition 2.7 of Hy implies [[A™Hyy1 f||, < || f|[p- Then we obtain
LS flp

since fol t‘J(m_%)% < +o0. O

Lemma 2.1 yields then

which is also the desired estimate.

Proposition 4.3. For all integers 8> ~v > 5

dt q dt
([ (v 1a0ma,)" ) <([ (r-riaoma,)’ )
0 0
Proof: Proposition 2.7 implies HAﬁ"yH%f’H <778 f]|,- Then
p
1 q 3
</’(#——HA5HJH)qﬁ> :5</,<ﬂ*% AWHiﬂ’) ﬂ)
0 0 2% llp t
3 _a 7 du i
S </0 (w5 a7 11, Z)
VN adt\
< ([ (o iam,) )

Remark 4.4. Propositions 4.1, 4.2 and 4.3 imply (i) of Theorem 1.9.
Proposition 4.5. Let m > 5. Then
1
o q
1+ | D2 (2 1A o £l
j<—1
is an equivalent norm in BEI(G).
Proof: Assertion (i) in Theorem 1.9 and the following calculus prove the equivalence of norms:
(m—%) m ' j(m—$%) m dt
S ogamm)t) < (X [ [Pemiarms) S
j<—1 j<—172"
e dt
< (/ =t AT, 7] t)
1
e om dt
< ([ siamm) )’
0
9i+1 q
e om dt
S [ tiarms) g
j<-1 2
L q
< | X oA ]
j<—1
This proves item (i) in Theorem 1.9. O

12



Proposition 4.6. Let a >0 and 1> 5. Then

9Ji+1

| leayms g (15)

1Hyfllp+ | Y |277% |

j<—1

P

is an equivalent norm in BEI(G).

Proof: We denote by ||.| g« the norm defined in (15). It is easy to check, using assertion (i) in Theorem 1.9, the Holder
inequality and the triangle inequality, that

11z S 11l Bz

For the converse inequality, we proceed as follows. Fix an integer m > 3.

1. Decomposition of f:
The first step is to decompose f as in Lemma 3.1

-1

1 ! dt 1 ,
f= 7([ ~ ) / (tA)lHtf? + Z EAkHlf m S/(G)'
'Jo = k!
We introduce
2 d
fom [ a HsTa
27’% t
and
2 dt
c‘/ [N
g1 t
P

Remark then that ) -
1 - 1 .
! — k!

n=—oo

2. Estimates of A™H,; f,,

Note that
A™Hy; fn
3.2n 1 gnt1
dt dt
= 7AmH2n—1+2j / (tA)lHt_Qn—lf? - AmHQn_;’_Qj / (tA)lHt,an?
n 3.2n—1
> —1\l Al dt > L AL dt
fr 7AmH2n—1+2j / (t + 2” ) A Htf? - AmHQn+2j / (t + 2”) A Htf?
on—1 on—1

Then Proposition 2.7 implies,

2’71
dt
/ (t+2n_1)lAlHtf7
2

n—1

IA™ Has follp S 1207 + 2]

p
n j1—m z n\l Al dt
+[2" + 27] (t+2")ATH f— (16)
2n—1 t P
N e . dt
< [2" + 2] |(tA) He f| —|| -
on—1 ¢ »
In other words,
2—nme if j <n
m ) < . n _
HA HQJ fn”p ~ { 27jmcn lf] > n (17)

13



q

2j(m7%) Z 27mmax{j,n}cn
n<—1

q
S
j<—1

3. Estimate of A2I(>" f,)
AT Hy Y fa
n<—1
P
q —1
< 2
S22

a
2

As a consequence,
¥ |ain-
According to Lemma 2.2, since 0 < m — § < m, one has
‘AWHW Z fn

(18)

j<-1
3 {Qﬂm—%)
j<

<-—1
-1
1l S 1o fllp + A7 (32 £a) + D AL (AFHLf)
k=0

4. Estimate of the remaining term
829 (3 1) S Iz
In order to conclude the proof of Proposition 4.6, it suffices then to check that for all k& € [[0,1 — 1]}, one has

Remark that
| fllp

IA*H fll o S 11 fze-
7(m+k)|

From the previous step and Proposition 4.5, we proved that

|A™ Hos A" Hy fl, = | A™*Hy i f
< (1+27)
S Al

j<—1

S [P anay, Ak fL) S 71 Y )

Indeed, one has for all 7 < —1
S I

Consequently,

sup || XrH:fll,

4.2 Proof of Theorem 1.13
Proof: (Theorem 1.13)
We denote by ||.[[gra the norm defined in (6). Since
A" Hy f]| <
1A Hos fll, < | max, S
1A lsze S s
1A llszs, S Il
2 "%, ifj<n
Bl if j >n

it is easy to check that
For the converse inequality, it is enough to check that
n
< N
p 1XiHfull {5

We proceed then as the proof of Proposition 4.6 since Proposition 2.7 yields
max  su
tE[29,291] 1 11<m

14

with a proof analogous to the one of (17).



4.3 Embeddings and interpolation

Proof: (of Corollary 1.11) The proof is analogous to the one of Proposition 2.3.2/2 in [17] using Proposition 4.5. Tt

relies on the monotonicity of [, spaces, see [17, 1.2.2/4]. O

Let us turn to interpolation properties of Besov spaces, that implies in particular Corollary 1.12.

Corollary 4.7. Let sg,$1,8 >0, 1 < po,p1,p,q0,q1,7 < 00 and 0 € (0,1).

Define
s =(1—0)sog+ Os1,
1 1-60 0
o~ oo
p bo b1
1 1-60 60
i +

qr qo "

i. If so # s1 then

1

P;q0 P:q1 — RbT
(BSO ,le )97T—Bsi.

. In the case where sg = s1, we have

*
P,q0 P,q1 — D,q
(Bs’ ’Bs7 )9,11* _Bs7 .

Afpt=q =,

D090 P1,491 — T
(Bso’ ’le7 )Q,T_Bs*'

. IfS()?éSl,

0,90 P1,91 — " ,q"
(Bso ,le )[9] *Bs* .

Proof: The proof is inspired by [2, Theorem 6.4.3].

Recall (see Definition 6.4.1 in [2]) that a space B is called a retract of A if there exists two bounded linear operators
J:B— Aand P: A— B such that P o J is the identity on B.

Therefore, we just need to prove that the spaces B2:? are retracts of lg‘(Lp) where, for any Banach space A (see
paragraph 5.6 in [2]),

Q=

19(A) = Su € A% lullgsay = | D [27% uslla]* | < +o0
Jj<0

Then interpolation on the spaces I§'(LP) (see [2], Theorems 5.6.1, 5.6.2 and 5.6.3) provides the result. Note the

weight appearing [%(A) is 277% (and not 272 ) because we sum on negative integers.
ght appearing [ g g

Fix m > §. Define the functional J by J f = ((J f);) ;< Where

(Tf)j =27 A" Hyin f

if 7 < —1and
(T flo=Hyf.

Moreover, define P on Iy (LP) by

R 1 L dt

k —Jjm 2m Am ) .
Pu = E _k'A H%UO + 7(2 — 1)| E 277 / A Ht_QJfl’u]—t .
k=0 j<—1

27

We will see below that P is well-defined on lg‘(Lp). Proposition 4.5 implies immediately that J is bounded from
BE® to Ig(LP). Moreover, Lemma 3.1 easily provides that

PoJ = IdBQWQ.

15



It remains to verify that 7 is a bounded linear operator from [(LP) to B59. The proof is similar to the one of
Proposition 4.6. Indeed, proceeding as the fourth step of Proposition 4.6, one gets

2m—1

P,q
By

It is plain to see that

Hy > 2—”"/

j<—1

2]+1
dt
tQWAmHt_Qj—l Uj ?

IN

p

IN

j<-1
<

j<-1
S ||U||13(Lp)-

Then the proof of the boundedness of P is reduced to the one of

9Ji+1

jsz—l > /”
E

9Ji+1

S lluollp-

dt

t2m HH% AmHt_ijl U, Hp n

dt

ooy |
2 P

> 2™l

q

Q=

9Ji+1
m—45 m —im mAm dt
I := Z Qk( 2) A H2k Z 2 J /2j t2 A Ht_gjflu_j? 5 ||U||lg¢(Lp). (19)
k<—-1 j<-1 »
Indeed,
) 2J+1 dt q
If < ok(m—%) Z 2—Jm/ (tA)QmHt_2j71+2kUj7
E<—1 j<—1 27 .
q
< Hm=3) N T 2T | AP Hysn gy ||
k<—1 j<-1
q
5 mi_) Z 2] +2k 2m H ]H
k<—1
q
5 ok(m—%) Z 2—2mmax{j,k}2jm|‘uj”p
k<—1 j<—1
Check that 0 < m — § < 2m. Thus, Lemma 2.2 yields
175 3 [ g, | < full, ),
Jj<-1
which proves (19) and thus concludes the proof. O

Algebra under pointwise product -
Theorem 1.14

We want to introduce some paraproducts. The idea of paraproducts goes back to [4]. The term “paraproducts” is used

to a denotes some non-commutative bilinear forms A; such that fg = > A;

where the bilinear forms A; are easier to handle than the pointwise product.
In the context of doubling spaces, a definition of paraproducts is given in [3,
in [3] to adapt them to non-doubling spaces.

16

(f,9). They are introduced in some cases,

8]. We need to slightly modify the definition



For all t > 0, define

,_.

m—

1

ku
k=0

Hta

and observe that the derivative of ¢ — ¢;(A) is given by

¢ (A) =

1 mer 1
(m — 1)!2(75A) Hy = ;wt(A)-

Remark 5.1. FEven if ¢; actually depends on m, we do not indicate this dependence explicitly.

Recall that Lemma 3.1 provides the identity

f = /wt s ms@)

Proposition 5.2. Let p,q,r € [1,+00] such that % =
One has the formula

+1 <1 Let (f,9) € LP(G) x L(G).

1
p

fg=1;(g) + 1y (f) +11(f,9) — 1(A)[P1(A)f - 61(A)g]  in S/(G),

where

t

0= [ @a)f 00T

Proof: Since fg € L™ C §'(G), the formula (20) provides in §'(G)

- / e A)n(A)f - de(A)g) 2L

and

g = /wt W7 a% 61 (A)F ).

We can use again twice (one for f and one for g) the identity (20) to get

o= [ o[ [ v@r - o { [ o - oo} 4
RO NN B oA
=[] e v
[ [ @@ v@a % - [ s (>]dtff“
//¢1 (D) - u(2)g L2

/wt ér(A)f - o1 (A /¢1 u(B)f - 1(2)g] 2
/¢1 o1 (A)] - o (A)g] L

dv
v

— ¢1(A)[¢1(A
dt du dv
= R(/.9) ///¢ a(A)f -0 (8)g) T — 61(8)[61(A) - 61 ()]

The domain [0, 1] can be divided in the subsets D(t,u,v), D(u,t,v) and D(v,u,t) where D(a,b,c) = {(a,b,c) €

17



[0,1]3, a < min{b, c}}. Consequently,

/Ol/ol/olwt(A)[wu(A)f,wU(A)g] dt;l;vdv
/Ol/tl/tlwt(A)[%(A PO / [ @@ @
+/O /U /U Q/Jt(A)[wu(A)f.wv(A)g]dvchLtdt

= [ @ a) = 011} o1 (A)g — (DN T

(23)

+ / [61(8) — 6u(A)H ()] - {01(A)g — 6 (2)g)) 2

/{¢1 PHOHA)S ~ 6u(A)f} - 5u(A)g] 2
= S(f,9) + 1y (g) + y(f) +TI(f,9)

It remains to check that R(f,g) + S(f,g) = 0. This identity, that can be proven with similar computations as
(23), is left to the reader. O

Proposition 5.3. Let G be a unimodular Lie group. Let a > 0 and p,p1,p2,q € [1,+00] such that
1 1 1

pr p2 P
Then for all f € BP9 and all g € LP?, one has

AL (9] S N f 1 zr<llglines-

Proof: Let m > § and j < —1. Notice that, for all v € (0, 1),

A, < [ 1A Ko@) (A)F o)l

Remark that
[¢¢ (ARl < ([ Hhll,

for all € [1,+o0] and all h € L". As a consequence,
[A™ Hypr(A) [0 (A)f - e (A)glll, = [loe(A)A™ Hy [t (A) f - pe(A)g]ll,,
S Aty e (2)f - 60A)g)

$(5+u) 1o ol

< min {t*m, ufm} [lee(A)f - ¢t(A)9Hp
Smin {77 u™ [ (A) fll,, 6:(A)gll,,
< min {tfm,ufm} H(tA)mHtprl HgHm .
We deduce then
ALy (g)]*
1 1
<tolly, [ (w2 [ ety ey, )

u

1 q
< HgHZQ Z <2J(m—%) Z 2—mmax{J,n}|(QnA)mHQnﬂpl)

j<—-1 n=-—oo

1
q
< llgllzee (Z 2_"%q2”mq|AmH2nf|Zl) )

n<—1

18



where we used Lemma 2.2 for the last line. As a consequence, we obtain if a € (0,2m),

q

AP (9)] S llgllze | D 2792 |A™ Hon f 5,

n<—1
S llgllzea 1 £ e

where we used Proposition 4.5 for the last line. 0

Proposition 5.4. Let G be a unimodular Lie group. Let o > 0 and p, p1,p2, ps,pa,q € [1, +00] such that

1 1 1 1 1
P1 P2 b3 P4 p

Then for all f € BEV9 N LP3 and all g € BE©1 N LP2, one has

AL, 9)] S Il pzrallglines + [1f | es 9]l grace-

Proof: Notice first that

. LI . dt
|A™H, (£, 9)]|, < / |A™ HLH ()" [61(A)f - 6u(A)glll, T

Let us recall then that X;(f-g) = f - X;9+ X;f - g. Consequently, since A = Zle X2, one has

2m—1

IA™(f - glllp S IA™F - gllp +1F - A"gllp+ Y- sup  sup X, f - Xrgll,.
=1 [1|=k|L2]=2m—k

In the following computations, (Y7,,Zz,) denotes the couple (Xr,, Xy,) if [I;] # 0 and |Io| # 0, (AM1/2 1) if
|I5] = 0 and (I, Al21/2) if |I;| = 0. With these notations, one has

|A™ Hoyg e (EA)™ [¢6(A) f - 0e(A)g]llp
S min {¢77, uT}[(EA) [6:(A) f - ¢(A)glll,

< min {7, u"™} i [ (D)™ [(tA)  Hyf - (tA) Hegl|,
k,1=0

m—1 2m

S min {70 Z Ztm sup - Sup HYh(tA)kHtf'le(tA)lHtng
k,1=0 i=0 |I1|=i |I2|=2m—i

m—1 2m

= min {tfm,ufm} Z ZthrkH sup  sup HYIlAkHtf : Z[2AlHtg||
=0 i=0 |I1|=i |Io|=2m—i P
m—1 2m

Smin {7, u”m} Y > R sup sup  ||Yy, Hyf - Z1,Hygl,
k,1=0 i=0 |Il|:i+2k |12|22m+217i

: - — LES
S min {77, uT" > t= sup sup [[Y;, Hf - Z,Hygll, .
2m<k+1<6m—4 |I1|=k |I2]|=1
k-+1 even

19



2n+1

bt
Setting ¢, = g / t > sup sup ||V, H.f - Z[2Htg|| , one has
2m<k+1<6m—47 2" [I1|=k [I2|=1
k+1 even

AZSI( )
< [ (2 [ 1am Husar ) o, ) 2

1 1
o k41 du
5/ um_i/ min{t_m,u_m} Z t 2 sup sup |Y, Hif - Z[2Htg|| —
0 0 2m<k1<6m—4 [1|=F | 12|= u
k+1 even
—1 —1 q
< Z [2](771—%) Z 2—mmax{n,j}cn‘|
j=—00 n=-—oo
<y g
n<—1

where the last line is a consequence of Lemma 2.2, since 0 <m — § < m.

It remains to prove that for any couple (k,[) € N? satisfying 6m — 4 > k +1 > 2m and k + [ even, we have

2n+l q
o B4l
T:= Z 9—nqs (/ t= sup sup ||V, H:f - ZIZHtgH ) (24)

n<—1 |11 |=k |12|=l
S llgzrallglizee + 11 flloeallgll grasa.

1. If k=0o0r 1 =0:

Since k and [ play symmetric roles, we can assume without loss of generality that [ = 0. In this case, k is
even and if k = 2k/,

sup  sup ||Y11Htf ZIthg” _HAk/
[I1|=k |I2|=0

< || A He | Heg |
2

< |[a¥mus| gl
pP1

Therefore,

gn+1
T < ||gllze Z 9—na% </ £ HA’“’Ht

S IIQHLmeHB:;w

where the second line is due to the fact that &’ > m > 5

2. Ifk>1and [ > 1:
Define ay, as, 71,72, ¢q1 and g2 by

k l
al:k—Ha y OéQZk—H,
kel _ kL kel kL
™1 P1 P3 T2 P2 P4
k+1  k k+1 1
a q @ q

In this case, notice that k > a7 and [ > as. One has then

sup sup || Xp Hef - Xp,Hegl, < sup [ X1, Hefll,, sup || X1, Hegll,,
|11 |=k |I2|=l [11|=Fk "=t

20



and thus Hoélder inequality provides

q1 q1
T < Z <2”k2a1 max  sup ||X11Htf|rl>
L=k

te[29,2011]

1

q2 qa2
I—aq
g 2"z max  sup || X, Higl|
t€(29,2741] | 1, = T2

n<—1

S sz llgl
= f B(:11,Q1 g B(7;22x’-Z2

where the second line is due to Theorem 1.13.
Let 0 = kLH Complex interpolation (Corollary 1.12) provides
(B>, Ry = B

and
(BEY, Bg™ ™ )ig) = Bay ™.

Remark also that L*(G) is continuously embedded in B;*(G) (this can be easily seen from the definition of

Besov spaces). As a consequence,

T 5 ||f||B;11’q1 Hg||B;22,q2
11 17152 g 552

S I lleesllgll gzae + 1 Flpzrellgll re

which is the desired conclusion.

Let us now prove Theorem 1.14

Proof: With the use of Propositions 5.2, 5.3 and 5.4, it remains to check that

IHLLf - gllle S fllzrallgllzes + 1fl|zes[lgll gza-e

and
[¢1(A)[P1(A)f - 1(A)gllgza S| fllgrrallglloee + (| fllLrallgll grasa.

The inequality (25) is easy to check. By Proposition 4.1, one has
IHLLf - gllle <Af - glly < fllpsllgllo. < 171 5210llgl o2
For (26), recall that (18) implies

||¢1(A)[¢1(A)f : ¢1(A)9]||Bqu N ||¢1(A)f : ¢1(A)g||Lp
S N01(A) fllp: 101(A)gllp,
S Il szrallglize-

6 Other characterizations of Besov spaces

6.1 Characterization by differences of functions - Theorem 1.16

Lemma 6.1. Let p,q € [1,+00] and o > 0. There exists ¢ > 0 such that, for all f € LP(G),

19,71\ " dy \*
AP, (f)S(/G< e ) V(|y|)> :

21




Proof: Since [, 2 (y)dx = 0,

ot ot
_ %(y)[f(fcy) — f(z)ldy
G
5]
_ G%(y)vyf(w)dy
Consequently,

7], <

Oh
\ ' >] IV, fllydy.

Proposition 2.5 provides

=
=
i}
~
N~—
A
S—
o
7N
~
T
vl

L e e o
e Il )

el
NGy E—
<

— </01 ( GK(t,y)g(y)V‘(ié'))q %f

| 2

1 o 1 7 lyl? 2 LA
tl_i/ e T ||V, fllpe™® Tyl dy) —)
[ (27 [ rme 19, t

with ¢ = 5, g(y) = IVuflle o=<'lyl* and K(t,y) = Vly)) (M) 2 ety (note that we used the fact that ¢ € (0,1)

lyl V(vt) \ 1
in the third line). Lemma 2.1 and Proposition 2.4 imply then

wns ooty
(L= )

Proposition 6.2. Let p,q € [1,+00] and a > 0, then

AL S L) + 1 Db

Proof: According to Lemma 6.1, it is sufficient to check that

HVyf”peiC'y|2 ! dy %<LZD7q
</a< ol ) il ) S+l

Since we obviously have

IV, fllpe =\ " dy % P
</< il ) v ) St
19, flpe\ " g\
T = - .
</Iy121< i ) vy ) S

all we need to prove is

22



Indeed, |V, fll, < 2]/ f|l, and thus

Q=

T < £l </|y|>1 (e—c|y|2)qczy>

q

Sl [ Do e vt
j=0

S A1

where the last line holds because V' (r) have at most exponential growth.

Proposition 6.3. Let p,q € [1,+00] and a € (0,1). Then

L) S AL +1f Nl Ve BEUG).

Proof: 1. Decomposition of f:

The first step is to decompose f as
f=(f—Hif)+ Hif.

We introduce i1 nt1
2 oH,f ?

fn:f/n Tdt:f/n AH, fdt

and on
Cp = / OH.f dt.
on—1 ot »
Remark then that
anHp < Cnt1

and Lemma 3.1 provides
-1
f-Hif= > f. 8@

2. Estimate of X, f,:
Let us prove that if n < —1, one has for all ¢ € [1, k]

HXianp 5 2_%071

Indeed, notice first

n

9 AHo fdt

on—1

fn

n

== —2H2n—1 Ht_Qn—lAHtfdt
on—1
= Hon-1gy.
Proposition 2.7 implies then

[ Xifully <272 lIgnllp

2’71
" OH
52*5/ Hy_gns 2L
on—1 at P
-
n aH
52—7/ 24
o || Ot ||,
:2_%cn.

23
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If ¢: [0,1] — G is an admissible path linking e to y with I(¢) < 2|y|,
' d
Vidala) = [ S balpls)ds
0 S
1k
= /0 Zci(s)Xifn(xgo(s))ds
i=1

Hence, (28) implies

1V fully < / Zm WX S (0(5)) s
— X fully / i:21|cz-<s>|ds
1 k
52_§cn/0 izzl|ci(s)|ds

S |y|2_%cn

where the second line is a consequence of the right-invariance of the measure and the last one follows from
the definition of I(¢). Thus, one has

_n . 2 n
< W27 %, iffyl <2

3. Estimate of L2I(f — Hyf)
As a consequence of (29),

. |vyf||p)q dy
- = Y /H( wie ) VD

j=—o0
-1 —1 q
< Z/ (Z IVyfn||p> dy
S S WY V(lyl)
—1 , j -1 1
5 Z 2_%(1 Z Cn+1+ Z Q%Cn
Jj=—00 n=—oo n=j+1
1 1 ) q
< Z 2jq(1—%)< Z gl [ent1 +cn]>
j=—00 n=-—oo
-1
< Z (2_%[6714-1 +Cn])q
n=-—00
0
<Y @)
n—=——oo

Note that the third line holds since 27 < 1, so that V(2/+1) < V(27) and the fifth one is obtained with Lemma
2.2, since a € (0,1).
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However

0 0 on q
e o OH: f
95, 11— 9—"n%g
ear= 3 e 5] 4
0 2m q
Y _ OH; f
< 9—nq5 9n(q 1)/ il 7
D> s e |
n=-—oo p
0 on q
< Z / =9 _aHtf ﬂ
N L Jons ot ||,) ¢
- /1 <t1—% ot f )q dat
0 ot ||,) t
= (A1)

4. Estimate of L2Y(H, f)
With computations similar to those of the second step of this proof, we find that

IVyHfllp < 911 f[lp-

Consequently,

d )\
LEA(HLf) < || fllp </| - (=) V(f?JJD)
Y=

dy
- q(l—O()—
Ul {30 [ W

Jj<—1

1

Sl | D 290

j<—1
S fllp

where the third line is a consequence of the local doubling property.

Theorem 6.4. Let G be a unimodular Lie group and « € (0,1), then we have the following Leibniz rule.

If p1,p2,p3, P4, P, q € [1,+00] are such that
1 1 1 1 1
+ +

pLop2 p3 p1 P
then for all f € BV4(G) N LP*(G) and all g € B2+1(G) N LP2(G), one has

1f9llze S N f I szrellglloes + £l zesllgll pras-

Proof: Check that
Vy(f-9)(@) = glxy) - Vy f(2) + f(2) - Vyg().

Thus, with Hoélder inequality,

I fallpea = [If - gllp + LE(f - g)
< 1l Nl + Z98) - lglizos + [ flos - L29(g)
/S HfHBZl’q”ngz + ||f||LP3||g||B§4,Q.
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6.2 Characterization by induction - Theorem 1.19
Proposition 6.5. Let p,q € [1,4+00] and o > —1. Let m > §. One has for all i € [1,k]
AZUX) S AL+ I llp = [ f 2o, -

Proof: The scheme of the proof is similar to Proposition 4.6.

1. Decomposition of f:
Let M be an integer with M > O‘TH We decompose f as in Lemma 3.1:

1 e sdt NS,
f= P )M H f— + kz AN f
=0

(M —1)! Jo

and we introduce
2n+1

— M @
fo = / ONEEAE

and .
dt
o= [ AV, T
on—1 p t
Remark then that
anH;D < Gt
and
1 -1 M-1
= n —AFH, T
f (M_l)!nzz—oof +;k:! 1f
2. A first estimate of A" H; X, f:
Let us prove that if n < —1, one has for all i € [[1, k]

A" X; fallp < 2_n(m+%)cn- (31)
Indeed, notice first
2’71
dt
fum -2 [ 8 s
2

n—1

n

dt
=-2MH,. HHH(m)MHtf7

on—1

= HQn—lgn.

Thus, since A = — Zle X? can be written as a polynomial in the X;’s, we obtain with the upper estimate
of the heat kernel (Proposition 2.5),
1
P P
dz>

—1,.12
/ exp <C|Z 2nx| > gn(z)d'z
G

1A X fully < ( /G } 18 Xies (7))

|

fe
< an(m:%) </
V(22) G

<27 g, |,

N
dx)

< 2_"(m+%)cn

where the second line is due to the fact that V(2%) < V(Q%) and the last two lines are obtained by an
argument analogous to the one for (28).

[A™H X full, o [ Xifull,

S
S I XiHy gall,

As a consequence, one has for all ¢ € (0, 1],

—n(m+21
||AmHtX1fn||p = HHtAleanp 5 2 ( +2)Cn,

since H; is uniformly bounded.
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3. A second estimate of A" H X, f:

Let us prove that for all f € LP(G) and for all ¢ € [[1, k]|, one has

o1
[A™H X fll, S 67" 2| f[lp-
First, notice that

AMHXf ) = [ Sl (X))

_ /G ;—th(y)[Xif(x-)](y)dy
_ / Xi;—zht(y)f(zy)dy

/:

XiA"hy(x™ ) f(y)dy.

Then, using the estimates on the heat kernel (Proposition 2.5)and the fact that A = — 3 X2 we obtain
/ ( "y
exp | —¢
V(vt) Je

|AmHtXif||ps</G ) 15ty
=t ([ [ wemisoa pdx)%
with K (z,y) = -2

|z~ 'y|? it : e
TV OXP ( c ) Proposition 2.3 yields the estimate (32).
4.
The two previous steps imply

1
t—m=3%

P v
dm)

7
Estimate of A24(>" f,)

ift > 2"

. gnimid)
|A™H, X full, < {
AS a COnSunenCe,

dt

n o ift < 2™
t—m=3%
1
[ (e
O t
P

Cn+1
-1 -1

> [

oo 27 <t<23+1

q
dt
) |AmHtxifn|p>

T
n=—oo

-1
A"HX; > fa

n=—oo

A

-1

o
™

q
n=-—oo
-1

n=j+1
—1
<2j(m%) Z 9— max{j,n}
j=—o0

7 —1
9i(m—%) Z Q—j(m+%)cn+1+ Z 2—n(m+%)cn

N
(]

q
(m+%)[cn + Cn+1]>
— _padtl q
S X e o]
0

n=—oo

s 3 [

the domination

1
[~
0

where we used Lemma 2.2 for the fourth estimate, relevant since —1 < § < m by assumption. We get then

AMH XY

TS [
p

(33)
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However computations analogous to those leading to (30) prove that
0

Y el s [ (0 1)

S (Aiﬁlf)q :

5. Estimate of the remaining term.
Recall that

1 —1 M-1
=— n —A*H, f.
! (MA)!HZZ_OOf +kZ:Ok! if
We already estimated AZ4(}" f,). What remains to be estimated is AR4(Y" LAFH X, f).
Proposition 2.7 provides as well

A" H XA H f|| < |A™XGARHF|| S e

As a consequence, we get,

q
1 M-1 1 q
. 1 dt oy dt
t"E ATH, X Yy = AMH — < ¢a(m=%) —
/0 K2 Lf T S <|f|p/O :

S -

P

Corollary 6.6. Let p,q € [1,4+00] and > 0.

a+1

k
1 sea, = I Fllze + D 11X | re.
=1

Proof: The main work was done in the previous proposition. Indeed, notice that Proposition 6.5 implies
AL f = AL (AS)

k
< ZAZ’31Xi(Xif)

=1
k

< ST IXf e,
=1

which provides the domination of the first term by the second one.

The converse inequality splits into two parts. The first one is the domination of A24(X, f) by || f]] BRI which is an

immediate application of Proposition 6.5. The second one is the domination of || X f]|,. But recall that Theorem
1.9 states that we can replace || X; f[|, by |HyX;fl|, in the Besov norm, and (32) provides that

IHy Xifllp S 1fllp < 11l sze-
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